Today:
• What is machine learning?
• Decision tree learning
• Course logistics
• **Homework 1 handed out**

Readings:
• “The Discipline of ML”
• Mitchell, Chapter 3
• Bishop, Chapter 14.4

Machine Learning:

Study of algorithms that
• improve their **performance** P
• at some **task** T
• with **experience** E

well-defined learning task: <P,T,E>
Learning to Predict Emergency C-Sections

Data:

9714 patient records, each with 215 features

One of 18 learned rules:

If No previous vaginal delivery, and Abnormal 2nd Trimester Ultrasound, and Malpresentation at admission
Then Probability of Emergency C-Section is 0.6

Over training data: 26/41 = .63,
Over test data: 12/20 = .60

Learning to detect objects in images

(Prof. H. Schneiderman)

Example training images for each orientation
Learning to classify text documents

Company home page vs Personal home page vs University home page vs ...

Learn to classify the word a person is thinking about, based on fMRI brain activity
Learning prosthetic control from neural implant

Machine Learning - Practice

- Supervised learning
- Bayesian networks
- Hidden Markov models
- Unsupervised clustering
- Reinforcement learning
- Text analysis
- Mining Databases
- Control learning
- Object recognition
- Speech Recognition
Machine Learning - Theory

PAC Learning Theory (supervised concept learning)

- # examples (m)
- representational complexity (H)
- error rate (ε)
- failure probability (δ)

Other theories for
- Reinforcement skill learning
- Semi-supervised learning
- Active student querying
- ...

... also relating:
- # of mistakes during learning
- learner’s query strategy
- convergence rate
- asymptotic performance
- bias, variance

$\frac{1}{\varepsilon}(\ln |H| + \ln(1/\delta))$
Machine Learning in Computer Science

- Machine learning already the preferred approach to
 - Speech recognition, Natural language processing
 - Computer vision
 - Medical outcomes analysis
 - Robot control
 - …

- This ML niche is growing (why?)

Machine Learning in Computer Science

- Machine learning already the preferred approach to
 - Speech recognition, Natural language processing
 - Computer vision
 - Medical outcomes analysis
 - Robot control
 - …

- This ML niche is growing
 - Improved machine learning algorithms
 - Increased data capture, networking, new sensors
 - Software too complex to write by hand
 - Demand for self-customization to user, environment
Course logistics

Machine Learning 10-601

course page: www.cs.cmu.edu/~tom/10601_fall2012

Lecturers
• Ziv Bar-Joseph
• Tom Mitchell

TA’s
• Brendan O’Conner
• Mehdi Samadi
• Selen Uguroglu
• Daegon Won

Course assistant
• Sharon Cavlovich
 (GHC 8215)

See webpage for
• Office hours
• Syllabus details
• Recitation sessions
• Grading policy
• Honesty policy
• Late homework policy
• ...
Highlights of Course Logistics

Recitation sessions:
- Optional, very helpful
- 5pm Tues. and Wed.
 - Duplicate sessions – pick one
- Start TODAY
 - Matlab review Gates 6115

Grading:
- 40% homeworks (~5-6)
- 25% midterm
- 35% final exam

Late homework:
- Full credit when due
- Half credit next 48 hrs
- Zero credit after that
- Must turn in n-1 of the n homeworks, even if late

Being present at exams:
- You must be there – plan now.

Ziv Bar-Joseph

How can we integrate static and time series data to reconstruct dynamic models of biological systems?
Brendan O’Connor

What can statistical text analysis tell us about society? (tools for social science)

Twitter Sentiment and Polls (they can correlate)

http://brenocon.com

Selen Uguroglu

Learning with rare classes
- Fraudulent credit card transactions
- Diagnosis of rare medical diseases
- Network intrusions

Active learning, feature selection when the dataset has highly skewed class distribution

5th year graduate student in Language Technologies Institute (LTI), SCS
Homepage: www.cs.cmu.edu/~sugurogl
Mehdi Samadi

- Automate the combined retrieval and use of the underlying information on the Web.
- Extend the applicability of knowledge acquisition techniques for both automated agents and humans.

Daegun Won

- Efficient inference method in graphical models
 - Incremental inference?
 - Degree of dependency?
- Past projects in
 - Active learning
 - Empirical phrasal synonym finding

3rd year Ph.D. student at Language Technologies Institute
Homepage: www.cs.cmu.edu/~xichen
Tom Mitchell
How can we build never-ending learners?
NELL runs 24x7, learning to read the web
NELL now 2.5 years old, has 15M beliefs so far

http://rtw.ml.cmu.edu

Function Approximation and Decision tree learning
Function approximation

Problem Setting:
- Set of possible instances X
- Unknown target function $f : X \rightarrow Y$
- Set of function hypotheses $H = \{ h : X \rightarrow Y \}$

Input:
- Training examples $\{ <x^{(i)}, y^{(i)}> \}$ of unknown target function f

Output:
- Hypothesis $h \in H$ that best approximates target function f

A Decision tree for f: <Outlook, Humidity, Wind, Temp> \rightarrow PlayTennis?

More generally, f: $<X_1, \ldots, X_n> \rightarrow Y$
- Each internal node: discrete test on one attribute, X_i
- Each branch from a node: selects one value for X_i
- Each leaf node: predict Y (or $P(Y|X \in \text{leaf})$)
Decision Tree Learning

Problem Setting:
• Set of possible instances \(X \)
 – each instance \(x \) in \(X \) is a feature vector
 – e.g., \(<\text{Humidity}=\text{low}, \text{Wind}=\text{weak}, \text{Outlook}=\text{rain}, \text{Temp}=\text{hot}>\)
• Unknown target function \(f : X \rightarrow Y \)
 – \(Y=1 \) if we play tennis on this day, else 0
• Set of function hypotheses \(H=\{ \; h \mid h : X \rightarrow Y \; \} \)
 – each hypothesis \(h \) is a decision tree
 – trees sorts \(x \) to leaf, which assigns \(Y \)

Decision Tree Learning

Problem Setting:
• Set of possible instances \(X \)
 – each instance \(x \) in \(X \) is a feature vector
 \(x = <x_1, x_2 \ldots x_n> \)
• Unknown target function \(f : X \rightarrow Y \)
 – \(Y \) is discrete-valued
• Set of function hypotheses \(H=\{ \; h \mid h : X \rightarrow Y \; \} \)
 – each hypothesis \(h \) is a decision tree

Input:
• Training examples \(\{<x^{(i)}, y^{(i)}>\} \) of unknown target function \(f \)

Output:
• Hypothesis \(h \in H \) that best approximates target function \(f \)
Decision Trees

Suppose $X = <X_1, ..., X_n>$
where X_i are boolean variables

How would you represent $Y = X_2X_5$? \(Y = X_2 \lor X_5 \)

How would you represent $X_2X_5 \lor X_3X_4(\neg X_7)$

A Tree to Predict C-Section Risk

Learned from medical records of 1000 women
Negative examples are C-sections

$[833+,167-] .83+ .17-$
Fetal_Presentation = 1: $[822+,116-] .88+ .12-$
| Previous_Csection = 0: $[767+,81-] .90+ .10-$
| Primiparous = 0: $[399+,13-] .97+ .03-$
| Primiparous = 1: $[368+,68-] .84+ .16-$
| Fetal_Distress = 0: $[334+,47-] .88+ .12-$
| Birth_Weight < 3349: $[201+,10.6-] .95+$
| Birth_Weight >= 3349: $[133+,36.4-] .78+$
| Fetal_Distress = 1: $[34+,21-] .62+ .38-$
| Previous_Csection = 1: $[55+,35-] .61+ .39-$
Fetal_Presentation = 2: $[3+,29-] .11+ .89-$
Fetal_Presentation = 3: $[8+,22-] .27+ .73-$
Top-Down Induction of Decision Trees

node = Root

Main loop:
1. \(A \leftarrow \) the “best” decision attribute for next node
2. Assign \(A \) as decision attribute for node
3. For each value of \(A \), create new descendant of node
4. Sort training examples to leaf nodes
5. If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

Which attribute is best?

Sample Entropy

- \(S \) is a sample of training examples
- \(p_\emptyset \) is the proportion of positive examples in \(S \)
- \(p_\varnothing \) is the proportion of negative examples in \(S \)
- Entropy measures the impurity of \(S \)

\[
H(S) \equiv -p_\emptyset \log_2 p_\emptyset - p_\varnothing \log_2 p_\varnothing
\]
Entropy

Entropy $H(X)$ of a random variable X

$$H(X) = - \sum_{i=1}^{n} P(X = i) \log_2 P(X = i)$$

$H(X)$ is the expected number of bits needed to encode a randomly drawn value of X (under most efficient code)

Why? Information theory:

- Most efficient possible code assigns $-\log_2 P(X=i)$ bits to encode the message $X=i$
- So, expected number of bits to code one random X is:

$$\sum_{i=1}^{n} P(X = i) (-\log_2 P(X = i))$$

Entropy

Specific conditional entropy $H(X|Y=v)$ of X given $Y=v$:

$$H(X|Y = v) = - \sum_{i=1}^{n} P(X = i|Y = v) \log_2 P(X = i|Y = v)$$

Conditional entropy $H(X|Y)$ of X given Y:

$$H(X|Y) = \sum_{v \in \text{values}(Y)} P(Y = v) H(X|Y = v)$$

Mutual information (aka Information Gain) of X and Y:

$$I(X, Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$
Information Gain is the mutual information between input attribute A and target variable Y

Information Gain is the expected reduction in entropy of target variable Y for data sample S, due to sorting on variable A

\[Gain(S, A) = I_S(A, Y) = H_S(Y) - H_S(Y | A) \]

Training Examples

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>PlayTennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D3</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D4</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D5</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D6</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D7</td>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D8</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D9</td>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D10</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D11</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D12</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D13</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D14</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>
Selecting the Next Attribute

Which attribute is the best classifier?

\[S: [9+5-) \]
\[E = 0.940 \]

\[\text{Humidity} \]
\[\text{High} \]
\[[3+4-) \]
\[E = 0.985 \]
\[\text{Normal} \]
\[[6+1-) \]
\[E = 0.392 \]

\[S: [9+5-) \]
\[E = 0.940 \]

\[\text{Wind} \]
\[\text{Weak} \]
\[[6+2-) \]
\[E = 0.811 \]
\[\text{Strong} \]
\[[3+3-) \]
\[E = 1.00 \]

\[\text{Gain (S, Humidity)} = .940 - (7/14).985 - (7/14).592 = .151 \]

\[\text{Gain (S, Wind)} = .940 - (8/14).811 - (6/14)1.0 = .048 \]

\[\{D1, D2, ..., D14\} \]
\[[9+5-) \]

\[\text{Outlook} \]
\[\text{Sunny} \]
\[[D1, D2, D8, D9, D11] \]
\[[2+3-) \]
\[? \]

\[\text{Overcast} \]
\[[D3, D7, D12, D13] \]
\[[4+6-) \]
\[\text{Yes} \]

\[\text{Rain} \]
\[[D4, D5, D6, D10, D14] \]
\[[3+2-) \]
\[? \]

Which attribute should be tested here?

\[S_{\text{Sunny}} = \{D1, D2, D8, D9, D11\} \]
\[\text{Gain (S_{\text{Sunny}}, Humidity)} = .970 - (3/5)0.0 - (2/5)0.0 = .970 \]
\[\text{Gain (S_{\text{Sunny}}, Temperature)} = .970 - (2/5)0.0 - (2/5)1.0 - (1/5)0.0 = .570 \]
\[\text{Gain (S_{\text{Sunny}}, Wind)} = .970 - (2/5)1.0 - (3/5)0.18 = .019 \]
Decision Tree Learning Applet

Which Tree Should We Output?

- ID3 performs heuristic search through space of decision trees
- It stops at smallest acceptable tree. Why?

Occam’s razor: prefer the simplest hypothesis that fits the data
Why Prefer Short Hypotheses? (Occam’s Razor)

Arguments in favor:

Arguments opposed:

Why Prefer Short Hypotheses? (Occam’s Razor)

Argument in favor:
• Fewer short hypotheses than long ones
 → a short hypothesis that fits the data is less likely to be a statistical coincidence
 → highly probable that a sufficiently complex hypothesis will fit the data

Argument opposed:
• Also fewer hypotheses with prime number of nodes and attributes beginning with “Z”
• What’s so special about “short” hypotheses?
Consider adding noisy training example #15:

Sunny, Hot, Normal, Strong, PlayTennis = No

What effect on earlier tree?

Overfitting

Consider a hypothesis h and its

- Error rate over training data: $error_{train}(h)$
- True error rate over all data: $error_{true}(h)$

We say h overfits the training data if

$$error_{true}(h) > error_{train}(h)$$

Amount of overfitting =

$$error_{true}(h) - error_{train}(h)$$
Overfitting in Decision Tree Learning

![Graph showing accuracy versus size of tree (number of nodes).]

Avoiding Overfitting

How can we avoid overfitting?

- stop growing when data split not statistically significant
- grow full tree, then post-prune
Reduced-Error Pruning

Split data into training and validation set

Create tree that classifies training set correctly

Do until further pruning is harmful:

1. Evaluate impact on validation set of pruning each possible node (plus those below it)

2. Greedily remove the one that most improves validation set accuracy

- produces smallest version of most accurate subtree
- What if data is limited?

Effect of Reduced-Error Pruning

![Graph showing the effect of Reduced-Error Pruning on accuracy across different sizes of the tree. The graph compares accuracy on training data, test data, and test data during pruning.]
Continuous Valued Attributes

Create a discrete attribute to test continuous

- \(\text{Temperature} = 82.5 \)
- \((\text{Temperature} > 72.3) = t, f \)

<table>
<thead>
<tr>
<th>Temperature:</th>
<th>40</th>
<th>48</th>
<th>60</th>
<th>72</th>
<th>80</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>PlayTennis:</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Attributes with Many Values

Problem:

- If attribute has many values, \(\text{Gain} \) will select it
- Imagine using \(\text{Date} = \text{Jun. 3. 1996} \) as attribute

One approach: use \(\text{GainRatio} \) instead

\[
\text{GainRatio}(S, A) \equiv \frac{\text{Gain}(S, A)}{\text{SplitInformation}(S, A)}
\]

\[
\text{SplitInformation}(S, A) \equiv - \sum_{i=1}^{c} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}
\]

where \(S_i \) is subset of \(S \) for which \(A \) has value \(v_i \)
You should know:

• Well posed function approximation problems:
 – Instance space, X
 – Sample of labeled training data \(\{ \langle x^{(i)}, y^{(i)} \rangle \} \)
 – Hypothesis space, \(H = \{ f : X \rightarrow Y \} \)

• Learning is a search/optimization problem over \(H \)
 – Various objective functions
 • minimize training error (0-1 loss)
 • among hypotheses that minimize training error, select smallest (?)

• Decision tree learning
 – Greedy top-down learning of decision trees (ID3, C4.5, …)
 – Overfitting and tree/rule post-pruning
 – Extensions…

Questions to think about (1)

• ID3 and C4.5 are heuristic algorithms that search through the space of decision trees. Why not just do an exhaustive search?
Questions to think about (2)

• Consider target function $f: \langle x_1, x_2 \rangle \rightarrow y$, where x_1 and x_2 are real-valued, y is boolean. What is the set of decision surfaces describable with decision trees that use each attribute at most once?

Questions to think about (3)

• Why use Information Gain to select attributes in decision trees? What other criteria seem reasonable, and what are the tradeoffs in making this choice?
Questions to think about (4)

• What is the relationship between learning decision trees, and learning IF-THEN rules

One of 18 learned rules:

If No previous vaginal delivery, and
 Abnormal 2nd Trimester Ultrasound, and
 Malpresentation at admission
Then Probability of Emergency C-Section is 0.6

Over training data: 26/41 = .63,
Over test data: 12/20 = .60