Bayesian Networks Definition

A Bayes network represents the joint probability distribution over a collection of random variables

A Bayes network is a directed acyclic graph and a set of conditional probability distributions (CPD’s)
- Each node denotes a random variable
- Edges denote dependencies
- For each node X_i its CPD defines $P(X_i | Pa(X_i))$
- The joint distribution over all variables is defined to be

$$P(X_1 \ldots X_n) = \prod_i P(X_i | Pa(X_i))$$

$Pa(X)$ = immediate parents of X in the graph
What can we say about conditional independencies in a Bayes Net?

One thing is this:

Each node is conditionally independent of its non-descendents, given only its immediate parents.

| Parents | $P(W|Pa)$ | $P(\neg W|Pa)$ |
|---------|---------|----------------|
| L, R | 0 | 1.0 |
| $L, \neg R$ | 0 | 1.0 |
| $\neg L, R$ | 0.2 | 0.8 |
| $\neg L, \neg R$ | 0.9 | 0.1 |

What You Should Know

• Bayes nets are convenient representation for encoding dependencies / conditional independence
• BN = Graph plus parameters of CPD’s
 – Defines joint distribution over variables
 – Can calculate everything else from that
 – Though inference may be intractable
• Reading conditional independence relations from the graph
 – Each node is cond indep of non-descendents, given only its parents

See Bayes Net applet: http://www.cs.cmu.edu/~javabayes/Home/applet.html
Inference in Bayes Nets

- In general, intractable (NP-complete)
- For certain cases, tractable
 - Assigning probability to fully observed set of variables
 - Or if just one variable unobserved
 - Or for singly connected graphs (i.e., no undirected loops)
 - Belief propagation
- For multiply connected graphs
 - Junction tree
- Sometimes use Monte Carlo methods
 - Generate many samples according to the Bayes Net distribution, then count up the results
- Variational methods for tractable approximate solutions

Example

- Bird flu and Allegies both cause Sinus problems
- Sinus problems cause Headaches and runny Nose
Prob. of joint assignment: easy

• Suppose we are interested in joint assignment \(<F=f, A=a, S=s, H=h, N=n>\)

What is \(P(f,a,s,h,n)\)?

\[
P(\{f\}) \cdot P(a) \cdot P(s|f,a) \cdot P(h|s,f,a) \cdot P(n|h,s,f,a) \cdot P(a|f,a)
\]

let's use \(p(a,b)\) as shorthand for \(p(A=a, B=b)\)

Prob. of marginals: not so easy

• How do we calculate \(P(N=n)\)?

\[
P(N=n) \leq \sum_{n' vars} P(F=f', A=a', H=h', S=s', N=n'')
\]

\(n\ vars \Rightarrow 2^{(n-1)}\)

let's use \(p(a,b)\) as shorthand for \(p(A=a, B=b)\)
Generating a sample from joint distribution: easy

How can we generate random samples drawn according to $P(F,A,S,H,N)$?

Let's use $p(a,b)$ as shorthand for $p(A=a, B=b)$.

Generating a sample from joint distribution: easy

Note we can estimate marginals like $P(N=n)$ by generating many samples from joint distribution, then count the fraction of samples for which $N=n$.

Similarly, for anything else we care about $P(F=1|H=1, N=0)$

\[
\frac{P(F=1, H=1, N=0)}{P(H=1, N=0)}
\]

→ weak but general method for estimating any probability term…
Prob. of marginals: not so easy
But sometimes the structure of the network allows us to be clever \(\rightarrow\) avoid exponential work

eg., chain

\[A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \]

Inference in Bayes Nets

- In general, intractable (NP-complete)
- For certain cases, tractable
 - Assigning probability to fully observed set of variables
 - Or if just one variable unobserved
 - Or for singly connected graphs (i.e., no undirected loops)
 - Variable elimination
 - Belief propagation
- For multiply connected graphs
 - Junction tree
- Sometimes use Monte Carlo methods
 - Generate many samples according to the Bayes Net distribution, then count up the results
- Variational methods for tractable approximate solutions
Learning of Bayes Nets

• Four categories of learning problems
 – Graph structure may be known/unknown
 – Variable values may be fully observed / partly unobserved

• Easy case: learn parameters for graph structure is \textit{known}, and data is \textit{fully observed}

• Interesting case: graph \textit{known}, data \textit{partly known}

• Gruesome case: graph structure \textit{unknown}, data \textit{partly unobserved}

Learning CPTs from Fully Observed Data

• Example: Consider learning the parameter

\[\theta_{s|ij} = P(S = 1|F = i, A = j) \]

• MLE (Max Likelihood Estimate) is

\[\theta_{s|ij} = \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j, s_k = 1)}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)} \]

• Remember why?
MLE estimate of $\theta_{s|ij}$ from fully observed data

• Maximum likelihood estimate
 $$\theta \leftarrow \arg \max_{\theta} \log P(\text{data}|\theta)$$

• Our case:
 $$P(\text{data}|\theta) = \prod_{k=1}^{K} P(f_k, a_k, s_k, h_k, n_k)$$
 $$P(\text{data}|\theta) = \prod_{k=1}^{K} P(f_k)P(a_k)P(s_k|f_k,a_k)P(h_k|s_k)P(n_k|s_k)$$
 $$\log P(\text{data}|\theta) = \sum_{k=1}^{K} \log P(f_k) + \log P(a_k) + \log P(s_k|f_k,a_k) + \log P(h_k|s_k) + \log P(n_k|s_k)$$

\[
\frac{\partial \log P(\text{data}|\theta)}{\partial \theta_{s|ij}} = \sum_{k=1}^{K} \frac{\partial \log P(s_k|f_k,a_k)}{\partial \theta_{s|ij}}
\]

\[
\theta_{s|ij} = \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j, s_k = 1)}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)}
\]

Estimate θ from partly observed data

• What if FAHN observed, but not S?
• Can’t calculate MLE
 $$\theta \leftarrow \arg \max_{\theta} \log \prod_{k} P(f_k, a_k, s_k, h_k, n_k|\theta)$$

• Let X be all observed variable values (over all examples)
• Let Z be all unobserved variable values
• Can’t calculate MLE:
 $$\hat{\theta}_{\text{MLE}} \leftarrow \arg \max_{\theta} \log P(X, Z|\theta)$$

• WHAT TO DO?
Estimate θ from partly observed data

- What if FAHN observed, but not S?
- Can’t calculate MLE

$$\theta \leftarrow \arg \max_{\theta} \log \prod_k P(f_k, a_k, s_k, h_k, n_k|\theta)$$

- Let X be all observed variable values (over all examples)
- Let Z be all unobserved variable values
- Can’t calculate MLE:

$$E \left[\hat{P}(X) \right] = \frac{\sum \hat{P}(X|Z) \hat{P}(Z)}{\sum \hat{P}(X|Z) \hat{P}(Z)}$$

- EM seeks* to estimate:

$$\theta \leftarrow \arg \max_{\theta} \log P(X, Z|\theta)$$

- EM guaranteed to find local maximum

EM seeks estimate:

$$\theta \leftarrow \arg \max_{\theta} \log P(X, Z|\theta)$$

- here, observed X={F,A,H,N}, unobserved Z={S}

$$\log P(X, Z|\theta) = \sum_{k=1}^{K} \log P(f_k) + \log P(a_k) + \log P(s_k|f_k, a_k) + \log P(h_k|s_k) + \log P(n_k|s_k)$$

$$E_P[\log P(X, Z|\theta)] = \sum_{k=1}^{K} \sum_{i=0}^{1} P(s_k = i|f_k, a_k, h_k, n_k)$$

$$\left[\log P(f_k) + \log P(a_k) + \log P(s_k|f_k, a_k) + \log P(h_k|s_k) + \log P(n_k|s_k) \right]$$
EM Algorithm

EM is a general procedure for learning from partly observed data

Given observed variables X, unobserved Z \((X=\{F,A,H,N\}, Z=\{S\})\)

Define

\[
Q(\theta | \theta) = E_{P(Z|X, \theta)}[\log P(X, Z|\theta)]
\]

Iterate until convergence:

- **E Step**: Use X and current θ to calculate $P(Z|X, \theta)$
- **M Step**: Replace current θ by

\[
\theta \leftarrow \arg \max_{\theta'} Q(\theta'|\theta)
\]

Guaranteed to find local maximum.
Each iteration increases

\[
E_{P(Z|X, \theta)}[\log P(X, Z|\theta')]
\]

E Step: Use X, θ, to Calculate $P(Z|X, \theta)$

observed $X=\{F,A,H,N\}$,
unobserved $Z=\{S\}$

\[
P(S_k = 1 | f_k a_k h_k n_k, \theta) = \frac{P(S = 1, f_k a_k h_k n_k, \theta)}{P(f_k a_k h_k n_k, \theta)}
\]

\[
P(S_k = 1 | f_k a_k h_k n_k, \theta) = \frac{P(S_k = 1, f_k a_k h_k n_k | \theta)}{P(S_k = 1, f_k a_k h_k n_k | \theta) + P(S_k = 0, f_k a_k h_k n_k | \theta)}
\]
EM and estimating $\theta_{S|\mathcal{X}}$

observed $X = \{F,A,H,N\}$, unobserved $Z = \{S\}$

E step: Calculate $P(Z_k|X_k; \theta)$ for each training example, k

$$P(S_k = 1|f_k, a_k, h_k, n_k; \theta) = \frac{E[S_k]}{E[S_k] + P(S_k = 0|f_k, a_k, h_k, n_k; \theta)}$$

M step: update all relevant parameters. For example:

Recall MLE was:

$$\theta_{ij} = \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)}$$

EM and estimating θ

More generally,

Given observed set X, unobserved set Z of boolean values

E step: Calculate for each training example, k

the expected value of each unobserved variable

M step:

Calculate estimates similar to MLE, but replacing each count by its expected count

$$\delta(Y = 1) \rightarrow E[Z|X, \theta][Y] \quad \delta(Y = 0) \rightarrow (1 - E[Z|X, \theta][Y])$$
Using Unlabeled Data to Help Train Naïve Bayes Classifier

Learn $P(Y|X)$

<table>
<thead>
<tr>
<th></th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>?</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>?</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

E step: Calculate for each training example, k the expected value of each unobserved variable.
EM and estimating θ

Given observed set X, unobserved set Y of boolean values

E step: Calculate for each training example, k
the expected value of each unobserved variable Y

$$E_{P(Y|X_1,..,X_N)}[y(k)] = P(y(k) = 1|x_1(k),..,x_N(k); \theta) = \frac{P(y(k) = 1) \prod_i P(x_i(k)|y(k) = 1)}{\sum_{j=0}^1 P(y(k) = j) \prod_i P(x_i(k)|y(k) = j)}$$

M step: Calculate estimates similar to MLE, but replacing each count by its expected count

MLE would be:

$$\hat{P}(X_i = j|Y = m) = \frac{\sum_k 1 \{y(k) = m \land (x_i(k) = j)\}}{\sum_k 1 \{y(k) = m\}}$$
• **Inputs**: Collections \mathcal{D}^l of labeled documents and \mathcal{D}^u of unlabeled documents.

• Build an initial naive Bayes classifier, $\hat{\theta}$, from the labeled documents, \mathcal{D}^l, only. Use maximum a posteriori parameter estimation to find $\hat{\theta} = \arg \max_\theta P(\mathcal{D}^l|\theta)P(\theta)$ (see Equations 5 and 6).

• Loop while classifier parameters improve, as measured by the change in $L_\theta(\theta|\mathcal{D}; z)$ (the complete log probability of the labeled and unlabeled data).

 • **(E-step)** Use the current classifier, $\hat{\theta}$, to estimate component membership of each unlabeled document, $i.e.$, the probability that each mixture component (and class) generated each document, $P(c_j|d_i; \hat{\theta})$ (see Equation 7).

 • **(M-step)** Re-estimate the classifier, $\hat{\theta}$, given the estimated component membership of each document. Use maximum a posteriori parameter estimation to find $\hat{\theta} = \arg \max_\theta P(\mathcal{D}|\theta)P(\theta)$ (see Equations 5 and 6).

• **Output**: A classifier, $\hat{\theta}$, that takes an unlabeled document and predicts a class label.

From [Nigam et al., 2000]

Experimental Evaluation

- **Newsgroup postings**
 - 20 newsgroups, 1000/group

- **Web page classification**
 - student, faculty, course, project
 - 4199 web pages

- **Reuters newswire articles**
 - 12,902 articles
 - 90 topics categories
20 Newsgroups

![Graph showing accuracy over number of labeled documents.](image)

Table 3. Lists of the words most predictive of the course class in the WebKB data set, as they change over iterations of EM for a specific trial. By the second iteration of EM, many common course-related words appear. The symbol D indicates an arbitrary digit.

<table>
<thead>
<tr>
<th>Iteration 0</th>
<th>Iteration 1</th>
<th>Iteration 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>intelligence</td>
<td>$D D$</td>
<td>D</td>
</tr>
<tr>
<td>$D D$</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>artificial</td>
<td>lecture</td>
<td>lecture</td>
</tr>
<tr>
<td>understanding</td>
<td>D^*</td>
<td>$DD:DD$</td>
</tr>
<tr>
<td>$D D$</td>
<td>D^*</td>
<td>D^*</td>
</tr>
<tr>
<td>dist.</td>
<td>due</td>
<td>due</td>
</tr>
<tr>
<td>identical</td>
<td>handout</td>
<td>homework assignment</td>
</tr>
<tr>
<td>rus</td>
<td>problem</td>
<td>set</td>
</tr>
<tr>
<td>arrange</td>
<td>set</td>
<td>set</td>
</tr>
<tr>
<td>games</td>
<td>tay</td>
<td>hw</td>
</tr>
<tr>
<td>dartmouth</td>
<td>DD</td>
<td>exam</td>
</tr>
<tr>
<td>natural</td>
<td>$yurttas$</td>
<td>problem</td>
</tr>
<tr>
<td>cognitive</td>
<td>homework</td>
<td>DD</td>
</tr>
<tr>
<td>logic</td>
<td>$kfoury$</td>
<td>postscript</td>
</tr>
<tr>
<td>proving</td>
<td>sec</td>
<td>solution</td>
</tr>
<tr>
<td>$D D$</td>
<td>postscript</td>
<td>quiz</td>
</tr>
<tr>
<td>$D D$</td>
<td>exam</td>
<td>chapter</td>
</tr>
<tr>
<td>proving</td>
<td>solution</td>
<td>ascii</td>
</tr>
<tr>
<td>protection</td>
<td>assaf</td>
<td></td>
</tr>
</tbody>
</table>

Using one labeled example per class
20 Newsgroups

Unsupervised clustering

Just extreme case for EM with zero labeled examples…
Clustering

- Given set of data points, group them
- Unsupervised learning
- Which patients are similar? (or which earthquakes, customers, faces, web pages, ...)

Mixture Distributions

Model joint $P(X_1 \ldots X_n)$ as mixture of multiple distributions. Use discrete-valued random var Z to indicate which distribution is being used for each random draw.

So

$$P(X_1 \ldots X_n) = \sum_i P(Z = i) \cdot P(X_1 \ldots X_n | Z)$$

Mixture of Gaussians:

- Assume each data point $X = <X_1, \ldots X_n>$ is generated by one of several Gaussians, as follows:
 1. randomly choose Gaussian i, according to $P(Z=i)$
 2. randomly generate a data point $<x_1,x_2 \ldots x_n>$ according to $N(\mu_i, \Sigma_i)$
EM for Mixture of Gaussian Clustering

Let’s simplify to make this easier:

1. Assume $X = \langle X_1, ..., X_n \rangle$, and the X_i are conditionally independent given Z.

$$P(X|Z=j) = \prod_i N(X_i|\mu_{ji}, \sigma_{ji})$$

2. Assume only 2 clusters (values of Z), and $\forall i, j, \sigma_{ji} = \sigma$

$$P(X) = \sum_{j=1}^{2} P(Z=j|\pi) \prod_i N(x_i|\mu_{ji}, \sigma)$$

3. Assume σ known, $\pi_1 \ldots \pi_K$, $\mu_{1i} \ldots \mu_{Ki}$ unknown

Observed: $X = \langle X_1, ..., X_n \rangle$
Unobserved: Z

EM

Given observed variables X, unobserved Z
Define $Q(\theta'|\theta) = E_{Z|X,\theta}[\log P(X, Z|\theta')]$
where $\theta = (\pi, \mu_{ji})$

Iterate until convergence:

- E Step: Calculate $P(Z(n)|X(n), \theta)$ for each example $X(n)$. Use this to construct $Q(\theta'|\theta)$
- M Step: Replace current θ by

$$\theta \leftarrow \arg \max_{\theta'} Q(\theta'|\theta)$$
EM – E Step

Calculate $P(Z(n)|X(n), \theta)$ for each observed example $X(n)$.

$X(n) = \langle x_1(n), x_2(n), \ldots, x_T(n) \rangle$.

\[
P(z(n) = k|x(n), \theta) = \frac{P(x(n)|z(n) = k, \theta) P(z(n) = k|\theta)}{\sum_{j=0}^{K} P(x(n)|z(n) = j, \theta) P(z(n) = j|\theta)}
\]

\[
P(z(n) = k|x(n), \theta) = \frac{\prod_i P(x_i(n)|z(n) = k, \theta)}{\sum_{j=0}^{K} \prod_i P(x_i(n)|z(n) = j, \theta)}
\]

\[
P(z(n) = k|x(n), \theta) = \frac{\prod_i N(x_i(n)|\mu_{k,i}, \sigma)}{\sum_{j=0}^{K} \prod_i N(x_i(n)|\mu_{j,i}, \sigma)} \left(\pi^k (1 - \pi)^{(1-k)} \right)
\]

EM – M Step

First consider update for π.

$Q(\theta'|\theta) = E_{Z|X,\theta}[log P(X,Z|\theta')] = E[log P(X|Z,\theta') + log P(Z|\theta')]$

$\pi \rightarrow \arg\max_{\pi'} E_{Z|X,\theta}[log P(Z|\pi')]$

\[
\pi = \arg\max_{\pi'} E_{Z|X,\theta}[log P(Z|\pi')]
\]

\[
E_{Z|X,\theta}[log P(Z|\pi')] = E_{Z|X,\theta}[\log \left(\pi' \sum_n z(n) (1 - \pi') \sum_n (1 - z(n)) \right)]
\]

\[
= E_{Z|X,\theta} \left[\left(\sum_n z(n) \right) \log \pi' \right] + \left(\sum_n (1 - z(n)) \right) \log(1 - \pi')
\]

\[
= \left(\sum_n E_{Z|X,\theta}[z(n)] \right) \log \pi' + \left(\sum_n E_{Z|X,\theta}[1 - z(n)] \right) \log(1 - \pi')
\]

\[
\frac{\partial E_{Z|X,\theta}[log P(Z|\pi')]}{\partial \pi'} = \left(\sum_n E_{Z|X,\theta}[z(n)] \right) \frac{1}{\pi'} + \left(\sum_n E_{Z|X,\theta}[1 - z(n)] \right) \frac{-1}{1 - \pi'}
\]

\[
\pi' = \frac{\sum_{n=1}^{N} E[z(n)]}{\left(\sum_{n=1}^{N} E[z(n)] \right) + \left(\sum_{n=1}^{N} (1 - E[z(n)]) \right)} = \frac{1}{N} \sum_{n=1}^{N} E[z(n)]
\]
Now consider update for μ_{ji}

$$Q(\theta'|\theta) = E_{Z|X,\theta}[\log P(X, Z|\theta')] = E[\log P(X|Z, \theta') + \log P(Z|\theta')]$$

μ_{ji} has no influence

$$\mu_{ji} \leftarrow \arg \max_{\mu_{ji}} E_{Z|X,\theta}[\log P(X, Z, \theta')]$$

......

$$\mu_{ji} \leftarrow \frac{\sum_{n=1}^{N} P(z(n) = j | x(n), \theta) \cdot x_i(n)}{\sum_{n=1}^{N} P(z(n) = j | x(n), \theta)}$$

Compare above to MLE if Z were observable:

$$\mu_{ji} \leftarrow \frac{\sum_{n=1}^{N} \delta(z(n) = j) \cdot x_i(n)}{\sum_{n=1}^{N} \delta(z(n) = j)}$$

EM – putting it together

Given observed variables X, unobserved Z

Define $Q(\theta'|\theta) = E_{Z|X,\theta}[\log P(X, Z|\theta')]$

where $\theta = (\pi, \mu_{ji})$

Iterate until convergence:

- **E Step:** For each observed example $X(n)$, calculate $P(Z(n)|X(n), \theta)$

 $$P(z(n) = k | x(n), \theta) = \frac{[\prod_i N(x_i(n)|\mu_{k,i}, \sigma)] \cdot (\pi_k(1-\pi)^{(1-k)})}{\sum_{j=0}^{1} [\prod_i N(x_i(n)|\mu_{j,i}, \sigma)] \cdot (\pi_j(1-\pi)^{(1-j)})}$$

- **M Step:** Update $\theta \leftarrow \arg \max_{\theta'} Q(\theta'|\theta)$

 $$\pi \leftarrow \frac{1}{N} \sum_{n=1}^{N} E[z(n)]$$

 $$\mu_{ji} \leftarrow \frac{\sum_{n=1}^{N} P(z(n) = j | x(n), \theta) \cdot x_i(n)}{\sum_{n=1}^{N} P(z(n) = j | x(n), \theta)}$$
Mixture of Gaussians applet

Go to: http://www.socr.ucla.edu/htmls/SOCR_Charts.html
then go to Go to “Line Charts” \(\rightarrow\) SOCR EM Mixture Chart

- try it with 2 Gaussian mixture components (“kernels”)
- try it with 4

What you should know about EM

- For learning from partly unobserved data
- MLE of \(\theta = \arg \max_{\theta} \log P \text{(data}|\theta)\)
- EM estimate: \(\theta = \arg \max_{\theta} E_{Z|X,\theta}[\log P(X, Z|\theta)]\)
 Where \(X\) is observed part of data, \(Z\) is unobserved

- EM for training Bayes networks
- Can also develop MAP version of EM
- Can also derive your own EM algorithm for your own problem
 - write out expression for \(E_{Z|X,\theta}[\log P(X, Z|\theta)]\)
 - E step: for each training example \(X^k\), calculate \(P(Z^k|X^k, \theta)\)
 - M step: chose new \(\theta\) to maximize \(E_{Z|X,\theta}[\log P(X, Z|\theta)]\)
How can we learn Bayes Net graph structure?

In general case, open problem
• can require lots of data (else high risk of overfitting)
• can use Bayesian methods to constrain search

One key result:
• Chow-Liu algorithm: finds “best” tree-structured network
• What’s best?
 – suppose \(P(\mathbf{X}) \) is true distribution, \(T(\mathbf{X}) \) is our tree-structured network, where \(\mathbf{X} = <X_1, \ldots, X_n> \)
 – Chow-Liu minimizes Kullback-Leibler divergence:

\[
KL(P(\mathbf{X}) \mid | T(\mathbf{X})) = \sum_k P(\mathbf{X} = k) \log \frac{P(\mathbf{X} = k)}{T(\mathbf{X} = k)}
\]
Chow-Liu Algorithm

Key result: To minimize \(KL(P \| T) \), it suffices to find the tree network \(T \) that maximizes the sum of mutual informations over its edges.

Mutual information for an edge between variable \(A \) and \(B \):

\[
I(A, B) = \sum_a \sum_b P(a, b) \log \frac{P(a, b)}{P(a)P(b)}
\]

This works because for tree networks with nodes \(\mathbf{X} = \{X_1 \ldots X_n\} \):

\[
KL(P(\mathbf{X}) \| T(\mathbf{X})) = \sum_k P(\mathbf{X} = k) \log \frac{P(\mathbf{X} = k)}{T(\mathbf{X} = k)} = -\sum_i I(X_i, Pa(X_i)) + \sum_i H(X_i) - H(X_1 \ldots X_n)
\]

Chow-Liu Algorithm

1. for each pair of vars \(A, B \), use data to estimate \(P(A,B) \), \(P(A) \), \(P(B) \)

2. for each pair of vars \(A, B \) calculate mutual information

\[
I(A, B) = \sum_a \sum_b P(a, b) \log \frac{P(a, b)}{P(a)P(b)}
\]

3. calculate the maximum spanning tree over the set of variables, using edge weights \(I(A, B) \)
 (given \(N \) vars, this costs only \(O(N^2) \) time)

4. add arrows to edges to form a directed-acyclic graph

5. learn the CPD’s for this graph
Chow-Liu algorithm example
Greedy Algorithm to find Max-Spanning Tree

Bayes Nets – What You Should Know

- Representation
 - Bayes nets represent joint distribution as a DAG + Conditional Distributions
 - D-separation lets us decode conditional independence assumptions

- Inference
 - NP-hard in general
 - For some graphs, closed form inference is feasible
 - Approximate methods too, e.g., Monte Carlo methods, …

- Learning
 - Easy for known graph, fully observed data (MLE’s, MAP est.)
 - EM for partly observed data, known graph
 - Learning graph structure: Chow-Liu for tree-structured networks
 - Hardest when graph unknown, data incompletely observed