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Some Asymptotic Bayesian Inference 
(background to Chapter 2 of Tanner’s book) 

 
Principal Topics 

 
•  The approach to certainty with increasing evidence. 

•  The approach to consensus for several agents, with increasing  

shared evidence.  

•  A role for statistical models in these asymptotic results. 

o symmetry/independence assumptions in these results. 

odata reduction 

o asymptotic Normal inference for these results. 
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Generalizing the coin-tossing example from last lecture: 

 

Sample space of (observable) outcomes: 

A 2-sided coin is repeatedly tossed, indefinitely, 

X = <X1, X2, …, Xn, …> 

Xj = 0, or Xj = 1 as the coin lands tails up or heads up on the jth flip. 

So that, x = < x1, x2, …, xn, …> is a point of the space  ΩΩΩΩ = {0,1}ℵ 0   

 

Of course, at any one time we observe only a finite, initial segment. 
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The events that make up the σ-algebra, A, are the (smallest) σ-field of sets 

including all the (historical) observable events, of the form, 

Hn = < x1, x2, …, xn, {0,1}, {0,1}, ….> 

  

The Statistical Model:   
 Introduce a statistical quantity, a parameter θθθθ, such that the events in A have a 

determinate conditional probability, given the parameter. 

 Bernoulli (i.i.d.) Coin flipping (continued):   

P(Xj = 1| θ) = θ  (j = 1, …), for 0 < θ < 1 

P(Hn | θ) = θk(1-θ)n-k, where k of the first n coordinates of Hn are 1  

and n-k of the first n coordinates Hn of are 0.  
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Now, if we are willing to make θθθθ into a random variable (by expanding the  

σ-algebra accordingly), we can write Bayes theorem for the parameter: 

 P(θ | Hn) =  P(Hn | θ) P(θ) / P(Hn)      

∝  P(Hn | θ) P(θ)       

OR 

The posterior probability for θθθθ    is proportional to  

the product of the likelihood for θθθθ     and its prior probability.  
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With the conjugate Beta(α , β) prior for θθθθ    

P(θ )  = 
)()(
)(

βα
βα

ΓΓ
+Γ θα−1 (1-θ)β−1 

α, β > 0, 0 < θ < 1, 

the posterior distribution  P(θ | Hn)  is given by the distribution  Beta(α+k , β+n-k) 

having mean   (α+k) / (α+k+β+n-k)   = (α+k) / (α+β+n) 

 

and variance   (α+k)(β+n-k) / (α+β+n)2(α+β+n+1) 

 

Note:  Here we may reduce the historical data of n-bits to two quantities (k, n-k).  That 

is, the two likelihood functions: P(Hn | θ)  and P(k, n-k | θ)  are the same. 

P(Hn | θ) =  P(k, n-k | θ) 
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Now, by the Strong Law of Large Numbers:  for each ε > 0 and given θ 

P( lim n→∞ | k/n - θ | <  ε  | θ)  =  1. 

Hence, with probability 1, the sequence of posterior probabilities for θ  

lim n→∞  P(θ | Hn)  = lim n→∞   Beta(α+nθ , β+n(1-θ)) 

have a limit distribution with mean θ and variance 0, independent of α and β. 

 

Note:  The posterior variances for θ  are O(1/n). That is, in advance, we can bound from 

below the precision (that is, bound from above the variance) of the posterior distribution 

for the parameter by choosing the sample size to observe. 
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Asymptotic Certainty 
THUS, under each conjugate (Beta) prior: 

 With probability 1, the posterior probability for θ  converges to the  

(0-1) Delta distribution, concentrated on the true parameter value. 

 

Aside:  (Doob, 1949) if the parameter space is finite-dimensional, this almost sure 

convergence occurs for each value of the parameter in the support of the prior.  
(The support of the prior in the parameter set is the smallest closed set with prior prob. 1) 

 

From the perspective of the posterior probability for θ ,  

through the likelihood function, the data “swamp” the prior. 
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Asymptotic Consensus 
(Merging of Posterior Probability Distributions) 

 
As a metric (distance) between two distributions P and Q over the algebra A, consider a 
strict standard, uniform distance, 

ρρρρ(P,Q)  =  supE∈ A  | P(E) – Q(E) | 
 
Let Pn = P(θ | Hn)  and  Qn = Q(θ | Hn) (n = 1, 2, …) be two sequences of posterior 
probability distributions for the parameter θ  based on two (conjugate) Beta priors.   
 
Then, it is not hard to show that 
 

lim n→∞  ρρρρ( Pn, Qn)  = lim n→∞ supΘ | P(θ | Hn)  – Q(θ | Hn) | = 0. 
 

In other words, the two systems of posterior probabilities for the parameter, based on 

shared evidence, merge together. 
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Question:  What about posterior probability distributions over the algebra 
generated by the observable events, A?  

•  Recall that the i.i.d. Bernoulli statistical model for the data is shared between these two 
investigators:  (∀ E∈ A) P(E | θ) = Q(E | θ). 

•  Also, with conjugate priors from the Beta family, the prior probability is positive for each 
“historical” event Hn.  That is, (∀ Hn, 0 < θ < 1) P(Hn | θ) > 0.   
Moreover, P(Hn) = ∫Θ P(Hn | θ)dP(θ).  Therefore, P(Hn) > 0, and likewise Q(Hn) > 0. 

Answer:  P(E | Hn)   =  ∫Θ P(E | θ, Hn) dPn(θ).  
     =  ∫Θ [P(E, Hn | θ) / P(Hn | θ)] dPn(θ) 
and as Pn merges with Qn for large n, 

≈ ∫Θ [P(E, Hn | θ) / P(Hn | θ)] dQn(θ) 
and as the two investigators agree on the statistical model 

=  ∫Θ [Q(E, Hn | θ) / Q(Hn | θ)] dQn(θ) 
=  ∫Θ Q(E | θ, Hn) Q(θ | Hn)dQn(θ) 
=  Q(E | Hn).  
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Thus, the two posterior predictive distributions (over A) also merge. 
 

For example, the probability that the next flip lands heads given Hn is: 
   P(Xn+1 | Hn)   = EPn[θ] = (α+k) / (α+β+n), 

which for large n,                ≈  k/n 

and by parallel reasoning 
                   ≈  Q(Xn+1 | Hn). 

          

 

Note, that the agreement between P(E | Hn) and Q(E | Hn)  takes a stronger form for 
cases when the historical observation Hn precludes E, when  (E∩ Hn) = ∅ .   
 
Then,     P(E | Hn’)  = Q(E | Hn’)  = 0 for all n’ > n.  
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Question:  What parts of these asymptotic results for the algebra of events A depends 

upon the (shared) statistical model? 

Answers: 

(1) Asymptotic Certainty is automatic with the Bayesian framework! 

(∀ E∈ A) with P-probability 1,  

lim n→∞ Pn(E) = χχχχ(E), i.e.   (Halmos, 1948) 

 

(2) Asymptotic Consensus requires only agreement on “null” events. 

Assume that (∀ E∈ A) P(E) = 0 if and only if Q(E) = 0. 

With P-(or Q-) probability 1, with respect to A  

lim n→∞  ρρρρ( Pn, Qn) = 0.  (Blackwell & Dubins, 1962) 

 



 12

However, the statistical model is needed for each of the following: 

(1) data reduction 

(2) rates of convergence to certainty 

(3) rates of merging for Bayesian investigators with shared evidence 

 

 

Next, we explore/review several themes for Bayesian asymptotics: 

 

•  A role for statistical models in these asymptotic results. 

o symmetry/independence assumptions in these results. 

odata reduction 

o asymptotic Normal inference for these results. 
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A puzzlement? 
We have two investigators (T and J) for our coin-tossing problem. 
They share the same statistical (i.i.d. Bernoulli) model for coin flips,  

and they have the same (conjugate) Beta prior for θ. 
 
They collect (shared) evidence by flipping the coin until one says, “Stop.” 
In fact, they observe the sequence  

(H,H,T,H,T,T,H,H,T,H) 
at which point they both (simultaneously) say “Stop!” 
 
However: 

 T’s plan was to flip the coin exactly 10 times and stop 
and  J’s plan was to flip until there were 6 “Heads” and stop. 

 

Exercise:  Give the Bayes analysis for T and for J of these data. 
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Roles for Statistical Models 

•  Data Reduction and factorization of the likelihood function. 

� Sufficient Statistics 

� Ancillary Statistics 

 

•  Symmetry and Independence assumptions 

o deFinetti’s theorem on exchangeable sequences 

 

•  Properties of Maximum Likelihood 
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Data Reduction Concepts for Statistical Models 
 
Defn:  The (dimensional) random variable Y = g(X) is sufficient for the parameter θ 

(with respect to X)      iff     

P(X | Y, θ) = P(X |Y), independent of θ. 

  

Theorem: The likelihood for θ given a sufficient (set of) statistic(s) Y is the same as 

the likelihood for θ given the (dimensional) variable X for which Y is sufficient. 

Proof:   P(x | θ)  = P(x, y | θ)      as Y = g(X)  

     = P(x | y, θ) P(y |θ) multiplication axiom 

     = P(x | y) P(y | θ)    by sufficiency of Y 

     ∝  P(y | θ)   
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Corollary (Factorization of the likelihood function): 

 Y = g(X) is sufficient for the parameter θ (with respect to X)      iff     

The likelihood (probability or density) function can be written as the product of two 

functions of this form: 

P(X | θ) = h(X) j(Y,θ). 

 

Recall:  Y = g(X) 
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Example 1 (coin-tossing, again): 

 X = <X1, …, Xn> are iid Bernoulli trials given θ, with P(X1=1|θ) = θ, 0 < θ < 1. 

 Claim:   g(X) = Y = <∑i Xi, n-∑i Xi > is a sufficient reduction  
to the two statistics, #1’s = ∑i Xi = k and #0’s = n-k in the sequence X.  

Proof:   P(x,y | θ) = P(x | θ) = θk (1-θ)n-k 

   P(y | θ) = 
n

k
C θk (1-θ)n-k 

 Thus P(x | y, θ) = P(x,y | θ) / P(y | θ) = P(x | y) = k!(n-k)!/n! 
 
That is, P(X | y, θ) is a discrete, uniform distribution over all sequences Hn that begin 
with k 1’s and (n-k) 0’s, independent of θ.  
 
Or, use factorization and note that, alternatively < X ,n> are sufficient for θ as  

P(X | θ) = θn X (1-θ)n(1- X ) = h(X) j(Y,θ) 

where h(X) = 1 and Y = X = ∑iXi/n. 
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Example 2 (Normal distribution, known variance): 
X = <X1, …, Xn> are iid normal N(µ,1) trials. 

Claim:  The pair < X ,n> is sufficient for µ. 

Proof:  Write p(X |µ) =   

(2π)-n/2 exp( -∑i(Xi - X )2 / 2) exp(-n(µ - X )2 / 2), 

where    (2π)-n/2 exp( -∑i(Xi - X )2 / 2) exp(-n(µ - X )2 / 2) 

       ⇑          ⇑       

          h(X)      j(Y,θ)  
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Defn:  The (dimensional) random variable Y = g(X) is ancillary for the parameter θ 

(with respect to X)      iff     

P(Y | θ) = P(Y), independent of θ. 

  

Theorem: The likelihood for θ based on an ancillary (set of) statistic(s) Y is constant. 

Corollary: The likelihood for θ based on X equals the conditional likelihood for θ  

based on X, given Y. 

    P(x | θ) = P(x | y, θ) 

Proof:   P(x | θ)  = P(x, y | θ)  =  P(x | y, θ) P(y | θ) 

        ∝   P(x | y, θ). 
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Example 3 (coin-tossing, again): 

 X = <X1, …, Xi,…> are iid Bernoulli trials given θ, with P(X1=1|θ) = θ, 0 < θ < 1.

 g(X) = Y = <∑i Xi, n-∑i Xi > is a sufficient reduction for inference about θ. 

 
Version 3a:  The stopping rule is sample to a fixed sample size n.  Then N (sample size) 
is ancillary ( P(N=n) = 1) and, given N = n, ∑i Xi is sufficient! 
Moreover, P(∑i Xi | n, θ) is given by the Binomial(n, θ) distribution. 
 
Version 3b: The stopping rule is sample to a fixed number of “heads,” say ∑i Xi = k  
Then ∑i Xi (number of heads) is ancillary ( P(∑i Xi = k ) = 1) and, given ∑i Xi = k , the 
number of flips N is sufficient! 
Moreover, P(N | k, θ) is given by the Neg-Binomial(k, θ) distribution.  
 
However, regardless of the stopping rule, in either version, the pair <∑i Xi, N > is 
sufficient! 
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Recapitulation of data-reduction principles for statistical models 
   
Sufficiency principle:  A sufficient statistic preserves all the relevant information about  

the parameter that is in the full data set  
 
Ancillarity principle:  All the relevant information in the data set about the parameter is  

contained in the conditional model, given the ancillary statistic. 
 
Likelihood principle: All the relevant information in the data set about the parameter is  

contained in the likelihood function given the data. 
 
Birnbaum’s Theorem:  The Likelihood principle is equivalent to the conjunction of the  

Sufficiency and Ancillarity principles. 
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Identifying statistical models by symmetry & independence involving observables 
(deFinetti’s Theorem) 

 
Heuristic Example (coin-tossing yet again!):  Let X = <X1, …, Xi,…> be an infinite 
sequence of binary trials, with the σ-algebra (A) of events generated by the observable 
“historical” events Hn: <x1, …, xn, {0,1}, {0,1}, …>. 
 
Defn: Say that a probability P over A is: 

•  1-exchangeable if for ∀ (i,j) P(Xi = 1) = P(Xj = 1) 
 
•  2-exchangeable if ∀ (i1,i2,distinct and j1, j2 distinct)  

P(Xi1= x1, Xi2= x2)  =  P(Xj1= x1, Xj2= x2)  
 

•  n-exchangeable if ∀ (i1,i2, …,in distinct) 
P(Xi1=x1, Xi2=x2, …, Xin=xn)  does not depend on the n distinct <i1,i2,…,in> 

 
•  exchangeable if P is n-exchangeable for each n (n = 1, 2, …). 
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Theorem (deFinetti):  P is exchangeable if and only if P can be written as 

P(E) = ∫ΘP(E | θ) dQ(θ) 

where  

•  P(A | θ) is given by iid Bernoulli(θ) trials  

•  Q(θ) is a prior probability distribution over Θ determined uniquely by P over A.  

 
Thus, one can use the computational benefits of sampling from an iid statistical 
model, “as if” it were true, given suitable exchangeability (symmetry) assumptions 
involving only the algebra of the observable random variables.  

 
Remarks:   

•  This important theorem generalizes to cover both discrete and continuous random 
variables.   

•  Also, there is version dealing with finite sequences (N-exchangeability). 
•  For a thorough discussion of all this, see chapter 1 of Mark Schervish’s book, 

Theory of Statistics, 1995. Springer-Verlag.   
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Data reduction, Fisher-Information, and Maximum Likelihood 
 

Defn.: Score function:   SX (θ) = ∂ (ln p(X | θ))     
          ∂θ 

  

 

 
Fisher Information    (under general conditions)  
 

IX (θ)  =  Var (SX(θ)) = E[-∂2(ln p(X |θθθθ)) ].    

     ∂θ2
 

 

•  Fisher Information is additive for independent data. 

• IX(θ)  = IY(θ)  whenever Y is sufficient for θ (with respect to X). 

• Fisher Information is a differential form of Kullback-Leiber information. 
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K-L information inequality 
With f and g density functions: 

∫ log [f(x)/g(x)] f(x) dx  =  -∫ log [g(x)/f(x)] f(x) dx 

≥ -log( ∫ [g(x)/f(x)] f(x) dx ) 

=  -log( ∫ g(x) dx ) 

=  -log (1)  

= 0 

where the inequality follows is by an application of Jensen’s inequality for the concave 
log function.   
The inequality is strict unless almost surely w.r.t. the F-distribution, [g(x)/f(x)] = 1.   

Corollary: Unless a statistic t is sufficient for data X, there will be an information (and 

Fisher Information) gain from adding the full data X to t.   

That is, all and only sufficient statistics preserve all the information in the data. 
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Defn.:  Let θθθθ* denote the argmax of the likelihood function p(X | θθθθ), 
the maximum likelihood estimate (MLE) of the parameter. 

 
Main MLE Theorem (under general regularity conditions on the statistical model): 

P(θθθθ* | θθθθ0)  ≈  N(θθθθ0, [IX(θθθθ*)]-1)  =  N(θθθθ0, [nIXi(θθθθ*)]-1) 

So (under “regularity” conditions) the MLE: 

• Has an asymptotic Normal distribution. 

• Is asymptotically consistent (converges to θθθθ0). 

• Is asymptotically sufficient. 
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Putting these pieces together we have, under the same “regularity” conditions, 

convergence of the posterior to the mle: 

P[ 2/1
X

0

)]([I
 ) - *( 

n
∗θ
θθ  | Xn]  converges to the standard normal N(0,1) distribution. 
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