Today:
• Logistic regression
• Generative/Discriminative classifiers

Readings: (see class website)

Required:
• Mitchell: “Naïve Bayes and Logistic Regression”

Optional
• Ng & Jordan

Logistic Regression

Idea:
• Naïve Bayes allows computing $P(Y|X)$ by learning $P(Y)$ and $P(X|Y)$

• Why not learn $P(Y|X)$ directly?
Consider learning $f: X \rightarrow Y$, where
- X is a vector of real-valued features, $<X_1 \ldots X_n>$
- Y is boolean
- assume all X_i are conditionally independent given Y
- model $P(X_i | Y = y_k)$ as Gaussian $N(u_{ik}, \sigma_i)$
- model $P(Y)$ as Bernoulli (π)

What does that imply about the form of $P(Y|X)$?

$$P(Y = 1|X = <X_1, \ldots X_n>) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

Derive form for $P(Y|X)$ for continuous X_i

$$P(Y = 1|X) = \frac{P(Y = 1)P(X|Y = 1)}{P(Y = 1)P(X|Y = 1) + P(Y = 0)P(X|Y = 0)}$$

$$= \frac{1}{1 + \exp(\ln \frac{P(Y=0)}{P(Y=1)}P(X|Y=0))}$$

$$= \frac{1}{1 + \exp(\ln \frac{P(Y=0)}{P(Y=1)}P(X|Y=1))}$$

$$= \frac{1}{1 + \exp\left(\ln \frac{P(X_i|Y=0)}{P(X_i|Y=1)}\right) + \sum_i \ln \frac{P(X_i|Y=0)}{P(X_i|Y=1)}}$$

$$P(x | y_k) = \frac{1}{\sigma_k \sqrt{2\pi}} e^{-\frac{(x-y_k)^2}{2\sigma_k^2}}$$

$$P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^n w_i X_i)}$$
Very convenient!

\[P(Y = 1 | X = < X_1, \ldots, X_n >) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)} \]

implies

\[P(Y = 0 | X = < X_1, \ldots, X_n >) = \]

implies

\[\frac{P(Y = 0 | X)}{P(Y = 1 | X)} = \]

implies

\[\ln \frac{P(Y = 0 | X)}{P(Y = 1 | X)} = \]

Very convenient!

\[P(Y = 1 | X = < X_1, \ldots, X_n >) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)} \]

implies

\[P(Y = 0 | X = < X_1, \ldots, X_n >) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)} \]

implies

\[\frac{P(Y = 0 | X)}{P(Y = 1 | X)} = \exp(w_0 + \sum_i w_i X_i) \]

implies

\[\ln \frac{P(Y = 0 | X)}{P(Y = 1 | X)} = w_0 + \sum_i w_i X_i \]

linear classification rule!
\[
\ln \frac{P(Y = 0 \mid X)}{P(Y = 1 \mid X)} = w_0 + \sum_i w_i X_i
\]

Logistic function

\[
P(Y = 1 \mid X) = \frac{1}{1 + \exp(-b)}
\]
Logistic regression more generally

- Logistic regression when Y not boolean (but still discrete-valued).
- Now $y \in \{y_1, \ldots, y_R\}$: learn $R-1$ sets of weights

\[
\text{for } k < R \quad P(Y = y_k | X) = \frac{\exp(w_{k0} + \sum_{i=1}^{n} w_{ki}x_i)}{1 + \sum_{j=1}^{R-1} \exp(w_{j0} + \sum_{i=1}^{n} w_{ji}x_i)}
\]

\[
\text{for } k = R \quad P(Y = y_R | X) = \frac{1}{1 + \sum_{j=1}^{R-1} \exp(w_{j0} + \sum_{i=1}^{n} w_{ji}x_i)}
\]

Training Logistic Regression: MCLE

- we have L training examples: $\{(X^1, Y^1), \ldots, (X^L, Y^L)\}$
- maximum likelihood estimate for parameters W

 \[
 W_{MLE} = \arg \max_W P(<X^1, Y^1> \ldots <X^L, Y^L> | W)
 = \arg \max_W \prod_l P(<X^l, Y^l> | W)
 \]
 - maximum conditional likelihood estimate
Training Logistic Regression: MCLE

- Choose parameters $W=<w_0, \ldots, w_n>$ to maximize conditional likelihood of training data

where

$$P(Y = 0|X, W) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

$$P(Y = 1|X, W) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

- Training data $D = \{(X^1, Y^1), \ldots, (X^L, Y^L)\}$
- Data likelihood $= \prod_l P(X^l, Y^l|W)$
- Data conditional likelihood $= \prod_l P(Y^l|X^l, W)$

$$W_{MCLE} = \arg \max_W \prod_l P(Y^l|W, X^l)$$

Expressing Conditional Log Likelihood

$$l(W) \equiv \ln \prod_l P(Y^l|X^l, W) = \sum_l \ln P(Y^l|X^l, W)$$

$$P(Y = 0|X, W) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

$$P(Y = 1|X, W) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

$$l(W) = \sum_l Y^l \ln P(Y^l = 1|X^l, W) + (1 - Y^l) \ln P(Y^l = 0|X^l, W)$$

$$= \sum_l Y^l \ln \frac{P(Y^l = 1|X^l, W)}{P(Y^l = 0|X^l, W)} + \ln P(Y^l = 0|X^l, W)$$

$$= \sum_l Y^l (w_0 + \sum_i w_i X_i^l) - \ln(1 + \exp(w_0 + \sum_i w_i X_i^l))$$
Maximizing Conditional Log Likelihood

\[P(Y = 0|X, W) = \frac{1}{1 + \exp(w_0 + \sum_i w_i x_i)} \]
\[P(Y = 1|X, W) = \frac{\exp(w_0 + \sum_i w_i x_i)}{1 + \exp(w_0 + \sum_i w_i x_i)} \]

\[l(W) \equiv \ln \prod_l P(Y_l|X_l, W) \]
\[= \sum_l Y_l (w_0 + \sum_i^n w_i X_{l,i}) - \ln (1 + \exp(w_0 + \sum_i^n w_i X_{l,i})) \]

Good news: \(l(W) \) is concave function of \(W \)
Bad news: no closed-form solution to maximize \(l(W) \)

Gradient Descent

\[\nabla E[\tilde{w}] = \begin{bmatrix} \frac{\partial E}{\partial w_0} & \frac{\partial E}{\partial w_1} & \cdots & \frac{\partial E}{\partial w_n} \end{bmatrix} \]
Training rule:
\[\Delta \tilde{w} = -\eta \nabla E[\tilde{w}] \]
\[\Delta w_i = -\eta \frac{\partial E}{\partial w_i} \]
Gradient Descent:

Batch gradient: use error $E_D(w)$ over entire training set D

Do until satisfied:
1. Compute the gradient $\nabla E_D(w) = \left[\frac{\partial E_D(w)}{\partial w_0}, \ldots, \frac{\partial E_D(w)}{\partial w_n} \right]$
2. Update the vector of parameters: $w \leftarrow w - \eta \nabla E_D(w)$

Stochastic gradient: use error $E_d(w)$ over single examples $d \in D$

Do until satisfied:
1. Choose (with replacement) a random training example $d \in D$
2. Compute the gradient just for d: $\nabla E_d(w) = \left[\frac{\partial E_d(w)}{\partial w_0}, \ldots, \frac{\partial E_d(w)}{\partial w_n} \right]$
3. Update the vector of parameters: $w \leftarrow w - \eta \nabla E_d(w)$

Stochastic approximates Batch arbitrarily closely as $\eta \to 0$
Stochastic can be much faster when D is very large
Intermediate approach: use error over subsets of D

Maximize Conditional Log Likelihood: Gradient Ascent

$$l(W) \equiv \ln \prod_l P(Y^l|X^l, W)$$
$$= \sum_l Y^l(w_0 + \sum w_i X_i^l) - \ln(1 + \exp(w_0 + \sum w_i X_i^l))$$

$$\frac{\partial l(W)}{\partial w_i} = \sum_l X_i^l (Y^l - \hat{P}(Y^l = 1|X^l, W))$$
Maximize Conditional Log Likelihood: Gradient Ascent

\[l(W) = \ln \prod_l P(Y^l | X^l, W) \]
\[= \sum_l Y^l(w_0 + \sum_i w_i X_i^l) - \ln(1 + \exp(w_0 + \sum_i w_i X_i^l)) \]
\[\frac{\partial l(W)}{\partial w_i} = \sum_l X_i^l Y^l - \bar{P}(Y^l = 1 | X^l, W) \]

Gradient ascent algorithm: iterate until change < \(\varepsilon \)
For all \(i \), repeat
\[w_i \leftarrow w_i + \eta \sum_l X_i^l (Y^l - \bar{P}(Y^l = 1 | X^l, W)) \]

That’s all for M(C)LE. How about MAP?

- One common approach is to define priors on \(W \)
 - Normal distribution, zero mean, identity covariance
- Helps avoid very large weights and overfitting
- MAP estimate
 \[W \leftarrow \arg\max_W \ln P(W) \prod_l P(Y^l | X^l, W) \]
- Let’s assume Gaussian prior: \(W \sim N(0, \sigma) \)
MLE vs MAP

• Maximum conditional likelihood estimate
 \[W \leftarrow \arg \max_W \ln \prod_l P(Y^l|X^l, W) \]
 \[w_i \leftarrow w_i + \eta \sum_l X^l_i (Y^l - \hat{P}(Y^l = 1|X^l, W)) \]

• Maximum a posteriori estimate with prior \(W \sim N(0, \sigma I) \)
 \[W \leftarrow \arg \max_W \ln [P(W) \prod_l P(Y^l|X^l, W)] \]
 \[w_i \leftarrow w_i - \eta \lambda w_i + \eta \sum_l X^l_i (Y^l - \hat{P}(Y^l = 1|X^l, W)) \]

MAP estimates and Regularization

• Maximum a posteriori estimate with prior \(W \sim N(0, \sigma I) \)
 \[W \leftarrow \arg \max_W \ln [P(W) \prod_l P(Y^l|X^l, W)] \]
 \[w_i \leftarrow w_i - \eta \lambda w_i + \eta \sum_l X^l_i (Y^l - \hat{P}(Y^l = 1|X^l, W)) \]

 called a “regularization” term
 • helps reduce overfitting, especially when training data is sparse
 • keep weights nearer to zero (if \(P(W) \) is zero mean Gaussian prior), or whatever the prior suggests
 • used very frequently in Logistic Regression
The Bottom Line

• Consider learning \(f: X \rightarrow Y \), where
 • \(X \) is a vector of real-valued features, \(< X_1 \ldots X_n >\)
 • \(Y \) is boolean
 • assume all \(X_i \) are conditionally independent given \(Y \)
 • model \(P(X_i | Y = y_k) \) as Gaussian \(N(\mu_{ik}, \sigma_i) \)
 • model \(P(Y) \) as Bernoulli (\(\pi \))

• Then \(P(Y|X) \) is of this form, and we can directly estimate \(W \)
 \[
P(Y = 1 | X = < X_1, ... X_n >) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}
 \]

• Furthermore, same holds if the \(X_i \) are boolean
 • trying proving that to yourself

Generative vs. Discriminative Classifiers

Training classifiers involves estimating \(f: X \rightarrow Y \), or \(P(Y|X) \)

Generative classifiers (e.g., Naïve Bayes)
 • Assume some functional form for \(P(X|Y) \), \(P(X) \)
 • Estimate parameters of \(P(X|Y) \), \(P(X) \) directly from training data
 • Use Bayes rule to calculate \(P(Y|X=x_i) \)

Discriminative classifiers (e.g., Logistic regression)
 • Assume some functional form for \(P(Y|X) \)
 • Estimate parameters of \(P(Y|X) \) directly from training data
Use Naïve Bayes or Logistic Regression?

Consider
• Restrictiveness of modeling assumptions

• Rate of convergence (in amount of training data) toward asymptotic hypothesis

Naïve Bayes vs Logistic Regression

Consider \(Y \) boolean, \(X_i \) continuous, \(X = <X_1 ... X_n> \)

Number of parameters to estimate:
• NB:

\[
P(Y = 0|X, W) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}
\]

• LR:

\[
P(Y = 1|X, W) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}
\]
Naïve Bayes vs Logistic Regression

Consider Y boolean, X_i continuous, X=<X_1 ... X_n>

Number of parameters:
- NB: 4n +1
- LR: n+1

Estimation method:
- NB parameter estimates are uncoupled
- LR parameter estimates are coupled

G.Naïve Bayes vs. Logistic Regression

Recall two assumptions deriving form of LR from GNBayes:
1. X_i conditionally independent of X_k given Y
2. P(X_i | Y = y_k) = N(µ_{ik}, σ_i), ¬ N(µ_{ik}, σ_{lk})

Consider three learning methods:
- GNB (assumption 1 only)
- GNB2 (assumption 1 and 2)
- LR

Which method works better if we have infinite training data, and...
- Both (1) and (2) are satisfied
- Neither (1) nor (2) is satisfied
- (1) is satisfied, but not (2)
G. Naïve Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

Recall two assumptions deriving form of LR from GNBayes:
1. \(X_i \) conditionally independent of \(X_k \) given \(Y \)
2. \(P(X_i \mid Y = y_k) = N(\mu_{ik}, \sigma_i), \quad \not\in N(\mu_{ik}, \sigma_{ik}) \)

Consider three learning methods:
• GNB (assumption 1 only)
• GNB2 (assumption 1 and 2)
• LR

Which method works better if we have infinite training data, and...
• Both (1) and (2) are satisfied
• Neither (1) nor (2) is satisfied
• (1) is satisfied, but not (2)

G. Naïve Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

Recall two assumptions deriving form of LR from GNBayes:
1. \(X_i \) conditionally independent of \(X_k \) given \(Y \)
2. \(P(X_i \mid Y = y_k) = N(\mu_{ik}, \sigma_i), \quad \not\in N(\mu_{ik}, \sigma_{ik}) \)

Consider three learning methods:
• GNB (assumption 1 only) -- decision surface can be non-linear
• GNB2 (assumption 1 and 2) -- decision surface linear
• LR -- decision surface linear, trained differently

Which method works better if we have infinite training data, and...
• Both (1) and (2) are satisfied: \(LR = GNB2 = GNB \)
• Neither (1) nor (2) is satisfied: \(LR > GNB2, \quad GNB > GNB2 \)
• (1) is satisfied, but not (2): \(GNB > LR, \quad LR > GNB2 \)
G. Naïve Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

What if we have only finite training data?

They converge at different rates to their asymptotic (i.e., data) error.

Let $\epsilon_{A,n}$ refer to expected error of learning algorithm A after n training examples.

Let d be the number of features: $\langle X_1 \ldots X_d \rangle$.

\[
\epsilon_{LR,n} \leq \epsilon_{LR,\infty} + O\left(\frac{\sqrt{d}}{n}\right)
\]

\[
\epsilon_{GNB,n} \leq \epsilon_{GNB,\infty} + O\left(\frac{\log d}{n}\right)
\]

So, GNB requires $n = O(\log d)$ to converge, but LR requires $n = O(d)$

Some experiments from UCI data sets

[Ng & Jordan, 2002]

Figure 1: Results of 15 experiments on datasets from the UCI Machine Learning Repository. Plots are of generalization error vs. n (averaged over 1000 training/val sets) for: dotted line is logistic regression solid line is naive Bayes.
Naïve Bayes vs. Logistic Regression

The bottom line:

GNB2 and LR both use linear decision surfaces, GNB need not

Given infinite data, LR is better or equal to GNB2 because training procedure does not make assumptions 1 or 2 (though our derivation of the form of P(Y|X) did).

But GNB2 converges more quickly to its perhaps-less-accurate asymptotic error

And GNB is both more biased (assumption1) and less (no assumption 2) than LR, so either might beat the other

What you should know:

• Logistic regression
 – Functional form follows from Naïve Bayes assumptions
 • For Gaussian Naïve Bayes assuming variance $\sigma_{ik} = \sigma_i$
 • For discrete-valued Naïve Bayes too
 – But training procedure picks parameters without making conditional independence assumption
 – MLE training: pick W to maximize $P(Y \mid X, W)$
 – MAP training: pick W to maximize $P(W \mid X,Y)$
 • ‘regularization’
 • helps reduce overfitting

• Gradient ascent/descent
 – General approach when closed-form solutions unavailable

• Generative vs. Discriminative classifiers
 – Bias vs. variance tradeoff