Problem Set 1
10-601 Fall 2012
Due: Friday Sept. 14, at 4 pm

TA: Brendan O’Connor (brenocon@cs.cmu.edu)

Due Date

This is due at Friday Sept. 14, at 4 pm. Hand in a hard copy to Sharon Cavlovich, GHC 8215.
This document was last updated Tuesday 11" September, 2012, 8:34pm.

Changelog: (9/6) Clarified that graphs need to be printed out and turned in. (9/10) clarified notation
on2.d.1,2.d.2. (9/11) Added log-scale suggestion for 2.e.2; clarified wording of 2.e.5.

1 Probability Review

Please show all steps in your solution.

l.a Equation of the Reverend

Prove PBIAVP(A
P(A|B) = 7( IL(;)( )

1.b Contingencies

A is a random variable that can take one of two values {<, ©}. B is a random variable that can take one of
two values {A, O}.
There are 117 (A;, B;) pairs, with the following “contingency table” of counts: each cell says how many

cases there are of that pair type, e.g. 12 cases where (4, B) = (¢, D).
A= A=0
B=A 12 97
B=0O 3 5

Compute the quantities
1. P(A=9)

2. P(A =< AND B = 0) (this is a notational equivalent of P(A = <, B =0).)

3. P(A={OR B =0)

4 P(A=¢$|B=0)

5. Use the law of total probability to rewrite P(A) in terms of conditional probabilities P(A|B = A) and

P(A|B = 0O). Compute P(A = ) from this equation. (If this is how you did 1b(1), then compute it
with a different, more direct, approach.)



1.c Chain rule

Rewrite P(X,Y,Z) as a product of several conditional probabilities, and one unconditioned probability
involving a single variable. Your conditional probabilities can use only one random variable on the left side
of the conditioning bar. For example, P(A|C) and P(A) would be ok, but P(A, B|C) is not.

1.d Total probability and independence

Let X, Y, Z all be binary variables, taking values either 0 or 1.
Assume Y and Z are independent, and P(Y = 1) = 0.9 while P(Z = 1) = 0.8.
Further, P(X =1|Y =1,Z=1)=0.6,and P(X = 1|Y = 1,Z = 0) = 0.1,and P(X = 1|Y = 0) = 0.2.

1. Compute P(X = 1). (Hint: use the law of total probability.)
2. Compute the expected value E[Y].

3. Suppose that instead of Y attaining values 0 and 1, it takes one of two values 115 and 20, where
P(Y = 115) = 0.9. Compute the expected value E[Y].

2 Decision Trees

Untergang der Titanic by Willy Stower, 1912

Below is a dataset of the 2201 passengers and crew aboard the RMS Titanic, which disastrously sunk on

April 15th, 1912. For every combination of three variables (Class, Gender, Age), we have the counts of how

many people survived and did not. We’ve also included rollups on individual variables for convenience.
Next to the table is a mosaic plot, which simply visualizes the counts as proportional areas.!

2.a Train a decision tree

We are interested in predicting the outcome variable Y, survival, as a function of the input features C, G, A.
Use the information gain criterion to choose which of the three features C, G or A to use at the root of
the decision tree. In fact, your task here is to learn a depth 1 decision tree that uses only this root feature
to classify the data (such depth-1 decision trees are often called “decision stumps”). Please show all work,
including the information gain calculations for each candidate feature.
Hint: to make information gain easier to calculate, you may wish to use this formula for conditional
entropy:

—H(Y|X) = p(x,y)logp(y|z)

z,y

! From R packages vcd and reshape2, and built-in dataset Titanic. The original data has four values for Class; we collapsed 2nd, 3rd,
and Crew into “Lower”.



Gender

Class Gender Age No Yes | Total Male Female -
Ist Male Child 0 5 5 4,; l:- _ E
1st Male  Adult 118 57| 175 o 2
Ist Female Child 0o 1 1 (Il 5
1st Female Adult 4 140 | 144 ”
Lower Male Child 35 24 59 &y 2
Lower Male Adult 1211 281 | 1492 3 5
Lower Female Child 17 27 44 <
Lower Female Adult 105 176 281

totals: 1490 711 | 2201

No Yes No Yes
Survival

Class No Yes | Total Gender No Yes | Total Age No Yes | Total
1st 122 203 325 Male 1364 367 | 1731 Child 52 57 109
Lower 1368 508 | 1876 Female 126 344 470 Adult 1438 654 | 2092

2.b Evaluation
1. What is the accuracy rate of your decision stump (depth 1 decision tree) on the training data?

2. If you grew a complete decision tree that used all three variables, what would its accuracy be over the
training data? [Hint: you don’t actually need to grow the tree to figure out the answer.]

2.c Decision Trees and Equivalent Boolean Expressions

The decision tree is a function h(C, G, A) that outputs a binary value. Therefore, it can be represented as a
boolean logic formula.

Write a decision tree that is equivalent to the following boolean formula (i.e., a decision tree that outputs
1 when this formula is satisfied, and 0 otherwise).

(CA=AA=G)V(CAA)V(-CAG)

2.d Model complexity and data size

Let’s think about a situation where there is a true boolean function underlying the data, so we want the
decision tree to learn it. We'll use synthetic data generated by the following algorithm. To generate an (%, y)
pair, first, six binary valued 1, ..., x¢ are randomly generated, each independently with probability 0.5.
This six-tuple is our Z. Then, to generate the corresponding y value:

f(f) =z V (—\331 N X2 N 1‘6) (1)
y = f(Z) with prob 6, else (1 — f(Z)) (2)

So Y is a possibly corrupted version of f(X), where the parameter ¢ controls the noisiness. § = 1 is
noise-free. § = 0.51 is very noisy.

1. Whatis P(Y = 1| (X1 V (=X1 A X3 A Xg)) = 1)?

2. Whatis P(Y =1 | =((X1 V (-X1 A X2 A X)) =1)?
3. Does P(Y =1|X; =1) = P(Y = 1)? Why?

4. Does P(Y =1|X, =1) = P(Y =1)? Why?



5. Consider learning a decision tree classifier h. Assume the learning algorithm outputs a decision tree
h that exactly matches f (despite the noise in the training data, it has so much data that it still learns f
correctly). Assume the training data was generated by the above process. What should h’s accuracy
rate be on the training data?

6. Assume new test data is also generated from the same process. What should its accuracy rate be on
this new test data (assuming plenty of test data)?

7. Decision trees can overfit, so let’s think about controlling the tree’s model complexity. Instead of using
pruning like we learned in lecture, here we use a maximum depth parameter.

Assuming a very large amount of training data, what’s the smallest maximum-depth setting necessary
to perfectly learn the generating function f?

2.e Train/Test Experiments

Now we experimentally investigate the relationships between model complexity, training size, and clas-
sifier accuracy. Get code and test data from: http://www.cs.cmu.edu/~tom/10601_fall2012/hw/
hwl_code.tgz

We provide a Matlab implementation of ID3, without pruning, but featuring a maxdepth parameter:
train_tree(trainX, trainY, maxdepth). It returns an object representing the classifier, which can be viewed with
print_tree(tree). Classify new data via classify_with_tree(tree, testX). We also provide the simulation function
to generate the synthetic data: generate_data(N, theta), that you can use to create training data. Finally, there
is a fixed test set for all experiments (generated using § = 0.9).

See tt1.m for sample code to get started.

Include printouts of your code and graphs.

1. For a depth=3 decision tree learner, learn classifiers for training sets size 10 and 100 (generate using
0 = 0.9). At each size, report training and test accuracies.

2. Let’s track the learning curves for simple versus complex classifiers.

For maxdepth=1 and maxdepth=3, perform the following experiment. For each training set size
{21,22,...,210} generate a training set, fit a tree, and record the train and test accuracies. For each
(depth,trainsize) combination, average the results over 20 different simulated training sets.

Make three learning curve plots, where the horizontal axis is training size, and vertical axis is accuracy.
First, plot the two testing accuracy curves, for each maxdepth setting, on the same graph. For the
second and third graphs, have one for each maxdepth setting, and on each plot its training and testing
accuracy curves. Place the graphs side-by-side, with identical axis scales. It may be helpful to use a
log-scale for data size.

Next, answer several questions with no more than three sentences each:
3. When is the simpler model better? When is the more complex model better?

4. When are train and test accuracies different? If you're experimenting in the real world and find that
train and test accuracies are substantially different, what should you do?

5. For a particular maxdepth, why do train and test accuracies converge to the same place? Comparing
different maxdepths, why do test accuracies converge to different places? Why does it take smaller or
larger amounts of data to do so?

6. For maxdepths 1 and 3, repeat the same vary-the-training-size experiment with § = 0.6 for the training
data. Show the graphs. Compare to the previous ones: what is the effect of noisier data?


http://www.cs.cmu.edu/~tom/10601_fall2012/hw/hw1_code.tgz
http://www.cs.cmu.edu/~tom/10601_fall2012/hw/hw1_code.tgz

3 Maximum Likelihood and MAP Estimation

This question asks you to explore a simple case of maximum likelihood and MAP estimation. The material
for this question will not be covered in class until Tuesday, September 11, so you might want to wait until
then to attempt it. Please print out all plots and code used to create them.

Our data is a set of n Boolean (0 or 1) values drawn independently from a single Bernoulli probability
distribution, for which P(X = 1) = 6, and therefore P(X = 0) = 1—6. We define n Boolean-valued random
variables, X;...X,, to represent the outcomes of these n distinct draws. This problem asks you to explore
how to estimate the value of 8 from the observed values X;...X,,.

Turn in printouts of your graphs.

3.a Maximum Likelihood Estimate

1. Write a formula for P(X;...X,,|0) in terms of §. This is called the dataset’s likelihood. We write L(§) =
P(X;...X,|0), to indicate that the likelihood of the data X} ... X,, is a function of 6.

2. Assume a dataset size n = 9, consisting of 6 heads and then 3 tails:

(X1,... X)) = (1,1,1,1,1,1,0,0,0)

Plot the likelihood curve as a function of 6, using a fine-grained grid of 6 values, say for § € {0,0.01,0.02,...1}.
For the plot, the x-axis should be # and the y-axis L(f). Scale your y-axis so that you can see some
variation in its value. Make sure to turn in both the plot and code that made it (should only be 3 or

so lines of code). [Hint: In Matlab, it’s easiest to first create the vector of § values, then compute a
corresponding vector of L(#) values.]

oMLE

3. In class we discussed that the maximum likelihood estimate of §, which we call is the value that

maximizes the likelihood L(6):

OMLE — arg max L(0)

On your plot, mark the value of # along the x-axis that maximizes the likelihood. Does your §MLF
agree with the following closed-form maximum likelihood estimator for a binomial distribution,
which we learned in class?
GMLE _ 2 Xi
n

4. Create two more likelihood plots: one for a dataset of 2 heads and 1 tail; and one for a dataset of 40
heads and 20 tails.

5. Describe how the likelihood curves, maximum likelihoods, and maximum likelihood estimates com-
pare?

3.b MAP Estimation

This section asks you to explore Maximum Aposteriori Probability (MAP) estimation of 6, in contrast to
Maximum Likelihood estimation. Whereas the maximum likelihood estimate chooses a 6 to maximize
P(X;...X,|0), the MAP estimate instead chooses the 6 that maximizes P(0|X; ... X,,). That s,

gMAP — arg max PO1X;y...Xy)

which, by Bayes rule, is the same as

P(X,...X,|0)P(6)
MAP __
O = argmax P(X:1...X,)



and since the denominator P(X; ... X,,) is independent of 6 this is equivalent to the simpler

0]WAP = arg m(?X P(Xl . Xn|9)P(0) (3)

Thus, to find 04 we just need to find the 6 that maximizes P(X ... X,,|0)P(0). This requires that we
choose some probability distribution P(6) that represents our prior assumptions about which values of 6
are most probable before we have seen the data. For this, we will use the Beta(0; By, fr) distribution:

B gBr—1 (1— 0)ﬁT*1
P = B(Bwu, Br)

where the denominator B(Sy, fr) is a normalizing function that does not depend on . Therefore, we
ignore this denominator when maximizing 6.

= Beta(0; By, Br) 4)

1. Let’s use a Beta(6; 3, 3) distribution as our prior P(#). Plot this as a function of §. [Hint: The value of
the normalizing denominator B(3,3) = 0.0333].

2. Now plot the expression in the argmax of Equation 3, versus §. Use your earlier data set containing
6 heads and 3 tails, and use P(6) = Beta(; 3, 3) as your prior. Where is the maximum on this plot?
How does your §M4F from this plot compare with your earlier 0¥ estimate for the same 6 heads,
3 tails data?

3. Above you used a Beta(6; 3, 3) prior. Can you pick a different Beta(0; Sy, fr) distribution that, when
used as a prior along with the earlier 2 heads and 1 tail data, wil yield a P(f|D) that has the same
shape as your likelihood plot for 6 heads and 3 tails? If so, explain in at most two sentences why you
are sure these two curves will have identical shape. If not, explain in at most two sentences why this is
impossible.
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