10-601 Machine Learning

Inference in HMMs

- Model a set of observation with a set of hidden states
 - Robot movement

Observations: range sensor, visual sensor

Hidden states: location (on a map)

- Speech processing

Observations: sound signals

Hidden states: parts of speech, words

- Biology

Observations: DNA base pairs

Hidden states: Genes

- Model a set of observation with a set of hidden states
 - Robot movement

Observations: range sensor, visual sensor

Hidden states: location (on a map)

- 1. Hidden states generate observations
- 2. Hidden states transition to other hidden states

Example: Gambling on dice outcome

- Two dices, both skewed (output model).
- Can either stay with the same dice or switch to the second dice (transition mode).

- A set of states {s₁ ... s_n}
 - In each time point we are in exactly one of these states denoted by q_t

- A set of states {s₁ ... s_n}
 - In each time point we are in exactly one of these states denoted by q_t
- Π_i , the probability that we *start* at state s_i

- A set of states {s₁ ... s_n}
 - In each time point we are in exactly one of these states denoted by q_t
- Π_i , the probability that we *start* at state s_i
- A transition probability model, P(q_t = s_i | q_{t-1} = s_i)

- A set of states {s₁ ... s_n}
 - In each time point we are in exactly one of these states denoted by q_t
- Π_i , the probability that we *start* at state s_i
- A transition probability model, $P(q_t = s_i | q_{t-1} = s_i)$
- A set of possible outputs Σ
 - At time t we emit a symbol $\sigma \in \Sigma$

- A set of states {s₁ ... s_n}
 - In each time point we are in exactly one of these states denoted by \boldsymbol{q}_{t}
- Π_i , the probability that we start at state s_i
- A transition probability model, P(q_t = s_i | q_{t-1} = s_i)
- A set of possible outputs Σ
 - At time t we emit a symbol $\sigma \in \Sigma$
- An emission probability model, $p(o_t = \sigma \mid s_i)$

0.8	8.0	•
0.0		,
$\begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	3	
0.5	0.5	

٧	P(v A)	P(v B)
1	.3	.1
2	.2	.1
\mathcal{S}	.2	.1
4	.1	.2
5	.1	.2
6	.1	.3

The Markov property

- A set of states {s₁ ... s_n}
 - In each time point we are in exactly one of these states denoted by q_t
- Π_i , the probability that we start at state s_i
- A transition probability model, P(q_t = s_i | q_{t-1} = s_i)

An important aspect of this definitions is the Markov property: q_{t+1} is conditionally independent of q_{t-1} (and any earlier time points) given q_t

More formally
$$P(q_{t+1} = s_i | q_t = s_j) = P(q_{t+1} = s_i | q_t = s_j, q_{t-1} = s_j)$$

What can we ask when using a HMM?

A few examples:

- "What dice is currently being used?"
- "What is the probability of a 6 in the next role?"
- "What is the probability of 6 in any of the next 3 roles?"

Inference in HMMs

- Computing P(Q) and $P(q_t = s_i)$
 - If we cannot look at observations
- Computing $P(Q \mid O)$ and $P(q_t = s_i \mid O)$
 - When we have observation and care about the last state only
- Computing argmax_OP(Q | O)
 - When we care about the entire path

What dice is currently being used?

- We played t rounds so far
- We want to determine $P(q_t = A)$
- Lets assume for now that we cannot observe any outputs (we are blind folded)
- How can we compute this?

$$P(q_t = A)$$
?

Simple answer:

Lets determine P(Q) where Q is any path that ends in A

$$Q = q_1, ..., q_{t-1}, A$$

$$P(Q) = P(q_1, ..., q_{t-1}, A) = P(A | q_1, ..., q_{t-1}) P(q_1, ..., q_{t-1}) = P(A | q_{t-1}) P(q_1, ..., q_{t-1}) = ... = P(A | q_{t-1}) ... P(q_2 | q_1) P(q_1)$$

$$P(q_t = A)$$
?

- Simple answer:
 - 1. Lets determine P(Q) where Q is any path that ends in A

$$Q = q_1, ..., q_{t-1}, A$$

$$P(Q) = P(q_1, ..., q_{t-1}, A) = P(A | q_1, ..., q_{t-1}) P(q_1, ..., q_{t-1}) = P(A | q_{t-1}) P(q_1, ..., q_{t-1}) = ... = P(A | q_{t-1}) ... P(q_2 | q_1) P(q_1)$$

2.
$$P(q_t = A) = \Sigma P(Q)$$

where the sum is over all sets of t states that end in A

$$P(q_t = A)$$
?

- Simple answer:
 - 1. Lets determine P(Q) where Q is any path that ends in A

$$Q = q_1, ..., q_{t-1}, A$$

$$P(Q) = P(q_1, ..., q_{t-1}, A) = P(A | q_1, ..., q_{t-1}) P(q_1, ..., q_{t-1}) = P(A | q_{t-1}) P(q_1, ..., q_{t-1}) = ... = P(A | q_{t-1}) ... P(q_2 | q_1) P(q_1)$$

2. $P(q_t = A) = \Sigma P(Q)$

where the sum is over all sets of t sates that end in A

Q: How many sets Q are there?

A: A lot! (2^{t-1})

Not a feasible solution

$P(q_t = A)$, the smart way

- Lets define p_t(i) as the probability of being in state i at time t: p_t(i) = p(q_t = s_i)
- We can determine p_t(i) by induction
 - 1. $p_1(i) = \Pi_i$
 - 2. $p_t(i) = ?$

$P(q_t = A)$, the smart way

- Lets define p_t(i) = probability state i at time t = p(q_t = s_i)
- We can determine p_t(i) by induction

1.
$$p_1(i) = \Pi_i$$

2.
$$p_t(i) = \sum_j p(q_t = s_i | q_{t-1} = s_j)p_{t-1}(j)$$

$P(q_t = A)$, the smart way

- Lets define p_t(i) = probability state i at time t = p(q_t = s_i)
- We can determine p_t(i) by induction

1.
$$p_1(i) = \Pi_i$$

2.
$$p_t(i) = \sum_j p(q_t = s_i | q_{t-1} = s_j)p_{t-1}(j)$$

This type of computation is called dynamic programming

Complexity: O(n²*t)

Time / state	t1	t2	t3	
s1	.3			
s2	.7		•	Ļ

Number of states in our HMM

Inference in HMMs

- Computing P(Q) and P($q_t = s_i$) $\sqrt{}$
- Computing $P(Q \mid O)$ and $P(q_t = s_i \mid O)$
- Computing argmax_QP(Q)

But what if we observe outputs?

- So far, we assumed that we could not observe the outputs
- In reality, we almost always can.

	₩/	
4	V	

V	P(v A)	P(v B)
1	.3	.1
2	.2	.1
3	.2	.1
4	.1	.2
5	.1	.2
6	.1	.3

But what if we observe outputs?

- So far, we assumed that we could not observe the outputs

V	P(v A)	P(v B)
1	.3	.1
2	.2	.1
3	.2	.1
4	.1	.2
5	.1	.2
6	.1	.3

In reality, we almost a Does observing the sequence

5, 6, 4, 5, 6, 6

Change our belief about the state?

P(q_t = A) when outputs are observed

- We want to compute $P(q_t = A \mid O_1 ... O_t)$
- For ease of writing we will use the following notations (commonly used in the literature)

•
$$a_{j,i} = P(q_t = s_i | q_{t-1} = s_j)$$

• $b_i(o_t) = P(o_t | s_i)$

Transition probability

Emission probability

$P(q_t = A)$ when outputs are observed

- We want to compute $P(q_t = A \mid O_1 ... O_t)$
- Lets start with a simpler question. Given a sequence of states Q, what is P(Q | O₁ ... O_t) = P(Q | O)?
 - It is pretty simple to move from P(Q|O) to $P(q_t = A|O)$
 - In some cases P(Q) is the more important question
 - Speech processing
 - NLP

$P(Q \mid O)$

We can use Bayes rule:

$$P(Q|O) = \frac{P(O|Q)P(Q)}{P(O)}$$

Easy, $P(O | Q) = P(o_1 | q_1) P(o_2 | q_2) ... P(o_t | q_t)$

$P(Q \mid O)$

We can use Bayes rule:

$$P(Q|O) = \frac{P(O|Q)P(Q)}{P(O)}$$

Easy, $P(Q) = P(q_1) P(q_2 | q_1) ... P(q_t | q_{t-1})$

$P(Q \mid O)$

We can use Bayes rule:

$$P(Q|O) = \frac{P(O|Q)P(Q)}{P(O)}$$
Hard!

P(O)

- What is the probability of seeing a set of observations:
 - An important question in it own rights, for example classification using two HMMs
- Define $\alpha_t(i) = P(o_1, o_2, ..., o_t \land q_t = s_i)$
- $\alpha_t(i)$ is the probability that we:
 - 1. Observe o₁, o₂ ..., o_t
 - 2. End up at state i

How do we compute α_t (i)?

Computing $\alpha_t(i)$

•
$$\alpha_1(i) = P(o_1 \land q_t = i) = P(o_1 | q_t = s_i)\Pi_1$$

We must be at a state in time t

$$\alpha_{t+1}(i) = P(O_1 ... O_{t+1} \land q_{t+1} = s_i) = \frac{1}{\sum_{j} P(O_1 ... O_t \land q_t = s_j)} = \frac{1}{\sum_{j} P(O_1 ... O_t \land q_t = s_j)} = \frac{1}{\sum_{j} P(O_{t+1} \land q_{t+1} = s_i \mid O_1 ... O_t \land q_t = s_j)} = \frac{1}{\sum_{j} P(O_{t+1} \land q_{t+1} = s_i \mid O_1 ... O_t \land q_t = s_j)} = \frac{1}{\sum_{j} P(O_{t+1} \land q_{t+1} = s_i \mid O_1 ... O_t \land q_t = s_j)} = \frac{1}{\sum_{j} P(O_{t+1} \land q_{t+1} = s_i \mid O_1 ... O_t \land q_t = s_j)} = \frac{1}{\sum_{j} P(O_{t+1} \land q_{t+1} = s_i)} = \frac{1}{\sum_{j} P(O_{t+1} \land q_{t+1} = s_j)} = \frac{1}$$

$$\sum_{i} b_{i}(O_{t+1}) a_{j,i} \alpha_{t}(j)$$

Example: Computing $\alpha_3(B)$

We observed 2,3,6

$$\begin{split} &\alpha_1(A) = P(2 \wedge \ q_1 = A) = P(2 \mid q_1 = A)\Pi_A = .2^*.7 = .14, \ \alpha_1(B) = .1^*.3 = .03 \\ &\alpha_2(A) = \Sigma_{j=A,,B} b_A(3) a_{j,A} \ \alpha_1(\ j) = .2^*.8^*.14 + .2^*.2^*.03 = 0.0236, \ \alpha_2(B) = 0.0052 \\ &\alpha_3(B) = \Sigma_{j=A,,B} b_B(6) a_{j,B} \ \alpha_2(\ j) = .3^*.2^*.0236 + .3^*.8^*.0052 = 0.00264 \end{split}$$

$$\Pi_{\rm A} = 0.7 \ \Pi_{\rm b} = 0.3$$

V	P(v A)	P(v B)
1	.3	.1
2	.2	.1
3	.2	.1
4	.1	.2
5	.1	.2
6	.1	.3

Where we are

- We want to compute P(Q | O)
- For this, we only need to compute P(O)
- We know how to compute α_t(i)

From now its easy

$$\begin{split} &\alpha_{t}(i) = P(o_{1},\,o_{2}\,...,\,o_{t}\,\wedge\,\,q_{t}\,{=}\,s_{i})\\ &so\\ &P(O) = P(o_{1},\,o_{2}\,...,\,o_{t}) = \Sigma_{i}P(o_{1},\,o_{2}\,...,\,o_{t}\,\wedge\,\,q_{t}\,{=}\,s_{i}) = \Sigma_{i}\,\alpha_{t}(i)\\ ¬e \ that\\ &p(q_{t}\,{=}\,s_{i}\,{|}\,o_{1},\,o_{2}\,...,\,o_{t}) = \frac{\alpha_{t}(i)}{\sum_{j}\alpha_{t}(j)} \end{split}$$

Complexity

- How long does it take to compute P(Q | O)?
- P(Q): O(t)
- P(O|Q): O(t)
- P(O): O(n²t)

Inference in HMMs

- Computing P(Q) and P($q_t = s_i$)
- Computing P(Q | O) and P($q_t = s_i | O$)
- Computing argmax_QP(Q)

Most probable path

- We are almost done ...
- One final question remains
 How do we find the most probable path, that is Q* such that

$$P(Q^* \mid O) = argmax_Q P(Q \mid O)$$
?

- This is an important path
 - The words in speech processing
 - The set of genes in the genome
 - etc.

Example

 What is the most probable set of states leading to the sequence:

$$\Pi_{\rm A} = 0.7$$
 $\Pi_{\rm b} = 0.3$

V	P(v A)	P(v B)
1	.3	.1
2	.2	.1
3	.2	.1
4	.1	.2
5	.1	.2
6	.1	.3

Most probable path

$$\arg\max_{Q} P(Q \mid O) = \arg\max_{Q} \frac{P(O \mid Q)P(Q)}{P(O)}$$
$$= \arg\max_{Q} P(O \mid Q)P(Q)$$

We will use the following definition:

$$\delta_{t}(i) = \max_{q_{1}...q_{t-1}} p(q_{1}...q_{t-1} \land q_{t} = s_{i} \land O_{1}...O_{t})$$

In other words we are interested in the most likely path from 1 to t that:

- 1. Ends in S_i
- 2. Produces outputs O₁ ... O_t

Computing $\delta_t(i)$

$$\delta_{1}(i) = p(q_{1} = s_{i} \wedge O_{1})$$

$$= p(q_{1} = s_{i}) p(O_{1} | q_{1} = s_{i})$$

$$= \pi_{i} b_{i}(O_{1})$$

$$\delta_{t}(i) = \max_{q_{1}...q_{t-1}} p(q_{1}...q_{t-1} \wedge q_{t} = s_{i} \wedge O_{1}...O_{t})$$

Q: Given $\delta_t(i)$, how can we compute $\delta_{t+1}(i)$?

A: To get from $\delta_t(i)$ to $\delta_{t+1}(i)$ we need to

- 1. Add an emission for time t+1 (O_{t+1})
- 2. Transition to state s_i

$$\begin{split} \delta_{t+1}(i) &= \max_{q_1 \dots q_t} p(q_1 \dots q_t \wedge q_{t+1} = s_i \wedge O_1 \dots O_{t+1}) \\ &= \max_{j} \delta_t(j) p(q_{t+1} = s_i \mid q_t = s_j) p(O_{t+1} \mid q_{t+1} = s_i) \\ &= \max_{j} \delta_t(j) a_{j,i} b_i(O_{t+1}) \end{split}$$

The Viterbi algorithm

$$\begin{split} \delta_{t+1}(i) &= \max_{q_1 \dots q_t} p(q_1 \dots q_t \land q_{t+1} = s_i \land O_1 \dots O_{t+1}) \\ &= \max_{j} \delta_t(j) p(q_{t+1} = s_i \mid q_t = s_j) p(O_{t+1} \mid q_{t+1} = s_i) \\ &= \max_{j} \delta_t(j) a_{j,i} b_i(O_{t+1}) \end{split}$$

- Once again we use dynamic programming for solving $\delta_t(i)$
- Once we have $\delta_t(i)$, we can solve for our $P(Q^*|O)$

By:

$$P(Q^* \mid O) = argmax_Q P(Q \mid O) =$$

$$path defined by argmax_j \ \delta_t(j),$$

Inference in HMMs

- Computing P(Q) and P($q_t = s_i$)
- Computing P(Q | O) and P($q_t = s_i | O$)
- Computing argmax_QP(Q)

What you should know

- Why HMMs? Which applications are suitable?
- Inference in HMMs
 - No observations
 - Probability of next state w. observations
 - Maximum scoring path (Viterbi)