
Problem Set 1
10-601 Fall 2012

Due: Friday Sept. 14, at 4 pm

TA: Brendan O’Connor (brenocon@cs.cmu.edu)

Due Date

This is due at Friday Sept. 14, at 4 pm. Hand in a hard copy to Sharon Cavlovich, GHC 8215.
This document was last updated Saturday 29th September, 2012, 6:03pm.

Changelog: (9/6) Clarified that graphs need to be printed out and turned in. (9/10) clarified notation
on 2.d.1, 2.d.2. (9/11) Added log-scale suggestion for 2.e.2; clarified wording of 2.e.5.

1 Probability Review

[All 1 point except 1d1]
Please show all steps in your solution.

1.a Equation of the Reverend

Prove

P (A|B) =
P (B|A)P (A)

P (B)

[Solution:
P (A|B) = P (AB)/P (B) = P (B|A)P (A)/P (B)
End solution]

1.b Contingencies

A is a random variable that can take one of two values {♦,♥}. B is a random variable that can take one of
two values {4,�}.

There are 117 (Ai, Bi) pairs, with the following “contingency table” of counts: each cell says how many
cases there are of that pair type, e.g. 12 cases where (A,B) = (♦,4).

A = ♦ A = ♥
B = 4 12 97
B = � 3 5

Compute the quantities

1. P (A = ♦)

2. P (A = ♦ AND B = �) (this is a notational equivalent of P (A = ♦, B = �).)

3. P (A = ♦ OR B = �)

4. P (A = ♦ | B = �)

5. Use the law of total probability to rewrite P (A) in terms of conditional probabilities P (A|B = 4) and
P (A|B = �). Compute P (A = ♦) from this equation. (If this is how you did 1b(1), then compute it
with a different, more direct, approach.)
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1.c Chain rule

Rewrite P (X,Y, Z) as a product of several conditional probabilities, and one unconditioned probability
involving a single variable. Your conditional probabilities can use only one random variable on the left side
of the conditioning bar. For example, P (A|C) and P (A) would be ok, but P (A,B|C) is not.

[Solution:
P (XY Z) = P (X|Y Z)P (Y Z) = P (X|Y Z)P (Y |Z)P (Z)
Other variable orderings are OK too, e.g.
P (Y |XZ)P (X|Z)P (Z)
P (Y |XZ)P (Z|X)P (X)
End solution]

1.d Total probability and independence

Let X,Y, Z all be binary variables, taking values either 0 or 1.
Assume Y and Z are independent, and P (Y = 1) = 0.9 while P (Z = 1) = 0.8.
Further, P (X = 1|Y = 1, Z = 1) = 0.6, and P (X = 1|Y = 1, Z = 0) = 0.1, and P (X = 1|Y = 0) = 0.2.

1. [2 points]

Compute P (X = 1). (Hint: use the law of total probability.)

[Solution:

0.47.

P (X = 1) = P (X = 1|Y = 0)P (Y = 0) + P (X = 1|Y = 1)P (Y = 1)

The left term is all given. The right term is can be broken down via the background-conditional variant
of the law of total probability (so keeping |Y = 1 on the right side of the conditional everywhere). We
also use a superscript value notation for brevity. (This can be helpful when working things out on
paper, too — eliminating the visual distraction of equal signs can clarify thinking. Sometimes I even
drop the P (...) notation to just (...), though that is a little extreme.)

P (y1)[P (x1|y1)] (1)

=P (y1)[P (x1|y1z0)P (z0|y1) + P (x1|y1z1)P (z1|y1) (2)

=P (y1)[P (x1|y1z0)P (z0) + P (x1|y1z1)P (z1) (3)

The last step used the independence of Y and Z (that knowing one does not affect your belief about
the other), so the final quantities are all given.

Another approach is to use the joint form of the law of total probability, and the product version of
the definition of independence.

P (x1y1) (4)

=P (x1y1z0) + P (x1y1z1) (5)

=P (x1|y1z0)P (y1z0) + P (x1|y1z1)P (y1z1) (6)

=P (x1|y1z0)P (y1)P (z0) + P (x1|y1z1)P (y1)P (z1) (7)

End solution]

2



2. Compute the expected value E[Y ].

[Solution:

0.9

End solution]

3. Suppose that instead of Y attaining values 0 and 1, it takes one of two values 115 and 20, where
P (Y = 115) = 0.9. Compute the expected value E[Y ].

[Solution:

.9× 115 + .1× 20 = 105.5

End solution]

2 Decision Trees

Untergang der Titanic by Willy Stöwer, 1912

Below is a dataset of the 2201 passengers and crew aboard the RMS Titanic, which disastrously sunk on
April 15th, 1912. For every combination of three variables (Class, Gender, Age), we have the counts of how
many people survived and did not. We’ve also included rollups on individual variables for convenience.

Next to the table is a mosaic plot, which simply visualizes the counts as proportional areas.1

2.a Train a decision tree

[5 points] We are interested in predicting the outcome variable Y , survival, as a function of the input
features C,G,A.

Use the information gain criterion to choose which of the three features C,G or A to use at the root of
the decision tree. In fact, your task here is to learn a depth 1 decision tree that uses only this root feature
to classify the data (such depth-1 decision trees are often called “decision stumps”). Please show all work,
including the information gain calculations for each candidate feature.

Hint: to make information gain easier to calculate, you may wish to use this formula for conditional
entropy:

−H(Y |X) =
∑
x,y

p(x, y) log p(y|x)

[Solution:
First split: find X for highest H(Y )−H(Y |X).
Sufficient to find highest −H(Y |X) =

∑
x,y p(xy) log p(y|x).

Here we’ll use natural logarithms; base-2 or base-10 will all get the same answer.

1 From R packages vcd and reshape2, and built-in dataset Titanic. The original data has four values for Class; we collapsed 2nd, 3rd,
and Crew into “Lower”.
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Class Gender Age No Yes Total
1st Male Child 0 5 5
1st Male Adult 118 57 175
1st Female Child 0 1 1
1st Female Adult 4 140 144
Lower Male Child 35 24 59
Lower Male Adult 1211 281 1492
Lower Female Child 17 27 44
Lower Female Adult 105 176 281

totals: 1490 711 2201

Gender

Survival

C
la
ss
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ge
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No Yes
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No Yes

C
hi
ld

1s
t

Male Female

A
du
ltC
hi
ld

Class No Yes Total
1st 122 203 325
Lower 1368 508 1876

Gender No Yes Total
Male 1364 367 1731
Female 126 344 470

Age No Yes Total
Child 52 57 109
Adult 1438 654 2092

For gender

−H(Y |G) = p(Male, Y es) log p(Y es|Male) + p(Male,No) log p(No|Male)+

p(Female, Y es) log p(Y es|Female) + p(Female,No) log p(No|Female)

= (1/2201) ∗ (367 ∗ log(367/1731) + 1364 ∗ log(1364/1731) + 344 ∗ log(344/470) + 126 ∗ log(126/470)

= −0.530438

For age

−H(Y |A) = p(Child, Y es) log p(Y es|Child) + p(Child,No) log p(No|Child)+

p(Adult, Y es) log p(Y es|Adult) + p(Adult,No) log p(No|Adult)

= (1/2201) ∗ (57 ∗ log(57/109) + 52 ∗ log(52/109) + 654 ∗ log(654/2092) + 1438 ∗ log(1438/2092))

= −0.6246924

For Class

−H(Y |C) = p(1st, Y es) log p(Y es|1st) + p(1st,No) log p(No|1st)+

p(Lower, Y es) log p(Y es|Lower) + p(Lower,No) log p(No|Lower)

= (1/2201) ∗ (203 ∗ log(203/325) + 122 ∗ log(122/325) + 508 ∗ log(508/1876) + 1368 ∗ log(1368/1876)

= −0.5955177

Therefore Gender is the first split: highest log-likelihood (lowest cross-entropy).
Decision stump is:
IF Gender=Female THEN predict Yes; if Gender=Male THEN predict No.
End solution]
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2.b Evaluation

1. [1 point] What is the accuracy rate of your decision stump (depth 1 decision tree) on the training
data?

[Solution:

Female num correct = 344. Male num correct = 1364. Acc = (344 + 1364)/2201 = 1708/2201 = 0.776.

End solution]

2. [1 point] If you grew a complete decision tree that used all three variables, what would its accuracy
be over the training data? [Hint: you don’t actually need to grow the tree to figure out the answer.]

[Solution:

This classifier would predict the majority class for every row in the first table, so sum the larger Y
count from every row. 5+118+1+140+35+1211+27+176 = 1713 and accuracy is 1713/2201 = 0.778.

End solution]

2.c Decision Trees and Equivalent Boolean Expressions

[1 point] The decision tree is a function h(C,G,A) that outputs a binary value. Therefore, it can be repre-
sented as a boolean logic formula.

Write a decision tree that is equivalent to the following boolean formula (i.e., a decision tree that outputs
1 when this formula is satisfied, and 0 otherwise).

(C ∧ ¬A ∧ ¬G) ∨ (C ∧A) ∨ (¬C ∧G)

[Solution:

check C
if C=1: check A

if A=1: classify Yes
if A=0: check G

if G=1: classify No
if G=0: classify Yes

if C=0: check G
if G=1: classify Yes
if G=0: classify No

End solution]

2.d Model complexity and data size

Let’s think about a situation where there is a true boolean function underlying the data, so we want the
decision tree to learn it. We’ll use synthetic data generated by the following algorithm. To generate an (~x, y)
pair, first, six binary valued x1, . . . , x6 are randomly generated, each independently with probability 0.5.
This six-tuple is our ~x. Then, to generate the corresponding y value:

f(~x) = x1 ∨ (¬x1 ∧ x2 ∧ x6) (8)
y = f(~x) with prob θ, else (1− f(~x)) (9)

So Y is a possibly corrupted version of f(X), where the parameter θ controls the noisiness. θ = 1 is
noise-free. θ = 0.51 is very noisy.
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1. [0.5 points] What is P (Y = 1 | (X1 ∨ (¬X1 ∧ X2 ∧ X6)) = 1)?

[Solution:

θ

End solution]

2. [0.5 points] What is P (Y = 1 | ¬((X1 ∨ (¬X1 ∧ X2 ∧ X6))) = 1)?

[Solution:

1− θ
End solution]

3. [1 point] Does P (Y = 1|X2 = 1) = P (Y = 1)? Why?

[Solution:

No. If X2 = 0, the right disjunct is false, so 50% chance of X1 = 1 to get f(~x) = 1. But if X2 = 1, the
right disjunct could turn out true, so there’s a higher chance of getting f(~x) = 1.

End solution]

4. [1 point] Does P (Y = 1|X4 = 1) = P (Y = 1)? Why?

[Solution:

Yes. X4 is irrelevant to the outcome of f(~x).

End solution]

5. [1 point] Consider learning a decision tree classifier h. Assume the learning algorithm outputs a
decision tree h that exactly matches f (despite the noise in the training data, it has so much data that
it still learns f correctly). Assume the training data was generated by the above process. What should
h’s accuracy rate be on the training data?

[Solution:

θ

(Technically, this is the expected accuracy rate, but asking that would have required introducing the
notion of resampling a training set, which seemed too hard for this assignment. I was hoping the
word “should” would be an acceptably precise-enough fuzzification of this concept; a few people
noticed the issue.)

End solution]

6. [1 point] Assume new test data is also generated from the same process. What should its accuracy
rate be on this new test data (assuming plenty of test data)?

[Solution:

θ

End solution]

7. [1 point] Decision trees can overfit, so let’s think about controlling the tree’s model complexity. In-
stead of using pruning like we learned in lecture, here we use a maximum depth parameter.

Assuming a very large amount of training data, what’s the smallest maximum-depth setting necessary
to perfectly learn the generating function f?

[Solution:

3, because only 3 input variables are used to make the decision.

End solution]
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2.e Train/Test Experiments

Now we experimentally investigate the relationships between model complexity, training size, and clas-
sifier accuracy. Get code and test data from: http://www.cs.cmu.edu/˜tom/10601_fall2012/hw/
hw1_code.tgz

We provide a Matlab implementation of ID3, without pruning, but featuring a maxdepth parameter:
train tree(trainX, trainY, maxdepth). It returns an object representing the classifier, which can be viewed with
print tree(tree). Classify new data via classify with tree(tree, testX). We also provide the simulation function
to generate the synthetic data: generate data(N, theta), that you can use to create training data. Finally, there
is a fixed test set for all experiments (generated using θ = 0.9).

See tt1.m for sample code to get started.
Include printouts of your code and graphs.

1. [1 point] For a depth=3 decision tree learner, learn classifiers for training sets size 10 and 100 (generate
using θ = 0.9). At each size, report training and test accuracies.

2. [8 points] Let’s track the learning curves for simple versus complex classifiers.

For maxdepth=1 and maxdepth=3, perform the following experiment. For each training set size
{21, 22, . . . , 210}, generate a training set, fit a tree, and record the train and test accuracies. For each
(depth,trainsize) combination, average the results over 20 different simulated training sets.

Make three learning curve plots, where the horizontal axis is training size, and vertical axis is accuracy.
First, plot the two testing accuracy curves, for each maxdepth setting, on the same graph. For the
second and third graphs, have one for each maxdepth setting, and on each plot its training and testing
accuracy curves. Place the graphs side-by-side, with identical axis scales. It may be helpful to use a
log-scale for data size.

[Solution:

Pink stars: depth=3. Black x’s: depth=1.

Blue circles: training accuracy. Red squares: testing accuracy.

End solution]

Next, answer several questions with no more than three sentences each:

3. [1 point] When is the simpler model better? When is the more complex model better?

[Solution:

It is good to have high model complexity when there is lots of training data. When there is little
training data, the simpler model is better.

End solution]

4. [1 point] When are train and test accuracies different? If you’re experimenting in the real world and
find that train and test accuracies are substantially different, what should you do?
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[Solution:

They’re different when you’re overfitting. If this is happening you have two options. (1) decrease
your model complexity, or (2) get more data.

End solution]

5. [2 points] For a particular maxdepth, why do train and test accuracies converge to the same place?
Comparing different maxdepths, why do test accuracies converge to different places? Why does it
take smaller or larger amounts of data to do so?

[Solution:

(1) They converge when the algorithm is learning the best possible model from the model class pre-
scribed by maxdepth: this gets same accuracy on the training and test sets. (2) The higher complexity
(maxdepth=3) model class learns the underlying function better, thus gets better accuracy. But, (3) the
higher complexity model class has more parameters to learn, and thus takes more data to get to this
point.

End solution]

6. [3 points] For maxdepths 1 and 3, repeat the same vary-the-training-size experiment with θ = 0.6 for
the training data. Show the graphs. Compare to the previous ones: what is the effect of noisier data?

[Solution:

It’s much harder for the complex model to do better. Also, it takes much longer for all test curves to
converge. (Train/test curves don’t converge to same place because noise levels are different.)

Colors and styles same as previous plots. These plots test all the way up to 215 training examples:
you can see where they converge to, which is not completely clear with only 210 examples.

End solution]

[Note:
We asked for your graphs to be side-by-side, but only some people did this. We decided to be lenient,

but did deduct half a point if you wasted an entire page for each plot. The point of making graphs is to
analyze them and achieve insights. If you can’t see them next to each other on the same page, it’s harder to
draw comparisons visually and you don’t learn as much. We observed that students who put the graphs
next to each other seemed to understand the phenomena better.

Another common problem was to not label the different lines in the graph, or to differentiate them with
colors, but print on black-and-white. This lost points as well. If you are printing on a black-and-white
printer, use line styles (e.g. dashed or dotted lines) and/or point shapes (e.g. squares, circles etc.). If you
are sending something electronically, it is best to plan for a worst-case scenario that the reader may print
on black-and-white.

Another, rarer, problem was to put three graphs stacked in a landscape orientation, so the training size
x-axis stretched 10 inches (long way on the page), and the heights were very small (2 inches or so). This
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is an extremely poor layout decision: it is very difficult to see the variation and change in accuracy. We
deducted points for this layout.

Finally, a log-scale on the x-axis made it much easier to see the important trends, though this did not
impact the grade.

Just as it is hard to communicate research findings without good layout and visual distinctions, it is
much more time-consuming for your TA’s to grade problems where the answers span across dozens of
sheets of paper and it is unclear what is being shown on a plot. This increases the risk of being misgraded,
and makes your TA’s frustrated with you.

End note]

3 Maximum Likelihood and MAP Estimation

This question asks you to explore a simple case of maximum likelihood and MAP estimation. The material
for this question will not be covered in class until Tuesday, September 11, so you might want to wait until
then to attempt it. Please print out all plots and code used to create them.

Our data is a set of n Boolean (0 or 1) values drawn independently from a single Bernoulli probability
distribution, for which P (X = 1) = θ, and therefore P (X = 0) = 1−θ. We define n Boolean-valued random
variables, X1...Xn to represent the outcomes of these n distinct draws. This problem asks you to explore
how to estimate the value of θ from the observed values X1...Xn.

Turn in printouts of your graphs.

3.a Maximum Likelihood Estimate

1. [1 point] Write a formula for P (X1...Xn|θ) in terms of θ. This is called the dataset’s likelihood. We
write L(θ) = P (X1...Xn|θ), to indicate that the likelihood of the data X1 . . . Xn is a function of θ.

[Solution:

L(θ) = θ#{X=1}(1− θ)#{X=0}

End solution]

2. [2 points] Assume a dataset size n = 9, consisting of 6 heads and then 3 tails:

(X1, ..., Xn) = (1, 1, 1, 1, 1, 1, 0, 0, 0)

Plot the likelihood curve as a function of θ, using a fine-grained grid of θ values, say for θ ∈ {0, 0.01, 0.02, ...1}.
For the plot, the x-axis should be θ and the y-axis L(θ). Scale your y-axis so that you can see some
variation in its value. Make sure to turn in both the plot and code that made it (should only be 3 or
so lines of code). [Hint: In Matlab, it’s easiest to first create the vector of θ values, then compute a
corresponding vector of L(θ) values.]

3. [1 point] In class we discussed that the maximum likelihood estimate of θ, which we call θMLE is the
value that maximizes the likelihood L(θ):

θMLE = argmax
θ
L(θ)

On your plot, mark the value of θ along the x-axis that maximizes the likelihood. Does your θMLE

agree with the following closed-form maximum likelihood estimator for a binomial distribution,
which we learned in class?

θMLE =

∑
iXi

n

[Solution:
Yes, it agrees at θMLE = 0.667.

End solution]
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4. [1 points] Create two more likelihood plots: one for a dataset of 2 heads and 1 tail; and one for a
dataset of 40 heads and 20 tails.

[Solution:

for 3a, 3b, 3c:
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Lik(theta) for k=40 n=60

End solution]

5. [1 points] Describe how the likelihood curves, maximum likelihoods, and maximum likelihood esti-
mates compare?

[Solution:

1. The maximum likelihood estimates are always at the same place. 2. The likelihood curves get
narrower around the MLE: with a large dataset, there is increased confidence — i.e., a narrower range
of θ values are reasonably compatible with the data.

[Optional: the maximum likelihood decreases with more data.]

End solution]

3.b MAP Estimation

This section asks you to explore Maximum Aposteriori Probability (MAP) estimation of θ, in contrast to
Maximum Likelihood estimation. Whereas the maximum likelihood estimate chooses a θ to maximize
P (X1 . . . Xn|θ), the MAP estimate instead chooses the θ that maximizes P (θ|X1 . . . Xn). That is,

θMAP = argmax
θ
P (θ|X1 . . . Xn)

which, by Bayes rule, is the same as

θMAP = argmax
θ

P (X1 . . . Xn|θ)P (θ)
P (X1 . . . Xn)
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and since the denominator P (X1 . . . Xn) is independent of θ this is equivalent to the simpler

θMAP = argmax
θ
P (X1 . . . Xn|θ)P (θ) (10)

Thus, to find θMAP we just need to find the θ that maximizes P (X1 . . . Xn|θ)P (θ). This requires that we
choose some probability distribution P (θ) that represents our prior assumptions about which values of θ
are most probable before we have seen the data. For this, we will use the Beta(θ;βH , βT ) distribution:

P (θ) =
θβH−1 (1− θ)βT−1

B(βH , βT )
= Beta(θ;βH , βT ) (11)

where the denominator B(βH , βT ) is a normalizing function that does not depend on θ. Therefore, we
ignore this denominator when maximizing θ.

1. [1 point] Let’s use a Beta(θ; 3, 3) distribution as our prior P (θ). Plot this as a function of θ. [Hint: The
value of the normalizing denominator B(3, 3) = 0.0333].

2. [1 point] Now plot the expression in the argmax of Equation 10, versus θ. Use your earlier data set
containing 6 heads and 3 tails, and use P (θ) = Beta(θ; 3, 3) as your prior. Where is the maximum on
this plot? How does your θMAP from this plot compare with your earlier θMLE estimate for the same
6 heads, 3 tails data?

[Solution:

For 3a1, 3b2:
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For 3b2: θMAP is a little less than θMLE : it’s shrunken towards the middle (the prior belief).

End solution]

3. [2 points] Above you used a Beta(θ; 3, 3) prior. Can you pick a different Beta(θ;βH , βT ) distribution
that, when used as a prior along with the earlier 2 heads and 1 tail data, wil yield a P (θ|D) that has
the same shape as your likelihood plot for 6 heads and 3 tails? If so, explain in at most two sentences
why you are sure these two curves will have identical shape. If not, explain in at most two sentences
why this is impossible.

[Solution:
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It is possible: with a prior Beta(5, 3), the (nH , nT ) = (2, 1) data results in a Beta(7, 4) posterior,
whose density is (1/Z)θ7−1(1−θ)4−1, which is proportional to the raw likelihood function L(θ; 6, 3) =
θ6(1− θ)3.

If the answer indicated a different understanding of what “same shape” meant, and it was clear the
student understood the issue, we marked it as correct. Answers that disagreed with the above but
did not state their assumptions lost points.

End solution]
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