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Machine Learning

Inference in HMMs



Hidden Markov models

 Model a set of observation with a set of hidden states
- Robot movement
Observations: range sensor, visual sensor
Hidden states: location (on a map)
- Speech processing
Observations: sound signals
Hidden states: parts of speech, words
- Biology
Observations: DNA base pairs
Hidden states: Genes



Hidden Markov models

 Model a set of observation with a set of hidden states
- Robot movement
Observations: range sensor, visual sensor
@ Hidden states: location (on a map) §

1. Hidden states generate observations

2. Hidden states transition to other hidden states



Example: Gambling on dice
outcome

« Two dices, both skewed (output model).
« Can either stay with the same dice or switch to the

second dice (transition mode).
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A Hidden Markov model

 Asetof states {s; ... S}

- In each time point we are in exactly one of these states
denoted by q,
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A Hidden Markov model

 Asetof states {s; ... S}

- In each time point we are in exactly one of these states
denoted by q,

[T, the probability that we start at state s,
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A Hidden Markov model

 Asetof states {s; ... S}

- In each time point we are in exactly one of these states
denoted by q,

[T, the probability that we start at state s,
* A transition probability model, P(q; = s;| Gy, = S;)
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A Hidden Markov model

A set of states {s, ... S, }

- In each time point we are in exactly one of these states
denoted by q,

[T, the probability that we start at state s
A transition probability model, P(q; = s; | Gy, = S;)
A set of possible outputs X

- At time t we emit a symbol ceX -
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A Hidden Markov model

 Asetof states {s; ... S}

- In each time point we are in exactly one of these states

denoted by q,
[T, the probability that we start at state s,

* A transition probability model, P(q; = s;| Gy, = S;)

« A set of possible outputs X

- Attime t we emit a symbol ceX

An emission probability model, p(o, = c | S))

O.8<\ 0.2

v [ P(v|A) | P(v|B)
1(.3 A1
2.2 A
3.2 A1
4.1 2
5(.1 2
6.1 3
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The Markov property

* Asetof states {s; ... s}

- In each time point we are in exactly one of these states
denoted by q,

[T, the probability that we start at state s,
* A transition probability model, P(q; = s;| Gy, = S))

An impoftant aspect of t.his.definitions IS the Markov property:
J:., Is conditionally independent of g, , (and any earlier time
points) given g,

More formally P(q.; = S;| 0;=S)) = P(Qyr1 = Si| 4= 5,01 = S))



What can we ask when using a
HMM?

A few examples:

« “What dice is currently being used?”

« “What is the probability of a 6 in the next role?”

« “What is the probability of 6 in any of the next 3 roles?”

0.2

0.8
0.2
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Inference iIn HMMs

Computing P(Q) and P(q, = s;)

- If we cannot look at observations

Computing P(Q | O) and P(q, = s;|O)

- When we have observation and care about the last
state only

Computing argmaxyP(Q | O)

- When we care about the entire path



What dice is currently being used?

« We played t rounds so far
* We want to determine P(q, = A)

e Lets assume for now that we cannot observe any outputs
(we are blind folded)

 How can we compute this?
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P(q; = A)?

« Simple answer:
Lets determine P(Q) where Q is any path that ends in A
Q=dy --- 9, A

P(Q) =Py, ... 1, A) = P(A | dy, ... 9wd) P(ay, - =
P(Alq.1) P(ag, ... quq) = ... = P(A] = | d,) P(ay)

Markov property!

Initial probability



P(q; = A)?

« Simple answer:
1. Lets determine P(Q) where Q is any path that ends in A
Q=dy --- 9, A

P(Q)=P(dy --- G0y A) =P(A [0y, --- Aeg) Py, --- Qpg) =
P(Ald.) Py, ... Q1) = ... =P(A | qyy) ... P(a2 | 1) P(ay)

2.P(q; =A) =XP(Q)

where the sum is over all sets of t
states that end in A



P(a, = A)?

« Simple answer:
1. Lets determine P(Q) where Q is any path that ends in A
Q=dy --- 9, A

P(Q)=P(dy --- G0y A) =P(A [0y, --- Aeg) Py, --- Qpg) =
P(Ald.) Py, ... Q1) = ... =P(A | qyy) ... P(a2 | 1) P(ay)

2. P(q,=A) =ZP(Q) Q: How many sets Q
where the sum is over all sets of t are there?

sates that end in A
A: Alot! (2t1)

Not a feasible solution



P(g, = A), the smart way

» Lets define p(i) as the probability of being in state | at time t:
p() = p(a, = s)

* We can determine p,(i) by induction

1. p,(1) =11,
2.pl) =7?



P(g, = A), the smart way

» Lets define p,(i) = probability state i at time t = p(q, = S;)

* We can determine p,(i) by induction

1. py(1) =17,
2. p(1) =% p(A; = Si | Aeq = S)Pr10)



P(g, = A), the smart way

» Lets define p,(i) = probability state i at time t = p(q, = S;)
* We can determine p,(i) by induction

L. p,(1) =11,

2. p(1) =% p(A; = Si | Aeq = S)Pr10)

Time/ |[t1 |t2
This type of computation is state

called dynamic programming sl 3

Complexit}n%t) S2 7

Number of states in our HMM



Inference iIn HMMs

« Computing P(Q) and P(q, = s \/

» Computing P(Q | O) and P(q, = s;|O)

- Computing argmaxoP(Q)



But what If we observe outputs?

 So far, we assumed that we could not observe the
outputs

* In reality, we almost always can. i

P(v|A) | P(v|B)
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But what If we observe outputs?

 So far, we assumed that we could not observe the
outputs

« In reality, we almost a Does observing the sequence
5,6,4,5,6,6

P(v|A) | P(v|B)

Change our belief about the state?
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P(qg, = A) when outputs are

observed

We want to compute P(g,=A| O, ... O)

For ease of writing we will use the following notations
(commonly used in the literature)

8;; = P(0;=s;[ 1 = 5)

bi<ot>:\Pccm\
Transition

probability

Emission
probability



P(qg, = A) when outputs are

observed

We want to compute P(g,=A| O, ... O)

Lets start with a simpler guestion. Given a sequence of
states Q, whatis P(Q | O; ... O) = P(Q | O)?

- It is pretty simple to move from P(Q|O) to P(q, = A|O)
- In some cases P(Q) is the more important question

- Speech processing

- NLP



P(Q1]0O)

« We can use Bayes rule:

P(OQ)P[Q)
P(O)

P(QO) =

Easy, P(O | Q) =P(o, | q;) P(0, ] dy) ... P(o. | qy



P(Q1]0O)

« We can use Bayes rule:

P(O|Q)P[Q)

PQP) = —— (

Easy, P(Q) = P(q,) P(0, | d;) ... P(q, | 0.4)



P(Q1]0O)

« We can use Bayes rule:

P(O|Q)P[Q)

PQP) =—— 0)

/

Hard!



P(O)

What is the probability of seeing a set of observations:

- An important question in it own rights, for example
classification using two HMMs

Define o,(l) = P(04, 0,..., O, A Q;=S))
a(1) Is the probability that we:

1. Observe 04, 0, ..., O

2. End up at state |

How do we compute o, (1)?



Computing a.(1)

ay(l) = P(og A g;=1) = P(0y | g, = s)I],
We must be at a state in time t

1 (1) = P(O,...0p; AQyy =5;) = chain rule
ZP(Ol”'Ot A =3, AO NGy =8) ="

ZP(OHl/\qu_S |O O/\qt_S)P(O O/\qt_s)_
Markov property

ZP(OH NGy =5 |01'°'Ot NG, = Sj)at(J) =

j

ZP(OHl |0y = S)P(0y =S 10, = Sj)at(j) =

j

Zbi (Ot+1)aj,iat(j)



Example: Computing o,(B)

* We observed 2,3,6

o (A) =P(2 A q,=A)=P(2| q,=A)1, =2*7 = .14, o4(B) = .1*.3 = .03

o, (A) = Ziep 8P 4 0y (])=.2%.8%.14+.2%.2*.03 = 0.0236, a,(B) = 0.0052
05(B) = Zi-p sbg(6)a g ap( j)=.3%.2*.0236+.3*.8*.0052 = 0.00264

P(vIA) | P(v[B)

0.8 0.2
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I1,=0.3
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Where we are

« We want to compute P(Q | O)
* For this, we only need to compute P(O)
* We know how to compute a,(i)

From now its easy
o () = P(0y, 05..., Oy A Q;=S)
SO
P(O) =P(04, 0,...,0) = %P(04, 0,..., 0, A O;=S;) = Z; o (i)
note that :
a, (1)

P(A=si| 04,0, ..., 0;) 7 ZO! 0

P(A|B)=P(AAB)/P(B)



Complexity

 How long does it take to compute P(Q | O)?
+ P(Q): O(t)

+ P(O[Q): O()
« P(0): O(n?4t)



Inference iIn HMMs

« Computing P(Q) and P(q, = s \/

* Computing P(Q | O) and P(q, = s;|O) \/

- Computing argmaxoP(Q)



Most probable path

We are almost done ...
One final question remains

How do we find the most probable path, that is Q* such
that

P(Q* | O) = argmaxyP(Q|O)?

This is an important path

- The words in speech processing
- The set of genes in the genome
- etc.



Example

« What is the most probable set of states leading to the
sequence:

1,2,2,5,6,5,1,2,3 ?

P(vIA) | P(v[B)

0.8 0.2
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I1,=0.3
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Most probable path

PO1Q)PQ)
P(O)

=arg max, P(O|Q)P(Q)

arg max, P(Q |O) = arg max,

We will use the following definition:

6,(1) = max p(q,...q; AG =S; AO,..0,)

Op---Ck—1

In other words we are interested in the most likely
path from 1 to t that:

1. Endsin S,
2. Produces outputs O, ... O,



Computing o,(1)

6,(1) = p(d, =s; AO,) S(1) = max p(g .Gy A G =8, AO,..0)
= p(Ql - Si)p(Ol |q1 = Si)
:”ibi (Ol)

Q: Given (i), how can we compute d,,,(1)?
A: To get from d,(i) to J,,4(i) we need to
1. Add an emission for time t+1 (O,,,)
2. Transition to state s
Oy (1) =Max p(Q ... G A Gy = A 0,..0py)

:mjax 5'[(J) p(qt+1 =S | G, = Sj)p(ot+1 | Oy = Si)
= r?ax o,())a;.b(O,,)

jii



The Viterbi algorithm

51+1(i) = gna;( p(ql g, NG, =S, /\01...0t+1)
:m]axd(j)p(qm =5, |q, = Sj)p(OtH 19,1 =5,)
=max8(/)a,; ,(0,..)

J.i i

« Once again we use dynamic programming for
solving d,(1)

* Once we have §,(i), we can solve for our P(Q*|O)
By:
P(Q* | O) = argmax,P(Q|0) =

path defined by argmax; 5,()),



Inference iIn HMMs

« Computing P(Q) and P(g, = s) \/

« Computing P(Q | O) and P(q; = s;|O) \/

- Computing argmaxoP(Q) \/



What you should know

wWhy HMMs? Which applications are suitable?
Inference in HMMs

- No observations

- Probability of next state w. observations

- Maximum scoring path (Viterbi)



