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HMM notation: P(z;..zr|x1..x7) is the posterior probability of path Z given observations .

The Viterbi, Forward, and Backward algorithms each make a series of tables: one per timestep ¢, of size
K. Consider just the Viterbi and Forward algorithms; they have related declarative semantics, shown in
the left column:
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You can use the Forward algorithm to solve what’s known as the “filtering” problem, p(z; = k|z;..z;): when
you're at timestep ¢, given all your current information, you’d like to know where you currently are, or what
the current latent state is. (Think of an airplane guidance system trying to know where it is, or a speech
recognizer wanting to know the speaker’s current word as they're talking.) Since p(z|x1..2:) x p(2t, 21..2¢),
you just renormalize the Forward o, table to get this. An entry in the Viterbi table V;[k], by contrast, tells
you the probability of the best path that ends with k. And of course you don’t explicitly sum or maximize
over all possible predecessor paths for these; due to the Markovian structure of the Bayes net, you can
proceeed left-to-right and only look at the immediate previous position when calculating the new «; or V;
table. The Forward and Viterbi algorithms, when calculating each new table, have identical form except
for the sum vs max: thus they are also called the sum-product and max-product algorithms. The algorithm to
apply at a step ¢ is shown in the right column above.

OK, but what about when we have seen all the evidence and want to make historical inferences about
what happened? For example, the max-path problem arg max.,. ., p(z1..zr|z1..27) (i.e. the speech rec-
ognizer has received the entire utterance and wants to work out the most likely sequence of words that
generated it), which we solve exactly using Viterbi. At the end of the algorithm, the best score in the final
table V7 tells you the best p(Z, Z). But actually getting the path is tricky. If you look at a 2, = arg maxy, V;[k],
that actually says that if you only look at evidence up to ¢, then for all paths from 1 to ¢, the best path ends
with state Z;. That’s not necessarily the state on the best path for the entire sequence: you might see new
evidence that changes your beliefs about what was going on at ¢. To correctly use the Viterbi algorithm you
have to track backpointers (more details in the assigned readings); it’s just another set of tables, B;[k], where
you store the argmaxes instead of the maxes: track which previous state j would be best to use to get to &
at t. Then once you're done, you start off by using the best-scoring state in V7, look at which state it was
most likeliy to come from, and keep reading it off backwards.

Viterbi Forward Backward Smoothing: renorm(alpha_t*beta_t)
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Figure 1: Picture of the probabilities in the V;, oy, and 5, tables.
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To run EM, we don’t want either the filtering quantity or the max-path probability; instead, we actually
want to solve p(z; = k|z1..x7) for every t: the probability of a state given all evidence, including evidence
in the future, because we recorded the sequence of observations for a whole bunc of data and now want to
train the parameters. (This is called the “smoothing” problem.) As we’ve seen, if you had the following f;
table, the desired posterior will be proportional to o [k]3;[k], where
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and it turns out you can compute this with right-to-left variable elimination, similar to how left-to-right
variable elimination was used to create the forward tables.

Sidenote: HMM algorithms are actually used to make airplanes fly and computers understand lan-
guage. The EM algorithm was originally discovered to train HMM’s by Baum and Welch (1970!) for speech
recognition. Every time you talk to Siri or whatever, a computer somewhere is running (a variant of) the
Viterbi algorithm on your acoustic data. The airplane stuff (“state-space tracking”, also for robots, rockets,
etc.) isn’t actually discrete HMM's as we’ve learned them, but rather a continuous Gaussian version called
Kalman filters (which is where the smoothing/filtering terminology comes from; if you have a copy, see
Kevin Murphy’s machine learning textbook, chapter 17. http://www.cs.ubc.ca/~murphyk/MLbook/
index.html).
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