
 

 

Bayesian networks: Inference 

10-601  

Machine Learning 

Reading: Bishop 8.1 and 8.2.2  
 



d-separation 
•  We will give rules to identify d-connected variables. Variables 

that are not d-connected are d-separated.  

• The following three rules can be used to determine if x and y are 

d-connected given Z: 

1. If Z is empty then x and y are d-connected if there exists a path 

between them does not contain a collider. 

2. x and y are d-connected given Z if there exists a path between them 

that does not  contain a collider and does not contain any member of Z 

3. If Z contains a collider or one of its descendents then if a path between 

x and y contains this node they are d-connected  

3.  (revised) If all colliders on an undirected path between x and y are in Z 

or have a descendent in Z, then they are d-connected  

 

 

 

X Y 

A collider node: 



Variables 

• An alarm system 

    B – Did a burglary occur? 

    E – Did an earthquake occur? 

    A – Did the alarm sound off? 

    M – Mary calls 

    J – John calls 

 

• Lets use our knowledge of the domain! 



Inference 

• We are interested in queries of the form: 

    P(B | J,M) 

• This can also be written as a joint: 

 

 

 

 

• How do we compute the new joint? 
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Inference in Bayesian networks 

• We will discuss three methods: 

1. Enumeration  

2. Variable elimination 

3. Stochastic inference 



Computing: P(B,J, M) 

A 

J M 

B E 

P(B)=.05 
P(E)=.1 

P(A|B,E) )=.95 

P(A|B,E) = .85 

P(A|  B,E) )=.5 

P(A|  B,  E) = .05 

P(J|A) )=.7 

P(J|A) = .05 
P(M|A) )=.8 

P(M|A) = .15 

P(B,J, M) =  

P(B,J, M,A,E)+  

P(B,J, M,  A,E) + P(B,J, 

M,A,  E) + P(B,J, M, 

 A,  E) = 

0.0007+0.00001+0.005+0.

0003 = 0.00601 

 



Computing partial joints 
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Sum all instances with these settings (the sum is over the 

possible assignments to the other two variables, E and A) 

• This method can be improved by re-using calculations 

(similar to dynamic programming) 

• Still, the number of possible assignments is exponential in 

the unobserved variables? 

• That is, unfortunately, the best we can do. General querying 

of Bayesian networks is NP-complete 



Inference in Bayesian networks if 

NP complete (sketch) 

• Reduction from 3SAT 

• Recall: 3SAT, find satisfying assignments to the 

following problem: (a  b  c)  (d   b   c) … 

P(xi=1) = 0.5 

P(xi=1) = (x1  x2  x3)  

P(Y=1) = (x1  x2  x3  x4)  

What is P(Y=1)? 

Y 



Inference in Bayesian networks 

• We will discuss three methods: 

1. Enumeration  

2. Variable elimination 

3. Stochastic inference 



Variable elimination 

Reuse computations 

rather than recompute 

probabilities 

A 

J M 

B E 

P(B)=.05 
P(E)=.1 

P(A|B,E) )=.95 

P(A|B,E) = .85 

P(A|  B,E) )=.5 

P(A|  B,  E) = .05 

P(J|A) )=.7 

P(J|A) = .05 
P(M|A) )=.8 

P(M|A) = .15 

P(B,J, M) =  

P(B,J, M,A,E)+  

P(B,J, M,  A,E) + 

P(B,J,M,A,  E) + P(B,J, M, 

 A,  E) = 

0.0007+0.00001+0.005+0.0003 

= 0.00601 

 



Computing: P(B,J, M) 

A 

J M 

B E 
P(B,J, M) =  

P(B,J, M,A,E)+  

P(B,J, M,  A,E) + P(B,J, 

M,A,  E) + P(B,J, M, 

 A,  E) = 

 



P(B)P(e)
e


a

 P(a |B,e)P(M | a)P(J | a)

Store as a function of a and use 

whenever necessary (no need to 

recompute each time) 



Variable elimination 

A 

J M 

B E 


P(B,J,M)  P(B)P(e)
e


a

 P(a |B,e)P(M | a)P(J | a)

Set: 



fM (A) 
P(M | A)

P(M |A













fJ (A) 
P(J | A)

P(J |A













 P(B) P(e)
a


e

 P(a |B,e)P(M | a)P(J | a)



Variable elimination 

A 

J M 

B E 



P(B,J,M)  P(B)P(e)
e


a

 P(a |B,e)P(M | a)P(J | a)

Set: 



fM (A) 
P(M | A)

P(M |A













fJ (A) 
P(J | A)

P(J |A













 P(B) P(e)
a


e

 P(a |B,e)P(M | a)P(J | a)



P(B,J,M)  P(B) P(e)
a


e

 P(a |B,e) fM (a) fJ (a)



Variable elimination 

A 

J M 

B E 
Lets continue with these functions: 

 P(B) P(e)
a


e

 P(a |B,e) fM (a) fJ (a)



fA ,J ,M (B,e)  fA (a,B,e) fJ (a) fM (a)
a


We can now define the following function: 



fA (a,B,e)  P(a |B,e)

And so we can write: 



P(B,J,M)  P(B) P(e) fA,J ,M (B,e)
e





Variable elimination 

A 

J M 

B E 

Lets continue with another function: 

And finally we can write: 



fE ,A,J ,M (B)  P(e)
e

 fA,J ,M (B,e)



P(B,J,M)  P(B) P(e) fA,J ,M (B,e)
e





P(B,J,M)  P(B) fE,A,J ,M (B)



Example 

J 

P(B)=.05 
P(E)=.1 

P(A|B,E) =.95 

P(A|B,¬E) = .85 

P(A| ¬ B,E) =.5 

P(A| ¬ B, ¬ E) = .05 

P(J|A) )=.7 

P(J| ¬ A) = .05 
P(M|A) =.8 

P(M| ¬ A) = .15 

M 

A 

B E 

P(B,J,M)  P(B) fE,A,J ,M (B)



 0.05 P(e) fA,J ,M (B,e)  0.05(0.1
e

 fA,J ,M (B,e) 0.9 fA,J ,M (B,e))



0.05(0.1(0.95 fJ (a) fM (a) 0.05 fJ (a) fM (a))

0.9(.85 fJ (a) fM (a) .15 fJ (a) fM (a)))

Calling the same 

function multiple 

times 



Final computation 

(normalization) 
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Algorithm 

• e - evidence (the variables that are known) 

• vars - the conditional probabilities derived from the 

network in reverse order (bottom up) 

• For each var in vars 

    - factors <- make_factor (var,e) 

    - if var is a hidden variable then create a new factor by 

summing out var 

• Compute the product of all factors 

• Normalize 



Computational complexity 

• We are reusing computations so we are reducing the 

running time. 

• However, there are still cases in which this algorithm we 

lead to exponential running time. 

• Consider the case of fx(y1 … yn). When factoring x out 

we would need to account for all possible values of the 

y’s. 

 
Variable elimination can lead 

to significant costs saving but 

its efficiency depends on the 

network structure 



Inference in Bayesian networks 

• We will discuss three methods: 

1. Enumeration  

2. Variable elimination 

3. Stochastic inference 



Stochastic inference 

• We can easily sample the joint 

distribution to obtain possible 

instances  

1. Sample the free variable 

2. For every other variable: 

    - If all parents have been sampled, 

      sample based on conditional 

distribution 

 

We end up with a new set of 

assignments for B,E,A,J and M 

which are a random sample from 

the joint 

A 

J M 

B E 

P(B)=.05 
P(E)=.1 

P(A|B,E) )=.95 

P(A|B,E) = .85 

P(A|  B,E) )=.5 

P(A|  B,  E) = .05 

P(J|A) )=.7 

P(J|A) = .05 
P(M|A) )=.8 

P(M|A) = .15 



Stochastic inference 

• We can easily sample the joint 

distribution to obtain possible 

instances  

1. Sample the free variable 

2. For every other variable: 

    - If all parents have been sampled, 

      sample based on conditional 

distribution 

 

A 

J M 

B E 

P(B)=.05 
P(E)=.1 

P(A|B,E) )=.95 

P(A|B,E) = .85 

P(A|  B,E) )=.5 

P(A|  B,  E) = .05 

P(J|A) )=.7 

P(J|A) = .05 
P(M|A) )=.8 

P(M|A) = .15 

Its always possible to 

carry out this sampling 

procedure, why? 



Using sampling for inference 

• Lets revisit our problem: Compute P(B | J,M) 

• Looking at the samples we can count: 

   - N: total number of samples 

   - Nc : total number of samples in which the condition holds (J,M) 

    - NB: total number of samples where the joint is true (B,J,M) 

• For a large enough N 

    - Nc / N  P(J,M) 

    - NB / N  P(B,J,M) 

• And so, we can set 

P(B | J,M) = P(B,J,M) / P(J,M)  NB / Nc 



Using sampling for inference 

• Lets revisit our problem: Compute P(B | J,M) 

• Looking at the samples we can cound: 

   - N: total number of samples 

   - Nc : total number of samples in which the condition holds (J,M) 

    - NB: total number of samples where the joint is true (B,J,M) 

• For a large enough N 

    - Nc / N  P(J,M) 

    - NB / N  P(B,J,M) 

• And so, we can set 

P(B | J,M) = P(B,J,M) / P(J,M)  NB / Nc 

Problem: What if the condition rarely 

happens? 

We would need lots and lots of 

samples, and most would be wasted 



Weighted sampling 

• Compute P(B | J,M) 

• We can manually set the value of J to 

1 and M to 0 

• This way, all samples will contain the 

correct values for the conditional 

variables 

• Problems? A 

J M 

B E 



Weighted sampling 

• Compute P(B | J,M) 

• Given an assignment to parents, we 

assign a value of 1 to J and 0 to M. 

• We record the probability of this 

assignment (w = p1*p2) and we weight 

the new joint sample by w 

A 

J M 

B E 



Weighted sampling algorithm for 

computing P(B | J,M) 

• Set NB,Nc = 0 

• Sample the joint setting the values for J and M, 

compute the weight, w, of this sample  

• Nc = Nc+w 

• If B = 1, NB = NB+w 

 

• After many iterations, set 

 P(B | J,M) = NB / Nc 

 



Important points 

• Bayes rule 

• Joint distribution, independence, conditional 

independence 

• Attributes of Bayesian networks 

• Constructing a Bayesian network 

• Inference in Bayesian networks 



Other inference methods 

• Convert network to a polytree 

    - In a polytree no two nodes have 

more than one path between them 

    - We can convert arbitrary networks to 

a polytree by clustering (grouping) 

nodes. For such a graph there is a 

algorithm which is linear in the number 

of nodes 

   - However, converting into a polytree 

can result in an exponential increase 

in the size of the CPTs 
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