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EM within the Exponential Family 
 
 

First, we review a result showing that the sequence of EM estimates for a (one-

dimensional) MLE in the exponential family converges monotonically to MLE, either 

from below or from above the MLE, depending on the starting value for the EM 

algorithm. 

 

Then, we review a result about the rate of convergence of the sequence of EM estimates 

for the MLE in the same (one-dimensional) exponential family.   

 

That rate is given by the “Missing Information Principle”:  

See Tanner’s discussion in section 4.4 for more background on this problem. 
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Background facts for the Exponential Family: 

Here, again, are some basic facts about the Exponential Family.   

See Tanner 4.3, or Casella & Berger’s book, where in section 3.3 in the 1st ed. 

 
Defn:  A random variable X (or random vector X) has its distribution in the exponential 
family with k-dimensional parameter θ providing that its density function f can be 
written as: 

f(x | θ)  =  b(x) exp[ )(1 θ∑ =
k
i ig ti(x)] / a(θ) 

where a (≥ 0) and the ti are real-valued functions of the data only;  
where b (≥ 0)  
and the gi are real-valued functions of the parameter only. 

 
It is evident from the form of the density for the exponential family that the k-many 

statistics T = (t1(x), …, tk(x)) are sufficient for θ.   
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Defn.:  Call Γ = (g1(θ), …, gk(θ)), the k-dimensional natural parameter of the family,  

  and T = (t1(x), …, tk(x)), the k-dimensional natural sufficient statistic of the family. 
 
Moreover, the natural sufficient statistic T also has its distribution within the 
exponential family, using the same natural parameters. 
 
Let Xj (j = 1, …, n) be iid sample of size n from an exponential family.   

Define the k-many statistics  Ti  =  Σj ti(xj).   

 

It follows that (T1, …, Tk) are jointly sufficient and have a distribution from the 

exponential family, with the same natural parameters as the Xj. 
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Let the observed data X = x come from statistical model,with density g(x | θ).   

This need not be from the Exponential Family. 

 

We want to find the MLE,   argmaxθ log g(x | θ) = L(θ).   

 

We apply the EM algorithm with complete data Z, which we assume do come from a  

1-dimensional exponential family, whose natural parameter is taken for convenience 

also as θ and whose density, f(z | θ), is described above. 
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First.  Argue that E[T(z) | θ] = α′(θ) and that E[T(z) | x, θ] = α′(θ) + L′′′′(θ). 

 Hint:  Remember that  h(z |x, θ)  =  f(z | θ) / g(x | θ) is the conditional density for the 
complete data z, given the observed data x.  
  

Thus,   log h(z |x, θ) =  T(z)θ + β(z) - α(θ) - L(θ), since 

   log f(z | θ) = T(z)θ + β(z) - α(θ) 

where α(θ) = log a(θ) and likewise β(z) = log b(z) 
 
Differentiate and take expectations. 
 
Argue that E[∂/∂θ  log f(z | θ) ]  =  Ex[∂/∂θ  log h(z |x, θ) ]  =  0. 

Thus, L′′′′(θ) = E[T(z) | x, θ] - E[T(z) | θ]   
 
Side remark: As L′′′′(θ̂ ) = 0, then E[T(z) | θ̂ ] = E[T(z) | x, θ̂ ].  That is, the MLE θ̂  makes 

the incomplete and complete data uncorrelated! 
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Second.   Solve for θj+1 which is the j+1st EM estimate of the MLE. 

 Hint: Argue that θj+1 solves α′(θj+1) = E[T(z) | x, θj] = E[T(z) | θj+1]. 
 
 

Third.    Conclude that,  

because δ(θ) = E[T(z) | x, θ] - E[T(z) | θ] > 0 for θ  < θ̂   

and δ(θ) < 0 for  θ  > θ̂ ,  

then the sequence of EM estimators converges  

monotonically upwards to θ̂  if started from below θ̂   

and   monotonically downwards to θ̂  if stared from above θ̂ . 
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Next, for determining the rate of convergence in the sequence of EM estimates of the 

MLE, θ̂ , argue as follows: 

 

Denote by Iz(θ) the Fisher Information contained in the complete data  

with respect to θ, associated with the density f(z | θ).   

Likewise, denote by Iz|x(θ) the Fisher information with respect to θ  

associated with the conditional density h(z |x, θ).   

 

Fourth:   Show that Iz(θ) = α′′(θ) and that Iz|x(θ) = α′′(θ) + L′′′′′′′′(θ). 
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Fifth:  Show that as j → ∞, the ratio (θj+1-θ̂ ) / (θj-θ̂ )  = Iz|x(θ̂ ) / Iz(θ̂ ). 

Hint: Use these two linear approximations for θ in the neighborhood of θ̂ : 

  E[T(z) | x, θ] = E[T(z) | x,θ̂ ]  + Iz|x(θ)(θ -θ̂ ) 

  E[T(z) | θ] = E[T(z) |θ̂ ]  + Iz(θ)(θ -θ̂ ). 

 

• This results shows that the rate of convergence in the EM estimate of the MLE is a 

function of how much information is added to X in order to make up the complete 

data Z. 

• The more information that is added, the larger the ratio (above), and the slower the 

rate of convergence to the MLE. 
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