Today:
- Naïve Bayes
 - discrete-valued X_i’s
 - Document classification
- Gaussian Naïve Bayes
 - real-valued X_i’s
 - Brain image classification
- Form of decision surfaces

Readings:
Required:
- Mitchell: “Naïve Bayes and Logistic Regression”
 (available on class website)
Optional
- Bishop 1.2.4
- Bishop 4.2

Recently:
- Bayes classifiers to learn $P(Y|X)$
- MLE and MAP estimates for parameters of P
- Conditional independence
- Naïve Bayes \rightarrow make Bayesian learning practical

Next:
- Text classification
- Naïve Bayes and continuous variables X_i:
 - Gaussian Naïve Bayes classifier
- Learn $P(Y|X)$ directly
 - Logistic regression, Regularization, Gradient ascent
- Naïve Bayes or Logistic Regression?
 - Generative vs. Discriminative classifiers
Naïve Bayes in a Nutshell

Bayes rule:
\[
P(Y = y_k|X_1 \ldots X_n) = \frac{P(Y = y_k)P(X_1 \ldots X_n|Y = y_k)}{\sum_j P(Y = y_j)P(X_1 \ldots X_n|Y = y_j)}
\]

Assuming conditional independence among \(X_i\)'s:
\[
P(Y = y_k|X_1 \ldots X_n) = \frac{P(Y = y_k)\prod_i P(X_i|Y = y_k)}{\sum_j P(Y = y_j)\prod_i P(X_i|Y = y_j)}
\]

So, classification rule for \(x_{new} = < x_1, \ldots, x_n >\) is:
\[
Y_{new} \leftarrow \arg \max_{y_k} P(Y = y_k)\prod_i P(X_i^{new}|Y = y_k)
\]

Another way to view Naïve Bayes (Boolean \(Y\)):
Decision rule: is this quantity greater or less than 1?
\[
\frac{P(Y = 1|X_1 \ldots X_n)}{P(Y = 0|X_1 \ldots X_n)} = \frac{P(Y = 1)\prod_i P(X_i|Y = 1)}{P(Y = 0)\prod_i P(X_i|Y = 0)} = \log \left[\prod_i \frac{P(Y = 1)}{P(Y = 0)} + \prod_i \left[x_i \log \frac{\theta_i^1}{\theta_i^0} + (-x_i) \log \frac{1-\theta_i^0}{1-\theta_i^1} \right] \right]
\]
\[
\hat{\theta}_{i,k} = \hat{p}(X_i = 1|Y = y_k)
\]
Naïve Bayes: classifying text documents

- Classify which emails are spam?
- Classify which emails promise an attachment?

How shall we represent text documents for Naïve Bayes?

Learning to classify documents: $P(Y|X)$

- Y discrete valued.
 - e.g., Spam or not
- $X = <X_1, X_2, \ldots, X_n> = \text{document}$
 - X_i is a random variable describing...
Learning to classify documents: $P(Y|X)$

- Y discrete valued.
 - e.g., Spam or not
- $X = <X_1, X_2, \ldots, X_n> = \text{document}$

- X_i is a random variable describing...

 Answer 1: X_i is boolean, 1 if word i is in document, else 0
 e.g., $X_{\text{pleased}} = 1$

 Issues?

Learning to classify documents: $P(Y|X)$

- Y discrete valued.
 - e.g., Spam or not
- $X = <X_1, X_2, \ldots, X_n> = \text{document}$

- X_i is a random variable describing...

 Answer 2:

 - X_i represents the i^{th} word position in document
 - $X_1 = "I", \ X_2 = "am", \ X_3 = "pleased"$
 - and, let’s assume the X_i are iid (indep, identically distributed)

 $P(X_i|Y) = P(X_j|Y)$ (for all i and j)
Learning to classify document: $P(Y|X)$
the “Bag of Words” model

- Y discrete valued. e.g., Spam or not
- $X = <X_1, X_2, \ldots, X_n> = \text{document}$

- X_i are iid random variables. Each represents the word at its position i in the document
- Generating a document according to this distribution = rolling a 50,000 sided die, once for each word position in the document

- The observed counts for each word follow a ??? distribution

Multinomial Distribution

- $P(\theta)$ and $P(\theta|D)$ have the same form

Eg. 2 Dice roll problem (6 outcomes instead of 2)

 Likelihood is \sim Multinomial($\theta = \{\theta_1, \theta_2, \ldots, \theta_k\}$)

$$P(D|\theta) = \theta_1^{a_1} \theta_2^{a_2} \cdots \theta_k^{a_k}$$

If prior is Dirichlet distribution,

$$P(\theta) = \frac{\prod_{i=1}^{k} \theta_i^{\beta_i-1}}{B(\beta_1, \ldots, \beta_k)} \sim \text{Dirichlet}(\beta_1, \ldots, \beta_k)$$

Then posterior is Dirichlet distribution

$$P(\theta|D) \sim \text{Dirichlet}(\beta_1 + \alpha_1, \ldots, \beta_k + \alpha_k)$$

For Multinomial, conjugate prior is Dirichlet distribution.
Multinomial Bag of Words

Our energy exploration, production, and distribution operations span the globe, with activities in more than 100 countries.

As TOTAL, we draw our greatest strengths from our fast-growing oil and gas reserves. Our strategic emphasis on natural gas provides a strong position in a rapidly expanding market.

Our top-selling refining and marketing operations in Asia and the Mediterranean Sea complement already solid positions in Europe, Africa, and the US.

Our growing specialty chemicals sector adds balance and profit to the core energy business.

... gas 1
... oil 1
... Zaire 0

MAP estimates for bag of words

Map estimate for multinomial

\[\theta_i = \frac{\alpha_i + \beta_i - 1}{\sum_{m=1}^{k} \alpha_m + \sum_{m=1}^{k} (\beta_m - 1)} \]

\[\theta_{aardvark} = P(X_i = \text{aardvark}) = \frac{\# \text{ observed 'aardvark'} + \# \text{ hallucinated 'aardvark'} - 1}{\# \text{ observed words} + \# \text{ hallucinated words} - k} \]

What \(\beta \)'s should we choose?
Naïve Bayes Algorithm – discrete \(X_i \)

- **Train Naïve Bayes (examples)**

 For each value \(y_k \)

 \[\hat{\pi}_k \equiv \frac{P(Y = y_k)}{P(Y = y_k)} \]

 For each value \(x_{ij} \) of each attribute \(X_i \)

 \[\hat{\theta}_{ijk} \equiv \frac{P(X_i = x_{ij} | Y = y_k)}{P(Y = y_k)} \]

 prob that word \(x_{ij} \) appears in position \(i \), given \(Y = y_k \)

- **Classify (\(X^{new} \))**

\[
Y^{new} \leftarrow \arg \max_{y_k} \quad \frac{P(Y = y_k) \prod_i P(X_i^{new} = x_{ij} | y_k)}{\prod_i \hat{\theta}_{ijk}}
\]

\[
Y^{new} \leftarrow \arg \max_{y_k} \quad \hat{\pi}_k \prod_i \hat{\theta}_{ijk}
\]

* Additional assumption: word probabilities are position independent

\[\hat{\theta}_{ijk} = \hat{\theta}_{mjk} \text{ for } i \neq m \]

Twenty NewsGroups

Given 1000 training documents from each group

Learn to classify new documents according to which newsgroup it came from

- comp.graphics
- comp.os.ms-windows.misc
- comp.sys.ibm.pc.hardware
- comp.sys.mac.hardware
- comp.windows.x
- alt.atheism
- soc.religion.christian
- talk.religion.misc
- talk.politics.mideast
- talk.politics.misc
- talk.politics.guns
- misc.forsale
- rec.autos
- rec.motorcycles
- rec.sport.baseball
- rec.sport.hockey
- sci.space
- sci.crypt
- sci.electronics
- sci.med

Naive Bayes: 89% classification accuracy
What if we have continuous X_i?

Eg., image classification: X_i is real-valued i^{th} pixel
What if we have continuous X_i?

Eg., image classification: X_i is real-valued ith pixel

Naïve Bayes requires $P(X_i \mid Y=y_k)$, but X_i is real (continuous)

$$P(Y = y_k \mid X_1 \ldots X_n) = \frac{P(Y = y_k) \prod_i P(X_i \mid Y = y_k)}{\sum_j P(Y = y_j) \prod_i P(X_i \mid Y = y_j)}$$

Common approach: assume $P(X_i \mid Y=y_k)$ follows a Normal (Gaussian) distribution

Gaussian Distribution
(also called “Normal”)

$p(x)$ is a probability density function, whose integral (not sum) is 1

$$p(x) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

The probability that X will fall into the interval (a, b) is given by

$$\int_a^b p(x)dx$$

- Expected, or mean value of X, $E[X]$, is $E[X] = \mu$
- Variance of X is $Var(X) = \sigma^2$
- Standard deviation of X, σ_X, is $\sigma_X = \sigma$
What if we have continuous X_i?

Gaussian Naïve Bayes (GNB): assume

$$p(X_i = x | Y = y_k) = \frac{1}{\sqrt{2\pi\sigma_{ik}^2}} e^{-\frac{1}{2}(\frac{x - \mu_{ik}}{\sigma_{ik}})^2}$$

Sometimes assume variance

- is independent of Y (i.e., σ_i),
- or independent of X_i (i.e., σ_k)
- or both (i.e., σ)

Train Naïve Bayes (examples)

- for each value y_k estimate* $\pi_k \equiv \hat{P}(Y = y_k)$

- for each attribute X_i estimate $P(X_i | Y = y_k)$

- class conditional mean μ_{ik}, variance σ_{ik}

Classify (X_{new}^n)

$$Y_{new} \leftarrow \arg\max_{y_k} \hat{P}(Y = y_k) \prod_i \hat{P}(X_i^{new} | Y = y_k)$$

$$Y_{new} \leftarrow \arg\max_{y_k} \pi_k \prod_i \mathcal{N}(X_i^{new}, \mu_{ik}, \sigma_{ik})$$

* probabilities must sum to 1, so need estimate only n-1 parameters...
Estimating Parameters: Y discrete, X_i continuous

Maximum likelihood estimates:

$$\hat{\mu}_{ik} = \frac{1}{\sum_j \delta(Y_j = y_k)} \sum_j X_i^j \delta(Y_j = y_k)$$

$$\hat{\sigma}_{ik}^2 = \frac{1}{\sum_j \delta(Y_j = y_k)} \sum_j (X_i^j - \hat{\mu}_{ik})^2 \delta(Y_j = y_k)$$

How many parameters must we estimate for Gaussian Naïve Bayes if Y has k possible values, $X=<X_1, \ldots X_n>$?

$$p(X_i = x|Y = y_k) = \frac{1}{\sqrt{2\pi\sigma_{ik}^2}} e^{-\frac{1}{2}(x - \mu_{ik})^2 / \sigma_{ik}^2}$$
Simple Picture for GNB for \(P(Y|X_1) \)

What is form of decision surface for Gaussian Naïve Bayes classifier?

eg., if we assume attributes have same variance, indep of \(Y \)
\[
\sigma_{ik} = \sigma
\]
GNB Example: Classify a person’s cognitive state, based on brain image

- reading a sentence or viewing a picture?
- reading the word describing a “Tool” or “Building”?
- answering the question, or getting confused?

Mean activations over all training examples for $Y=\text{“bottle”}$

Y is the mental state (reading “house” or “bottle”)
X_i are the voxel activities,
this is a plot of the μ’s defining $P(X_i \mid Y=\text{“bottle”})$
Classification task: is person viewing a “tool” or “building”?

Where is information encoded in the brain?

Accuracies of cubical 27-voxel classifiers centered at each significant voxel [0.7-0.8]
Naïve Bayes: What you should know

• Designing classifiers based on Bayes rule

• Conditional independence
 – What it is
 – Why it’s important

• Naïve Bayes assumption and its consequences
 – Which (and how many) parameters must be estimated under different generative models (different forms for $P(X|Y)$)
 • and why this matters

• How to train Naïve Bayes classifiers
 – MLE and MAP estimates
 – with discrete and/or continuous inputs X_i

Questions to think about:

• Can you use Naïve Bayes for a combination of discrete and real-valued X_i?

• How can we easily model just 2 of n attributes as dependent?

• What does the decision surface of a Naïve Bayes classifier look like?

• How would you select a subset of X_i’s?
\[Y = \text{Good (individual) \ or \ not} \]

\[P(Y|X_t) \]

\[P(Y=1) \quad \text{param} = 0.5 \]

\[P(X_t|Y=1) \leq \frac{\mu_{Y=1}}{\sigma_{Y=1}} \]

\[P(X_t|Y=-1) \leq \frac{\mu_{Y=-1}}{\sigma_{Y=-1}} \]

\[P(X_t|Y=b) \leq \frac{\mu_{Y=b}}{\sigma_{Y=b}} \]

\[\text{height} = X_t \]

\[P(Y(X) \propto P(Y) P(C_{X_t}|Y)) \]