10-601
Machine Learning

Bayesian networks: Inference

Reading: Bishop 8.1 and 8.2.2



d-separation

 We will give rules to identify d-connected variables. Variables
that are not d-connected are d-separated.

« The following three rules can be used to determine if x and y are
d-connected given Z:

1. If Zis empty then x and y are d-connected if there exists a path
between them does not contain a collider.

2. xandy are d-connected given Z if there exists a path between them
that does not contain a collider and does not contain any member of Z

3. (revised) If all colliders on an undirected path between x and y are in Z
or have a descendent in Z, then they are d-connected

A collider node: A'O\@




Variables

« An alarm system
B — Did a burglary occur?
E — Did an earthquake occur?
A — Did the alarm sound off?
M — Mary calls
J — John calls

« Lets use our knowledge of the domain!



Inference

We are interested in queries of the form:
PB|J,—-M)

This can also be written as a joint:
P(B|J,—M)= P8 M) \
P(B,J,—-M)+P(-B,J,—M) @

How do we compute the new joint? / \




Inference In Bayesian networks

 We will discuss three methods:
. Enumeration

. Variable elimination

. Stochastic inference



Computing: P(B,J, —=M)

P(B,J, —-M) =
P(B,J, -M,AE)+

P(B,J, —M, - A,E) + P(B,J,

“M,A, — E) + P(B,J, =M,
—|A, — E) =

0.0007+0.00001+0.005+0.

0003 = 0.00601

P(B)= 05

- P(E)=.1
P(A|B,E) )=.95 \ /

P(A|B,—E) = .85
P(A| — B,E) )=.5

P(A| - B, = E)=.05 / \

P(J|A) )=7

P(J|-A) = o
P(M|A) )=.8
P(M|—A) = .15



Computing partial joints

P(B,J,—M)

P(B|J,—M) = P(B,J,—M)+P(—B,J,—M)

Sum all instances with these settings (the sum is over the
possible assignments to the other two variables, E and A)

» This method can be improved by re-using calculations
(similar to dynamic programming)

« Still, the number of possible assignments is exponential in
the unobserved variables?

 That is, unfortunately, the best we can do. General querying
of Bayesian networks is NP-complete



Inference Iin Bayesian networks If
NP complete (sketch)

* Reduction from 3SAT
* Recall: 3SAT, find satisfying assignments to the

following problem: (avbvc)a(dv—=bv—=cC)...

What is P(Y=1)?

O

o SRR

P(Xi=1) = (X1 Vv X, Vv X3) Q

P(Y=1) = (X; A X5 A Xg A Xy) \\®//



Inference In Bayesian networks

 We will discuss three methods:
. Enumeration

. Variable elimination

. Stochastic inference



Variable elimination

P(B,J, ﬁlvll_
P(B, J\—M A)E)+

P(B,J, aw,.ﬁ AE) +
P(B, IM, A E) + P(B,J, —M,
— A, ﬁ’E)-

0.0007+0.00001+0.005+0.0003
= 0.00601

Reuse computations
rather than recompute
probabilities

P(B):.OS P(E)- 1
P(A|B,E) )=.95 \ /

P(A|B,—E) = .85
P(A| — B,E) )=.5

P(A| = B, = E)=.05 / \

P(J|A) )=7

P(J|-A) = o
P(M|A) )=.8
P(M|—A) = .15



Computing: P(B,J, ﬁl\/l)

P(B,J, —=M) =
P(B,J, —=M,AE)+ \
P(B,J, =M, = A,E) + P(B,J,

“M,A, — E) + P(B,J, =M,
—|A, — E) -

ZZP(B)P(e)P(a | B,e)P(M \ a)?.] a) / \

Store as a function of a and use
whenever necessary (no need to
recompute each time)



Variable elimination
P(B,J,M) = ZZP(B)P(e)P(a | B,e)P(M | a)P(J | a)
= P(B)ZP(e)Z P(a|B,e)P(M | a)P<J| a)

(M| 4)
{01 \ $

) _[P<J|A>]
fi(A)= P |t

@



Variable elimination
P(B,J,M) = ZZP(B)P(e)P(a | B,e)P(M | a)P(J | a)
= P(B)ZP(e)Z P(a|B,e)P(M | a)P(J| a)

(M| 4) 9
Set f1,(4)= (P(MHJ \
(PWJ]4)
f,m_[PW]

P(B,J,M) = P(B)ZP(e)Z P(a|B.e)f, (a)f,(a) @ @



Variable elimination
=P(B)Y_P(e)), P(a|B.e)f, (a)f (a)

Lets continue with these functions:
We can now define the following function:
Sron(B)=2 1 (@B.e)f ()], (a) /
a
And so we can write:

P(BaJaM):P(B)ZP(e)fA,J,M (B,e) @ @



Variable elimination

P(B,J,M)=P(B))_P(e)f,, ., (Be)

Lets continue with another function:

fE,A J.M (B) = ZP(e)fA JM (B,e)

And finall ite: @

n Inally we can write:

P(BJ.M)=P(B)f, , . (B) \ /
() (m)



Example

P(BaJaM) :P(B)fE,A,J,M (B)
=0. OSZP(e)fAJM(B e)=0.05(0.1f, , ,,(B,e) +0.9f, , ,,(B—e))

P(B)=.05 P(E)=.1

0.05(0.100:95/,(@) i, (@) + 0.05 £, (=) f, () + B (e
0.9(851,(a) f,, (@) + 151,a) f,, ))) % /
P(A|B,E) =.95

P(A|B,-E) = .85
P(A| - B,E) =5
P(A| - B, = E) .05 \
Calling the same
I i PIA) )= 7
function multiple POl-mo o5 PMM=8

times



Final computation

(normalization)

P(B|J,—M) = P(8,J,5M)

P(B,J,—M)+P(=B,J,—M)



Algorithm

e - evidence (the variables that are known)

vars - the conditional probabilities derived from the
network in reverse order (bottom up)

For each var in vars
- factors <- make_factor (var,e)

- If var is a hidden variable then create a new factor by
summing out var

Compute the product of all factors
Normalize



Computational complexity

« We are reusing computations so we are reducing the
running time.

« However, there are still cases in which this algorithm we
lead to exponential running time.

» Consider the case of f,(y, ... y,,). When factoring x out
we would need to account for all possible values of the

y's.

Variable elimination can lead

/ Q
to significant costs saving but Q—' Q
\

its efficiency depends on the

network structure Q/



Inference In Bayesian networks

« We will discuss three methods:
. Enumeration

. Variable elimination
. Stochastic inference



Stochastic inference

« We can easily sample the joint
distribution to obtain possible

instances P(E)=.1

P(B):.OS

1. Sample the free variable
2. For every other variable:
- If all parents have been sampled, \
sample based on conditional P(AB,E) )=.95

attipie P(A|B,—E) = .85
distribution P(A| — B,E) )=.5

P(A| - B, — E) = .05
We end up with a new set of
assignments for B,E,A,J and M

which are a random sample from PJ|A) )=.7

the joint PJ|-A) = 05
P(M|A) )—.8
P(M|-A) = .15



Stochastic inference

« We can easily sample the joint
distribution to obtain possible

instances P(B):_OS P(E)=.1

1. Sample the free variable
2. For every other variable:
- If all parents have been sampled, \
sample based on conditional P(AB,E) )=.95

S P(A|B,—E) = .85
distribution P(A| — B,E) )=.5

P(A| - B, — E) =.05
Its always possible to / \

carry out this sampling
P(JIA) )=.7
procedure, why? POIA) ~ 05

P(M|A) )—.8
P(M|—A) = .15



Using sampling for inference

* Lets revisit our problem: Compute P(B | J,—M)
» Looking at the samples we can count:
- N: total number of samples

- N, : total number of samples in which the condition holds (J,—M)
- Ng: total number of samples where the joint is true (B,J,—M)
 Foralarge enough N
-N./ N~ P(J,—M)
-Ng /N = P(B,J,—M)
* And so, we can set

P(B | J,—~M) = P(B,J,—~M) / P(J,—~M) ~ N, / N.



Using sampling for inference

* Lets revisit our problem: Compute P(B | J,—M)

PY Looklng at the carmmnlac win nqn.nnl inA - N
Problem: What if the condition rarely

- N: total number o
happens?

- N, : total number
_Nj: total number V€ would need lots and lots of

For a large enoug S@mples, and most would be wasted
- N,/ N = P(J,—M)

-Ng /N =~ P(B,J,—M)

And so, we can set

P(B | J,—~M) = P(B,J,—~M) / P(J,—~M) ~ N, / N.



Weighted sampling

Compute P(B | J,—M)
We can manually set the value of J to

land Mto O
This way, all samples will contain the ;
correct values for the conditional \
variables
Problems? @
G )



Weighted sampling

« Compute P(B | J,—M)
« Given an assignment to parents, we

assign a value of 1 to J and O to M.
« We record the probability of this
assignment (w = p,*p,) and we weight \

the new joint sample by w



Weighted sampling algorithm for
computing P(B | J,—=M)

« SetNgN.=0

« Sample the joint setting the valuesforJand M, % = = === ==
compute the weight, w, of this sample

* N.=N.+w
e« IfB=1,Ng=Ngtw —mmm————— |

« After many iterations, set
P(B|J,—M) =Ng /N,



Important points

Bayes rule

Joint distribution, independence, conditional
Independence

Attributes of Bayesian networks
Constructing a Bayesian network
Inference in Bayesian networks



Other inference methods

« Convert network to a polytree

- In a polytree no two nodes have
more than one path between them °

- We can convert arbitrary networks to /
a polytree by clustering (grouping) @
nodes. For such a graph there is a
algorithm which is linear in the number
of nodes

- However, converting into a polytree
can result in an exponential increase

In the size of the CPTs



