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‣ MDP is a stochastic process that models the 
environment under different actions.

‣ It is defined on states, actions and rewards.

‣ Agent decides on the action, and receives a 
reward which depends on the action and states
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Goal: what action should I take to maximize my 
chance to win a game?
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‣ Set of states     S = {s1, s2, ..., sn }

‣ Set of actions   A = {a1, a2, ... , an}

‣ Set of rewards R = {r1,r2, ..., rn}

‣ Policy π gives an action for each state, π:  S→ A

What are the Markov assumptions?
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‣ Set of states     S = {s1, s2, ..., sn }

‣ Set of actions   A = {a1, a2, ... , an}

‣ Set of rewards R = {r1,r2, ..., rn}

‣ Policy π gives an action for each state, π:  S→ A

What are the Markov assumptions?

P(rt|st,at,st-1,at-1,..)     = P(rt|st,at)

P(st+1|st,at,st-1,at-1,..)  = P(st+1|st,at)
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Given a policy, π and a start state s, we can calculate the expectation 
of future rewards.

Value function, Vπ(s) is a measure for the expected discounted return:

V π(s) = E{r0 + γr1 + γ2r2 + ...|s0 = s;π}

= E{
∞�

t=0

γtrt|s0 = s;π}

=
∞�

t=0

γtE{rt|s0 = s;π}
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Given a policy, π and a start state s, we can calculate the expectation 
of future rewards.

Value function, Vπ(s) is a measure for the expected discounted return:

V π(s) = E{r0 + γr1 + γ2r2 + ...|s0 = s;π}

= E{
∞�

t=0

γtrt|s0 = s;π}

=
∞�

t=0

γtE{rt|s0 = s;π}

V π(s) =
∞�

t=0

γtE[rt]

Discounted by γ 
exponentially to 
the future

Does it 
converge?
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V π(s) =
∞�

t=0

γtE[rt]

But this for only one policy, π
How about the optimal value function, V*(s)?  

9
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Optimal value function 

V π(s) =
∞�
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γtE[rt]

But this for only one policy, π
How about the optimal value function, V*(s)?  
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Optimal value function 

Optimal policy

V ∗(s) = max
π

V π(s)

π∗ optimal ⇔ ∀s : V π∗
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Optimal value function 

Optimal policy

V ∗(s) = max
π

V π(s)

Is there really an optimal policy for every MDP?

π∗ optimal ⇔ ∀s : V π∗
(s) = V ∗(s)

V π(s) =
∞�

t=0

γtE[rt]

But this for only one policy, π
How about the optimal value function, V*(s)?  
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V π(s) = E{r0 + γr1 + γ2r2 + ...|s0 = s;π}
= E{r0|s0 = s;π}+ γE{r1 + γr2 + γ2r3 + ...|s0 = s;π}

= R(π(s), s) + γ
�

s�

P (s�|π(s), s)E{r1 + γr2 + γ2r3 + ...|s1 = s�;π}

= R(π(s), s) + γ
�

s�

P (s�|π(s), s)V π(s�)
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For all possible transitions from state s

We can use the recursive property to compute the 
value function for each state
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V ∗(s) = max
a

[R(a, s) + γ
�

s�

P (s�|π(s), s)V ∗(s�)]

π∗(s) = argmaxa[R(a, s) + γ
�

s�

P (s�|π(s), s)V ∗(s�)]

Bellman’s Equation
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Recursive property holds for optimal value function V*

V ∗(s) = rs + γ
�

s�

P (s�|π(s), s)V ∗(s�)

π∗(s) = rs + γ
�

s�

P (s�|π(s), s)V ∗(s�)

With 
actions

No 
actions
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V ∗(s1) = rs1 + γ

�
ps1s1V

∗(s1) + ps1s2V
∗(s2) + · · ·+ ps1snV

∗(sn)

�

V ∗(s2) = rs1 + γ

�
ps2s1V

∗(s1) + ps1s2V
∗(s2) + · · ·+ psnsnV

∗(sn)

�

V ∗(sn) = rs1 + γ

�
psns1V

∗(s1) + psns2V
∗(s2) + · · ·+ psnsnV

∗(sn)

�

Suppose we have n states:

It can be solved in n equations in closed form.

 But we may not be able to do this every time, so we 
consult to value/ policy iteration to find the optimal 
values.
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|V t+1
si − V t

si |t→∞ < �

Iterative algorithm, start with V0(si)
This could be initialized to 0

14

Value iteration

V 1(s1) = rs1

V 2(s1) = rs1 + γ(
�

k

ps1skV
1(sk))

V t+1(s1) = rs1 + γ(
�

k

ps1skV
t(sk))
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‣Initialization:
Randomly choose π0  set t = 0

‣Policy evaluation: 
For each si,  compute V*(si)

‣Policy update: 

‣If not converged, t = t+1

πt(si) = maxari + γ(
�

j

P (sj |a, si)V ∗(sj)

16

policy iteration
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17

policy iteration vs Value 
Iteration

‣ Policy iteration is good when the initial policy 
guess is right
‣ If we have too many actions value iteration 
may be slow
‣ Otherwise value iteration is safer
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Suppose policy π is circled. Suppose γ is 0.9.What are the Vπ (s) values? 
Immediate rewards are written next to transitions, transitions with no 
immediate reward has 0 value. 

100

100

0

100

73

66 90

81

Warm-up
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10-701 Final Exam, Fall 2006
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A. For each state s, write the value for V*(s) inside the corresponding 
square in the diagram

γ = 0.8

21
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A. For each state s, write the value for V*(s) inside the corresponding 
square in the diagram

0

10080

6451.2

64

B. Mark the state-action transition arrows that correspond to one optimal policy. 
If there is a tie, always choose the state with the smallest index.

γ = 0.8
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C. Give a different value for γ which results in a different optimal policy 
and the number of changed policy actions should be minimal. Give your 
new value for γ, and describe the resulting policy by indicating which ¼(s) 
values (i.e., which policy actions) change.

22
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C. Give a different value for γ which results in a different optimal policy 
and the number of changed policy actions should be minimal. Give your 
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C. Give a different value for γ which results in a different optimal policy 
and the number of changed policy actions should be minimal. Give your 
new value for γ, and describe the resulting policy by indicating which ¼(s) 
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C. Give a different value for γ which results in a different optimal policy 
and the number of changed policy actions should be minimal. Give your 
new value for γ, and describe the resulting policy by indicating which ¼(s) 
values (i.e., which policy actions) change.
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C. Give a different value for γ which results in a different optimal policy 
and the number of changed policy actions should be minimal. Give your 
new value for γ, and describe the resulting policy by indicating which ¼(s) 
values (i.e., which policy actions) change.

0
10070

50
49
35

New value for γ: 0.7
Changed policy actions: S2 -> S3
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A4. How many complete loops (iterations) of value iteration are sufficient 
to guarantee finding the optimal policy for this MDP? Assume that values 
are initialized to zero, and that states are considered in an arbitrary order 
on each iteration.

23
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A4. How many complete loops (iterations) of value iteration are sufficient 
to guarantee finding the optimal policy for this MDP? Assume that values 
are initialized to zero, and that states are considered in an arbitrary order 
on each iteration.

23

S1 S2 S3 S4 S5 S6
T=0 0 0 0 0 0 0
T=1 0 50 0 0 0 100
T=2 40 50 0 0 80 100
T=3 40 64 0 64 80 100
T=4 51.2 64 0 64 80 100
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24

A5. Is it possible to change the immediate reward function so that V* 
changes but the optimal policy π* remains unchanged? If yes, give such a 
change, and describe the resulting change to V.  Otherwise, explain in at 
most 2 sentences why this is impossible.
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24

A5. Is it possible to change the immediate reward function so that V* 
changes but the optimal policy π* remains unchanged? If yes, give such a 
change, and describe the resulting change to V.  Otherwise, explain in at 
most 2 sentences why this is impossible.

Modify each reward equally,  V* will change but the 
optimal policy will remain the same

Thursday, November 29, 2012



B1. Assume p = 0.7.  Write in the values of  V* for each state, and circle the actions in the optimal 
policy.

V ∗(s) =
�

s�

P (s�|π(s), s)r(s�, a, s) + γP (s�|π(s), s)V ∗(s�)]

V ∗
6 = 100p+ γ(1− p)V ∗

6

V ∗
6 = 70 + 0.24V ∗

6

V ∗
6 =

70

0.76

0

25
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B1. Assume p = 0.7.  Write in the values of  V* for each state, and circle the actions in the optimal 
policy.

V ∗(s) =
�

s�

P (s�|π(s), s)r(s�, a, s) + γP (s�|π(s), s)V ∗(s�)]

V ∗
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V ∗
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35.84/0.76 0
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B2. (2pts) How bad does the ice have to 
get before the robot will prefer to 
completely avoid it? Answer this 
question by giving a value for p below 
which the optimal policy chooses 
actions that completely avoid the ice, 
even choosing the action “go west" over 
“go north" when the robot is in state s6

050

50γ

50γ2

V ∗
6 = 100p+ γ(1− p)V ∗

6

V ∗
6 =

100p

1− γ(1− p)

Also...

26
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B2. (2pts) How bad does the ice have to 
get before the robot will prefer to 
completely avoid it? Answer this 
question by giving a value for p below 
which the optimal policy chooses 
actions that completely avoid the ice, 
even choosing the action “go west" over 
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B2. (2pts) How bad does the ice have to 
get before the robot will prefer to 
completely avoid it? Answer this 
question by giving a value for p below 
which the optimal policy chooses 
actions that completely avoid the ice, 
even choosing the action “go west" over 
“go north" when the robot is in state s6
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6

V ∗
6 =
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1− γ(1− p)

50γ2 = V ∗
6

γ = 0.8

Solve the eq.

Also...
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B2. (2pts) How bad does the ice have to 
get before the robot will prefer to 
completely avoid it? Answer this 
question by giving a value for p below 
which the optimal policy chooses 
actions that completely avoid the ice, 
even choosing the action “go west" over 
“go north" when the robot is in state s6

050

50γ

50γ2

V ∗
6 = 100p+ γ(1− p)V ∗

6

V ∗
6 =

100p

1− γ(1− p)

50γ2 =
100p

1− γ(1− p)

50γ2 = V ∗
6

γ = 0.8

Solve the eq.

Also...

p = 8/93
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‣ A good reading is :  “Reinforcement Learning:  A Survey (1996)” Leslie Pack 
Kaelbling, Michael L. Littman,  Andrew W. Moore. Journal of Artificial Intelligence 
Research,  4, 237-285. Here is a link where you can download the paper:  http://
www.autonlab.org/autonweb/14686/version/3/part/5/data/kaelbling-
reinforcement.pdf?branch=main&language=en

‣ Marc Toussaint lecture notes (retrieved from http://userpage.fu-berlin.de/
mtoussai/notes/markov-decision-processes.pdf )
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