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MARKOV DECISION
PROCESSES

» MDP is a stochastic process that models the
environment under different actions.

p It is defined on states, actions and rewards.

» Agent decides on the action, and receives a
reward which depends on the action and states

Goal: what action should | take to maximize my
chance to win a game!
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MARKOV DECISION
PROCESSES

p Set of states S ={si,s2, ..., Sn }
p Set of actions A ={aj,ay,...,an}
p Set of rewards R = {r|,ry, ..., rn}

p Policy TT gives an action for each state, T1: S— A

What are the Markov assumptions!?
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MARKOV DECISION
PROCESSES

p Set of states S ={si,s2, ..., Sn }
p Set of actions A ={aj,ay,...,an}
p Set of rewards R = {r|,ry, ..., rn}

p Policy TT gives an action for each state, T1: S— A

What are the Markov assumptions!?
( )

P(l‘t‘St,at,St-l,at-l,--) - P(rtlst,at)

P(st+1]|St,a6,St-1,a¢-1,..) = P(Se+1[S6,ar)

. J

/
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Given a policy, TT and a , we can calculate the expectation
of future rewards.

,VT(s) is a measure for the expected discounted return:
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Given a policy, Tt and a
of future rewards.

, we can calculate the expectation

,VT(s) is a measure for the expected discounted return:

Discounted by Y
exponentially to
the future

Does it
converge!
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V7(s) = Y 'E[r

But this for only one policy, T

How about the optimal value function,V'(s)?
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V7(s) = Y 'E[r

But this for only one policy, T
How about the optimal value function,V'(s)?

Optimal value function
V*(s) =max V" (s)

s

Optimal policy

m* optimal < V, : V™ (s) = V*(s)
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V7(s) = Y 'E[r

But this for only one policy, T

How about the optimal value function,V'(s)?

Optimal value function
V*(s) =max V" (s)

s

Optimal policy

m* optimal < V, : V™ (s) = V*(s)

Is there really an optimal policy for every MDP?
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We can use the recursive property to compute the
value function for each state

V7™(s) = E{rg + yr1 +v%ro + ...|sg = s; 7}
= F{rglsog = s;m} + YE{r1 +yra +v°r3 + ...|sg = s; 7}
= R(m(s),s) + ’YZP(S,lﬂ'(S), SVE{r1 +yro +yrs + ...|s1 = s'; 7}

= R(n(s),8) +7)_ P(s'|n(s),s)V"(5)

T

For all possible transitions from state s

10

Thursday, November 29, 2012



Recursive property holds for optimal value function V"

* Bellman’s Equation
(

V*(s) = max|R(a, s P(s'|m(s),s)V*(s
Wit (5) = masl (o) + 32 P51,V ()
actions 7" (s) = argmax,|R(a, s) + 7 Z P(s'|m(s), s)V*(s")]
V*(s) =rs+7 ) P(s|n(s), s)V*(s)
No -
actions T (s)=rs+7 >y P(s|n(s), s)V*(s)

. J

11

Thursday, November 29, 2012



Suppose we have n states:

(- )

V*(Sl) = Ts; T 7<p8181V*(31) —|—p3182V*(82) T +p813nv*(8n)>

V*(s2) =rs, + 7(p8251V*(51) + Doy, V7 (82) + - - —I_pSnSnV*(Sn))

V*(Sn) = Ts; T+ 7<p8n81v* (51) _|_p3n32v*(82) T ‘|‘psnsnv*(8”)>

. J

It can be solved in n equations in closed form.

But we may not be able to do this every time, so we
consult to value/ policy iteration to find the optimal
values.

12
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VALUE ITERATION

Iterative algorithm, start with VO(s))
This could be initialized to O

-
Vl(sl) — T'sy
V2(31) =Ts T V(Zpslskvl(sk))
k
Vt+1(51) =Ts T ’Y(Zpslskvt(sk))
k
N

‘Vstf,;_I_l - VStr,; ’t_>oo < €

14
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POLICY ITERATION

» Initialization:

Randomly choose T1o sett =0
» Policy evaluation:
For each s;, compute V'(si)

» Policy update:

T¢(8;) = max,r; + W(Z P(sjla,s;)V™(s;)

» If not converged, t = t+1|

16
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POLICY ITERATION VS VALUE
ITERATION

» Policy iteration is good when the initial policy
guess is right

» If we have too many actions value iteration
may be slow

» Otherwise value iteration is safer

17
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MARKOV DECISION
PROCESSES

|. MDP overview
2. Value lteration
3. Policy lteration

4. Previous Exam Questions
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Warm-up

Suppose policy 1T is circled. Suppose Y is 0.9.What are the V™ (s) values?
Immediate rewards are written next to transitions, transitions with no
immediate reward has O value.

--------
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|0-701 Final Exam, Fall 2006

9 MDPs and Reinforcement Learning [16pts]
Part A. [10pts]

Consider the following deterministic Markov Decision Process (MDP), describing a simple robot
grid world. Notice the values of the immediate rewards are written next to transitions. Transitions
with no value have an immediate reward of 0. Assume the discount factor + = 0.8.

DT BOPs ﬂo_. |'/--—\
N )
s1 R 52 <3
' ‘ I t
v ' ’ r=100
s4 B 55 s5 e s6
20
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A. For each state s, write the value for V'(s) inside the corresponding
square in the diagram

'

1 7 2 5
’ t T

v v r=100
s4 —— s5 —1 s6

21
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A. For each state s, write the value for V'(s) inside the corresponding
square in the diagram

s1 52 s3
. 0 .

' V] [r=100
s4 —1 s5 — s6

21
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A. For each state s, write the value for V'(s) inside the corresponding
square in the diagram

G = O Yy =0.8
s1 i 52 53‘"‘#
| 0
. . ’ ‘r=100
|00
s4 —— s5 N s6

21
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A. For each state s, write the value for V'(s) inside the corresponding

square in the diagram

s1 ¥ 52 .\‘53""“‘:'
| o
| ! | |r=100
80 (100
s4 — 1 g s5 —1s s6

21

y =0.8
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A. For each state s, write the value for V'(s) inside the corresponding
square in the diagram

- = ) | Yy = 0.8

s1 s2 s3
64 0
S I I =Ty
80 100
s4 —_— s5 —1 s s6

21
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A. For each state s, write the value for V'(s) inside the corresponding
square in the diagram

) __. } ﬂé—» ‘—. Y — O . 8
51.2 641 0
| 80100 "™

21
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A. For each state s, write the value for V'(s) inside the corresponding
square in the diagram

) __. } r=50, ‘—. Y — O . 8
512 64 0
64 's80100 "™

21
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A. For each state s, write the value for V'(s) inside the corresponding
square in the diagram

) —» } (=sb, C | Y = 0.8
512 .64 0

64 80100 "™

s4 SN s5 SR o s6

B. Mark the state-action transition arrows that correspond to one optimal pol
If there is a tie, always choose the state with the smallest index.

21
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A. For each state s, write the value for V'(s) inside the corresponding
square in the diagram

. | = ¢ L8
'l— ~5' f-so (] ".' 1 —
~ - 1 . ,‘ ] —
~ - \‘ .‘.‘:"' L
51 52 ~63‘¢'
AR
’ 1 ’\
° l' 1, Ry
') 1 'T M
$ | l‘ —_ 4 1 1
' RY [ r=100
64 80 100
PR Rl R . PRl RS .
s4 ——— s5 —t ! s6

B. Mark the state-action transition arrows that correspond to one optimal pol
If there is a tie, always choose the state with the smallest index.

21
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C. Give a different value for Yy which results in a different optimal policy
and the number of changed policy actions should be minimal. Give your

new value for Y, and describe the resulting policy by indicating which '4(s)
values (i.e., which policy actions) change.

r =50

s1 s2 53_,

v | 'r=100 |

s4 SN LS s5 e s6

22
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C. Give a different value for Yy which results in a different optimal policy
and the number of changed policy actions should be minimal. Give your

new value for Y, and describe the resulting policy by indicating which '4(s)
values (i.e., which policy actions) change.

s1 4 52 3

s4 SN LS s5 e s6

22
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C. Give a different value for Yy which results in a different optimal policy
and the number of changed policy actions should be minimal. Give your

new value for Y, and describe the resulting policy by indicating which '4(s)
values (i.e., which policy actions) change.

s1 4 s2 33

U
O
o

s4 SN LS s5 e s6
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C. Give a different value for Yy which results in a different optimal policy
and the number of changed policy actions should be minimal. Give your

new value for Y, and describe the resulting policy by indicating which '4(s)
values (i.e., which policy actions) change.

s1 4 s2 33

'r=100 |

'70 100 '

s4 SN LS s5 e s6

22
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C. Give a different value for Yy which results in a different optimal policy
and the number of changed policy actions should be minimal. Give your

new value for Y, and describe the resulting policy by indicating which '4(s)
values (i.e., which policy actions) change.

s1 4 s2 a3

35, .500
70 100 "™

s4 SN LS s5 e s6

22
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C. Give a different value for Yy which results in a different optimal policy
and the number of changed policy actions should be minimal. Give your

new value for Y, and describe the resulting policy by indicating which '4(s)
values (i.e., which policy actions) change.

r =50

—_—pep _

s1 4 s2 a3

35, .500
49  '70 100 "™

s4 SN LS s5 e s6
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C. Give a different value for Yy which results in a different optimal policy
and the number of changed policy actions should be minimal. Give your

new value for Y, and describe the resulting policy by indicating which '4(s)
values (i.e., which policy actions) change.

r =50

35, [, 500 ;
49 170 1005

s4 SN LS s5 e s6

22
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C. Give a different value for Yy which results in a different optimal policy
and the number of changed policy actions should be minimal. Give your

new value for Y, and describe the resulting policy by indicating which '4(s)
values (i.e., which policy actions) change.

-----

35, |, 500
49 7010077

s4 SN LS s5 e s6

22
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C. Give a different value for Yy which results in a different optimal policy
and the number of changed policy actions should be minimal. Give your

new value for Y, and describe the resulting policy by indicating which '4(s)
values (i.e., which policy actions) change.

-----

35, |, 500
49 7010077

s4 i s§ 73 s6

~
S mm=

22
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C. Give a different value for Yy which results in a different optimal policy
and the number of changed policy actions should be minimal. Give your

new value for Y, and describe the resulting policy by indicating which '4(s)
values (i.e., which policy actions) change.

-----

s1 T $2 s3
35 1,500

' ‘ =100
49 70 100 -

s4 i s§ 73 s6

~
S mm=

22
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C. Give a different value for Yy which results in a different optimal policy
and the number of changed policy actions should be minimal. Give your

new value for Y, and describe the resulting policy by indicating which '4(s)
values (i.e., which policy actions) change.

-----

s1 T $2 s3
35 1,500

' ‘ =100
49 70 100 -

-----

22
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C. Give a different value for Yy which results in a different optimal policy
and the number of changed policy actions should be minimal. Give your

new value for Y, and describe the resulting policy by indicating which '4(s)
values (i.e., which policy actions) change.

-----

I B g New value for y: 0.7
35 . 50 0O Changed policy actions: S2 -> S3
' v (=100 |
49 70 /100 -

-----

22
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A4. How many complete loops (iterations) of value iteration are sufficient
to guarantee finding the optimal policy for this MDP? Assume that values

are initialized to zero, and that states are considered in an arbitrary order
on each iteration.

r =50

s1 52 s3 @

v ‘ ’r=100 |

s4 Sl N s5 —— k= s6

23
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A4. How many complete loops (iterations) of value iteration are sufficient
to guarantee finding the optimal policy for this MDP? Assume that values
are initialized to zero, and that states are considered in an arbitrary order
on each iteration.

=100
S| S2 | S3 54 S5 56
T=0 0 0 0 0 0 0
T=| 0 50 O 0 0 100
T=2 40 50 O 0 80 100
T=3 40 64| O 64 80 100
T=4 ] 512 [64] O 64 80 100

23
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A5. Is it possible to change the immediate reward function so that V"

changes but the optimal policy TT" remains unchanged? If yes, give such a

change, and describe the resulting change to V. Otherwise, explain in at
most 2 sentences why this is impossible.

24
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A5. Is it possible to change the immediate reward function so that V"

changes but the optimal policy TT" remains unchanged? If yes, give such a

change, and describe the resulting change to V. Otherwise, explain in at
most 2 sentences why this is impossible.

Modify each reward equally, V" will change but the
optimal policy will remain the same

24
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Part B. (6pts)

It is December. Unfortunately for our robot, a patch of ice has appeared in its world, making one
of its actions non-deterministic. The resulting MDP is shown below. Note that now the result of
the action “go north” from state s6 results in one of two outcomes. With probability p the robot
succeeds in transitioning to state s3 and receives immediate reward 100. However, with probability
(1 — p) it slips on the ice, and remains in state s6 with zero immediate reward. Assume the
discount factor v = (.8.

; =50 S
al (e
s1 572 EPTIAE s2 Ao
?" Beware
0 n of ice!
' [ __o|r=100 |
' ' o plobp
tapeen)l,
|‘ . ,l
M .'t- i _‘( ¢'l
s4 —_—l s5 Em— S5

Bl.Assume p = 0.7. Write in the values of V" for each state, and circle the actions in the optimal
policy.

(17 w )
( ~| Ve =100p + (1 —p)Vg
Vi (s) = D P(s'm(s), 8)r(s',a,5) + 7 P(s'|m(s), )V ()] || V' = 70 + 0.24V
_ 70
L y ‘/6* _
9 0.76 )
25
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It is December. Unfortunately for our robot, a patch of ice has appeared in its world, making one
of its actions non-deterministic. The resulting MDP is shown below. Note that now the result of
the action “go north” from state s6 results in one of two outcomes. With probability p the robot
succeeds in transitioning to state s3 and receives immediate reward 100. However, with probability
(1 — p) it slips on the ice, and remains in state s6 with zero immediate reward. Assume the
discount factor v = (.8.
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Part B. (6pts)

It is December. Unfortunately for our robot, a patch of ice has appeared in its world, making one
of its actions non-deterministic. The resulting MDP is shown below. Note that now the result of
the action “go north” from state s6 results in one of two outcomes. With probability p the robot
succeeds in transitioning to state s3 and receives immediate reward 100. However, with probability
(1 — p) it slips on the ice, and remains in state s6 with zero immediate reward. Assume the
discount factor v = (.8.
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s1 S s2
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Part B. (6pts)

It is December. Unfortunately for our robot, a patch of ice has appeared in its world, making one
of its actions non-deterministic. The resulting MDP is shown below. Note that now the result of
the action “go north” from state s6 results in one of two outcomes. With probability p the robot
succeeds in transitioning to state s3 and receives immediate reward 100. However, with probability
(1 — p) it slips on the ice, and remains in state s6 with zero immediate reward. Assume the
discount factor v = (.8.

» r=5c0 i .."!
Y ,,-I
s1 S s2
?’3‘ Beware
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' [ __o|r=100 |
! ' L2 noplobp
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Bl.Assume p = 0.7. Write in the values of V" for each state, and circle the actions in the optimal
policy.
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Part B. (6pts)

It is December. Unfortunately for our robot, a patch of ice has appeared in its world, making one
of its actions non-deterministic. The resulting MDP is shown below. Note that now the result of
the action “go north” from state s6 results in one of two outcomes. With probability p the robot
succeeds in transitioning to state s3 and receives immediate reward 100. However, with probability
(1 — p) it slips on the ice, and remains in state s6 with zero immediate reward. Assume the

discount factor v = (.8.

$.8/0.76

r =50 i

Al

s1 = s2 3
?" Beware
0 ) of ice!

[ __t|r=100 |
; 77 plob p
tapeen)l,
“.\. Y |‘ ¢l,'
s4 g o5 |||} = EE R e

.

-------

56/0.76 70/0.76

Bl.Assume p = 0.7. Write in the values of V" for each state, and circle the actions in the optimal

policy.

~

f

&

( *k *k
~| Ve = 100p + (1 — p) Vg

V¥(s) = Y P(s'|n(s),8)r(s', a,8) + vP(s'|m(s), ) V*(s")] Ve =70+ 0.24V¢

70

J
Ve =~
g 0.76 )

25
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Part B. (6pts)

It is December. Unfortunately for our robot, a patch of ice has appeared in its world, making one
of its actions non-deterministic. The resulting MDP is shown below. Note that now the result of
the action “go north” from state s6 results in one of two outcomes. With probability p the robot
succeeds in transitioning to state s3 and receives immediate reward 100. However, with probability
(1 — p) it slips on the ice, and remains in state s6 with zero immediate reward. Assume the
discount factor v = (.8.

» r =5-0 i ..‘ll
Al
s1 572 EPTIAE s2 Ao
" ?,‘ Beware
AL 0 n V| ofice!
' AR __rlr=100 |
‘ v ,*~ nptobp
3] v f 1-p . }I
Al ,' ‘5 ..'\- 4 |‘ J ','
s4 A A 6 s Io° il "56'
; 56/0.76 70/0.76
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Part B. (6pts)

It is December. Unfortunately for our robot, a patch of ice has appeared in its world, making one
of its actions non-deterministic. The resulting MDP is shown below. Note that now the result of
the action “go north” from state s6 results in one of two outcomes. With probability p the robot
succeeds in transitioning to state s3 and receives immediate reward 100. However, with probability
(1 — p) it slips on the ice, and remains in state s6 with zero immediate reward. Assume the

discount factor v = (.8.

r =50 it
] (18]
s 1S s2
" ??‘ Beware
AL 0 n V| oficel
' Al __1|r=100 |
v v ,o~  noplobp
i (il
\c' ‘s \ 1 |‘ ! ';'
s4 SRR 6 s Io° 'S kY
44.8/0.76 56/0.76 | 70/0.76

Bl.Assume p = 0.7. Write in the values of V" for each state, and circle the actions in the optimal

policy.
( <+ w )
( ~| Ve =100p + (1 —p)Vg
V*(s) =Y P(s|n(s), 8)r(s,a,8) + YP(s'|m(s), )V ()] || V& = 70 + 0.24V¢
: 70
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L 0.76 )
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Part B. (6pts)

It is December. Unfortunately for our robot, a patch of ice has appeared in its world, making one
of its actions non-deterministic. The resulting MDP is shown below. Note that now the result of
the action “go north” from state s6 results in one of two outcomes. With probability p the robot
succeeds in transitioning to state s3 and receives immediate reward 100. However, with probability
(1 — p) it slips on the ice, and remains in state s6 with zero immediate reward. Assume the

discount factor v = (.8.

44.8/0.76

: (=50 iy
Al
s1 5 ET s2 Ao

" ?,‘ Beware

AL 0 n V| oficel

' AR __rlr=100 |
: L 7S wlob p

3] . ,-"1'P . }I
~ )| Cogtntn P (el o) B
44.8/0.76 56/0.76 70/0.76

Bl.Assume p = 0.7. Write in the values of V" for each state, and circle the actions in the optimal

policy.
( <+ w )
( ~| Ve =100p + (1 —p)Vg
V*(s) =Y P(s|n(s), 8)r(s,a,8) + YP(s'|m(s), )V ()] || V& = 70 + 0.24V¢
: 70
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L 0.76 )
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Part B. (6pts)

It is December. Unfortunately for our robot, a patch of ice has appeared in its world, making one
of its actions non-deterministic. The resulting MDP is shown below. Note that now the result of
the action “go north” from state s6 results in one of two outcomes. With probability p the robot
succeeds in transitioning to state s3 and receives immediate reward 100. However, with probability
(1 — p) it slips on the ice, and remains in state s6 with zero immediate reward. Assume the

discount factor v = (.8.
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Bl.Assume p = 0.7. Write in the values of V" for each state, and circle the actions in the optimal

policy.
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B2. (2pts) How bad does the ice have to
get before the robot will prefer to
completely avoid it? Answer this
question by giving a value for p below
which the optimal policy chooses
actions that completely avoid the ice,
even choosing the action “go west" over
“go north" when the robot is in state s6
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