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Today: 

•  Graphical models 
•  Bayes Nets:   

•  Inference 
•  Learning 

Readings: 
 
Required: 
•  Bishop chapter 9 through 9.2 
 

Estimate     from partly observed data 

•  What if FAHN observed, but not S? 
•  Can’t calculate MLE 

•  Let X be all observed variable values (over all examples) 
•  Let Z be all unobserved variable values   
•  Can’t calculate MLE: 
 

Flu Allergy 

Sinus 

Headache Nose 

•   EM seeks* to estimate: 

* EM guaranteed to find local maximum 
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EM Algorithm - Informally 

EM is a general procedure for learning from partly observed data 

Given  observed variables X, unobserved Z  (X={F,A,H,N}, Z={S}) 

 

Begin with arbitrary choice for parameters θ 
Iterate until convergence: 

•  E Step: estimate the values of unobserved Z, using θ   

•  M Step: use observed X, plus E-step estimates for Z to  
                derive a better θ	



	

	



Guaranteed to find local maximum. 
Each iteration increases   

EM Algorithm 

EM is a general procedure for learning from partly observed data 

Given  observed variables X, unobserved Z  (X={F,A,H,N}, Z={S}) 

Define 

Iterate until convergence: 

•  E Step: Use X and current θ to calculate P(Z|X,θ) 

•  M Step: Replace current θ by  

	



	

	



Guaranteed to find local maximum. 
Each iteration increases   
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EM and estimating   Flu Allergy 

Sinus 

Headache Nose 
observed X = {F,A,H,N}, unobserved Z={S} 

E step:  Calculate P(Zk|Xk; θ) for each training example, k  

M step: update all relevant parameters.  For example: 

Recall MLE was: 

EM and estimating   
Flu Allergy 

Sinus 

Headache Nose More generally,  
Given observed set X, unobserved set Z of boolean values 

E step:  Calculate for each training example, k  

 the expected value of each unobserved variable   

M step: 
Calculate estimates similar to MLE, but 
replacing each count by its expected count 
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Using Unlabeled Data to Help Train  
Naïve Bayes Classifier 

Y

X1 X4 X3 X2 

Y X1 X2 X3 X4 
1 0 0 1 1 
0 0 1 0 0 
0 0 0 1 0 
? 0 1 1 0 
? 0 1 0 1 

Learn P(Y|X) 

E step:  Calculate for each training example, k  

 the expected value of each unobserved variable   
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EM and estimating   

Given observed set X, unobserved set Y of boolean values 

E step:  Calculate for each training example, k  

 the expected value of each unobserved variable Y 

M step: Calculate estimates similar to MLE, but 
replacing each count by its expected count 

let’s use y(k) to indicate value of Y on kth example 

EM and estimating   

Given observed set X, unobserved set Y of boolean values 

E step:  Calculate for each training example, k  

 the expected value of each unobserved variable Y 

M step: Calculate estimates similar to MLE, but 
replacing each count by its expected count 

MLE would be: 
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From [Nigam et al., 2000] 

20 Newsgroups 
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Using one labeled 
example per class 

word w ranked by 
P(w|Y=course) / 
P(w|Y ≠ course) 

Usupervised clustering 
  

Just extreme case for EM with 
zero labeled examples… 
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Clustering 

•  Given set of data points, group them 
•  Unsupervised learning 
•  Which patients are similar? (or which earthquakes, 

customers, faces, web pages, …) 

Mixture Distributions 

Model joint                     as mixture of multiple distributions. 
Use discrete-valued random var Z to indicate which 

distribution is being use for each random draw 
So Mixture distribution is of the form: 
 
 
Mixture of Gaussians: 
•  Assume each data point X=<X1, … Xn> is generated by 

one of several Gaussians, as follows: 
1.  randomly choose Gaussian i, according to P(Z=i) 
2.  randomly generate a data point <x1,x2 .. xn> according 

to N(µi, Σi) 
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EM for Mixture of Gaussian Clustering 

Let’s simplify to make this easier:    
1.  assume X=<X1 ... Xn>, and the Xi are conditionally independent 

given Z.   
 
 

2.  assume only 2 clusters (values of Z), and 

3.  Assume σ known, π1 … πK, µ1i …µKi unknown 

Observed: X=<X1 ... Xn> 
Unobserved: Z 

 

Z

X1 X4 X3 X2 

EM 

Given  observed variables X, unobserved Z   

Define 

where  

Iterate until convergence: 

•  E Step: Calculate P(Z(n)|X(n),θ) for each example X(n).  
                   

•  M Step: Replace current θ by  

	



	

	



Z

X1 X4 X3 X2 
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EM – E Step 

Calculate P(Z(n)|X(n),θ) for each observed example X(n) 

X(n)=<x1(n), x2(n), … xT(n)>.   

Z

X1 X4 X3 X2 

EM – M Step  

  

    

Z

X1 X4 X3 X2 

First consider update for π	



π’ has no influence 

Count 
z(n)=1 
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EM – M Step  

  

    

Z

X1 X4 X3 X2 

Now consider update for µji 

µji’ has no influence 

… … … 

Compare above to 
MLE if Z were 
observable: 

EM – putting it together 

Given  observed variables X, unobserved Z   

Define 

where  

Iterate until convergence: 

•  E Step: For each observed example X(n), calculate P(Z(n)|X(n),θ)   

 

•   M Step: Update 

	



	



	

	



Z

X1 X4 X3 X2 
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Mixture of Gaussians applet 

 
Go to: http://www.socr.ucla.edu/htmls/SOCR_Charts.html 
then go to Go to “Line Charts”  à SOCR EM Mixture Chart 
•  try it with 2 Gaussian mixture components (“kernels”) 
•  try it with 4  
  

•  For learning from partly unobserved data 
•  MLE of θ =  
•  EM estimate: θ = 	



Where X is observed part of data, Z is unobserved 

•  EM for training Bayes networks 
•  Can also develop MAP version of EM 
•  Can also derive your own EM algorithm for your own 

problem 
–  write out expression for 
–  E step: for each training example Xk, calculate P(Zk | Xk, θ) 
–  M step: chose new θ to maximize                             

What you should know about EM 
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K-Means Clustering  
(cheap approximation to mixture of Gaussians) 

[slide from Aarti Singh] 

[slide from Aarti Singh] 
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[slide from Aarti Singh] 

[slide from Aarti Singh] 
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[slide from Aarti Singh] 

[slide from Aarti Singh] 
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EM & Mixture of Gaussians 
vs. 

K-Means 

•  Same intuition: iteratively re-estimate 
–  assignments of points to clusters 
–  definitions of clusters 

•  Difference: 
–  K-Means uses “hard assignments” of points to clusters 
–  Mixture-of-Gaussians uses probabilistic assignments 

•  Similar local optimum problems 


