Outline

• Decision Theory
• Logistic regression
 – Goal
 – Loss function
 – Inference
 – Gradient Descent
<table>
<thead>
<tr>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Target Variable

If target variables are discrete: classification problem

If target variables are continuous: regression problem

Model

\[P(Y_k | X) \]

Pred
Approach 1: First solve the inference problem of \(P(X | Y_k) \) and \(P(Y_k) \) separately for each class \(Y_k \). Then use Bayes’ theorem to solve:

\[
P(Y_k | X) = \frac{P(X|Y_k)P(Y_k)}{P(X)}
\]

Approach 2: Infer \(P(Y_k | X) \) directly from data
• Generative Models
 – Computationally demanding: requires computing joint distribution over both P(X|Y) and P(Y)
 – Requires large training set for high accuracy
 – Useful for detecting data points that can’t be explained by the current model: anomaly detection/novelty detection

• Discriminative Models
 – Useful if all we want to do is classification
How to perform classification with a discriminative model

We are given the training data, \(X = \{<X_1^1, Y_1^1>, <X_2^2, Y_2^2>, \ldots <X_L^L, Y_L^L>\} \) of \(L \) examples.

1. Pick a model
2. Estimate the parameters
3. Perform prediction
How to perform classification with a discriminative model

We are given the training data, $X = \{<X^1, Y^1>, \ <X^2, Y^2>, \ldots \ <X^L, Y^L>\}$ of L examples.

1. Pick a model
2. Estimate the parameters
3. Perform prediction
Binary logistic regression model

\[P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)} \]

\[P(Y = 0|X) = \frac{\exp(w_0 + \sum_{i=1}^{n} w_i X_i)}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)} \]

Assuming Y can take Boolean values
One-versus-all classification

How many sets of W's are we predicting?

\[P(Y = y_k | X) = \frac{\exp(w_{k0} + \sum_{i=1}^{n} w_{ki}X_i)}{1 + \sum_{j=1}^{K-1} \exp(w_{j0} + \sum_{i=1}^{n} w_{ji}X_i)} \]

\[P(Y = y_K | X) = \frac{1}{1 + \sum_{j=1}^{K-1} \exp(w_{j0} + \sum_{i=1}^{n} w_{ji}X_i)} \]
To shorten representation, we can add a column of 1's as the 0th feature of X so

$$w_0 + \sum_{i=1}^{n} w_i X_i$$

becomes

$$w^T X$$

Then $P(Y=1|X)$ becomes

$$P(Y = 1|X) = \frac{1}{1 + exp(-w^T X)}$$
\[P(Y = 1|X) = \frac{1}{1 + \exp(-w^T X)} \]

Sigmoid function

\[\sigma(a) = \frac{1}{1 + \exp(-a)} \]

\[\sigma(w^T X) = \frac{1}{1 + \exp(-w^T X)} \]

\[\sigma(-a) = 1 - \sigma(a) \]
Let's plot the logit function $\sigma(a) = \frac{1}{1 + e^{\exp(-a)}}$ which monotonically decreases or increases.
\[a = \ln \left(\frac{\sigma}{1 - \sigma} \right) \]

Logit function

- Range of Logit?

- Relationship with x?

\[
\ln \frac{P(Y = 0|X)}{P(Y = 1|X)} = w_0 + \sum_{i=1}^{n} w_i X_i
\]

- Range of odds?

\[
\frac{P(Y = 0|X)}{P(Y = 1|X)} = \exp(w_0 + \sum_{i=1}^{n} w_i X_i)
\]
How to estimate parameters $W = \langle w_0, \ldots, w_n \rangle$?

- Under GNB assumptions
- General case
How to estimate parameters $W = \langle w_0, \ldots, w_n \rangle$?

- Under GNB assumptions
- General case
Let’s consider X is a vector of real-valued features

$$X = \langle X_1, X_2, \ldots, X_n \rangle$$

X_i are conditionally independent given Y

$$P(Y) \sim \text{Bernoulli}(\pi)$$

$$P(X_i|Y = y_k) \sim N(\mu_{ik}, \sigma_i)$$
Using conditional independence assumption and priors

\[
P(Y = 1|X) = \frac{\frac{P(Y = 1)P(X|Y = 1)}{P(Y = 1)P(X|Y = 1) + P(Y = 0)P(X|Y = 0)}}{1 + \frac{P(Y = 0)P(X|Y = 0)}{P(Y = 1)P(X|Y = 1)}}
\]

\[
P(Y = 1|X) = \frac{1}{1 + \exp \left(\ln \frac{P(Y = 0)P(X|Y = 0)}{P(Y = 1)P(X|Y = 1)} \right)}
\]

\[
P(Y = 1|X) = \frac{1}{1 + \exp \left(\ln \frac{1 - \pi}{\pi} + \sum_i \ln \frac{P(X_i|Y = 0)}{P(X_i|Y = 1)} \right)}
\]
\[P(Y = 1|X) = \frac{1}{1 + \exp \left(\ln \frac{1 - \pi}{\pi} + \sum_i \ln \frac{P(X_i|Y=0)}{P(X_i|Y=1)} \right)} \]

Since variables have Gaussian distribution:

\[\sum_i \left(\frac{\mu_{i0} - \mu_{i1}}{\sigma_i^2} X_i + \frac{\mu_{i1}^2 - \mu_{i0}^2}{2\sigma_i^2} \right) \]

\[P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^n w_i X_i)} \]
How to estimate parameters $W = <w_0, \ldots, w_n>$?

- Under GNB assumptions:

 1. Variables X_i are conditionally independent given Y
 2. $P(X_i|Y = y_k) \sim N(\mu_{ik}, \sigma_i)$

- General case

 A. MLE
 B. MAP
Estimating parameters with MLE

\[W \leftarrow \text{arg max}_W \prod_l P(Y^l | X^l, W) \]

Conditional likelihood

What's data likelihood?
Let's write the log conditional likelihood first

\[L(W) = \prod_l P(Y^l | X^l, W) \]

\[l(W) = \ln \prod_l P(Y^l | X^l, W) \]

\[l(W) = \sum_l \ln P(Y^l | X^l, W) \]

\[l(W) = \sum_l Y^l \ln P(Y^l = 1 | X^l, W) + (1 - Y^l) \ln P(Y^l = 0 | X^l, W) \]

\[l(W) = \sum_l Y^l \ln(w_0 + \sum_i^n w_i X_i^l) + \ln(1 + \exp(w_0 + \sum_i^n w_i X_i^l)) \]
Objective function that I want to maximize

\[l(W) = \sum_{l} Y^l \ln(w_0 + \sum_{i} w_i X^l_i) + \ln(1 + \exp(w_0 + \sum_{i} w_i X^l_i)) \]

One problem: No closed form solution!!!
Take partial derivatives with respect to w_i

$$\frac{\partial l(W)}{\partial w_i} = \sum_l X_i^l(Y^l - \hat{P}(Y^l = 1|X^l, W))$$

$$w_i \leftarrow w_i + \eta \sum_l X_i^l(Y^l - \hat{P}(Y^l = 1|X^l, W))$$

Step size
Gradient descent

First order optimization

Taking steps to the direction of the negative gradient of the function

Suppose we want to minimize $F(x)$ which is defined and differentiable at point z

$F(x)$ decreases the fastest I start from point z and go to the direction of the negative gradient of $F(z)$

$$z(n+1) = z_n - \eta \nabla F(z_n)$$
Gradient ascent

First order optimization

Taking steps to the direction of the positive gradient of the function

Suppose we want to maximize $F(x)$ which is defined and differentiable at point z

$F(x)$ increases the fastest I start from point z and go to the direction of the positive gradient of $F(z)$

\[z(n+1) = z_n + \eta \nabla F(z_n) \]
Gradient descent

- The function we want to minimize is the parabola shown in light blue.
- The closed form solution is available.
- Starting from a random point on parabola, gradient descent takes steps to reach a local minima.
Gradient Descent

\[\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \ldots, \frac{\partial E}{\partial w_n} \right] \]

Training rule:

\[\Delta \vec{w} = -\eta \nabla E[\vec{w}] \]

i.e.,

\[\Delta w_i = -\eta \frac{\partial E}{\partial w_i} \]
$w_i \leftarrow w_i + \eta \sum_l X_i^l (Y^l - \hat{P}(Y^l = 1 | X^l, W))$

- Sum over all training examples
- What if I have a large training data
- Summation after each iteration
- Slow!!!!
$F(z) = \sum_{i=1}^{n} F_i(z)$

$z \leftarrow z - \eta \sum_{i=1}^{n} \nabla F_i(z)$

$z \leftarrow z - \eta \nabla F_i(z)$

Function I want to minimize

Batch gradient descent

Stochastic gradient descent
Stochastic gradient descent update rule?

\[w_i \leftarrow w_i + \eta (X_i^l(Y^l - \hat{P}(Y^l = 1|X^l, W))) \]

How to pick the training instance?
• How to pick the learning rate?

• Suppose the features have varying ranges. Would that be a problem?
Stochastic gradient descent

• Faster convergence when the training data is large

• Learning rate should be low otherwise there is a risk of going back and forth

• High accuracy is hard to reach
Batch gradient descent

- Slow convergence when the training data is large
- Guaranteed to reach to a local minimum under certain conditions
How to estimate parameters $W = <w_0, \ldots, w_n>$?

- Under GNB assumptions
- General case
 - A. MLE
 - B. MAP
Estimating parameters with MAP

\[W \leftarrow \arg \max_W \ln P(W) \prod_l P(Y^l|X^l, W) \]

Assume \(P(W) \) has a Gaussian distribution with zero mean identity covariance

\[w_i \leftarrow w_i - \eta \lambda w_i + \eta \sum_l X^l(Y^l - \hat{P}(Y^l = 1|X^l, W)) \]

From the prior
• Defining parameters on W corresponds to regularization

• Pushes parameters towards 0

• Avoids large weights and over fitting
Generative versus Discriminative

Generative

- Assumes a functional form of $P(X|Y)$ and $P(Y)$
- Estimates $P(X|Y)$ and $P(Y)$ from data, uses them to calculate $P(Y|X)$

Discriminative

- Assumes a functional form of $P(Y|X)$
- Estimates $P(Y|X)$ directly from the data
Decision Surfaces

Performance as training data reaches infinity

\[P(X_1, X_2, \ldots, X_n | Y) = \prod_{i} P(X_i | Y) \]

\[P(X_i | Y = y_k) \sim N(\mu_{ik}, \sigma_i) \]

Naive Bayes

Gaussian Naive Bayes

Logistic Regression
Things to think about

• Overfitting in LR

• Does LR make any assumptions on \(P(X|Y) \)?

• GNB with class independent variances is generative equivalent of LR under GNB assumptions

• What's the objective function of LR? Can we reach global optimum?
Questions?
Acknowledgements

• Some slides are taken from Tom Mitchell's 10-601 lecture notes