EM within the Exponential Family

First, we review a result showing that the sequence of *EM* estimates for a (one-dimensional) MLE in the exponential family converges *monotonically* to MLE, either from below or from above the MLE, depending on the starting value for the EM algorithm.

Then, we review a result about the *rate of convergence* of the sequence of *EM* estimates for the MLE in the same (one-dimensional) exponential family.

That rate is given by the "Missing Information Principle":

See Tanner's discussion in section 4.4 for more background on this problem.

Background facts for the Exponential Family:

Here, again, are some basic facts about the Exponential Family.

See Tanner 4.3, or Casella & Berger's book, where in section 3.3 in the 1st ed.

Defn: A random variable X (or random vector X) has its distribution in the exponential family with k-dimensional parameter θ providing that its density function f can be written as:

$$f(x \mid \theta) = b(x) \exp[\sum_{i=1}^{k} g_i(\theta) t_i(x)] / a(\theta)$$

where $a \ge 0$ and the t_i are real-valued functions of the data only; where $b \ge 0$ and the g_i are real-valued functions of the parameter only.

It is evident from the form of the density for the exponential family that the k-many statistics $T = (t_1(x), ..., t_k(x))$ are sufficient for θ .

Defn.: Call $\Gamma = (g_1(\theta), ..., g_k(\theta))$, the k-dimensional natural parameter of the family, and $T = (t_1(x), ..., t_k(x))$, the k-dimensional natural sufficient statistic of the family.

Moreover, the natural sufficient statistic T also has its distribution within the exponential family, using the same natural parameters.

Let X_j (j = 1, ..., n) be *iid* sample of size n from an exponential family.

Define the k-many statistics $T_i = \sum_j t_i(x_j)$.

It follows that $(T_1, ..., T_k)$ are jointly sufficient and have a distribution from the exponential family, with the same natural parameters as the X_j .

Let the observed data X = x come from statistical model, with density $g(x \mid \theta)$. This need not be from the Exponential Family.

We want to find the *MLE*, $\operatorname{argmax}_{\theta} \log g(x \mid \theta) = L(\theta)$.

We apply the *EM* algorithm with *complete* data *Z*, which we assume do come from a 1-dimensional exponential family, whose natural parameter is taken for convenience also as θ and whose density, $f(z \mid \theta)$, is described above.

First. Argue that $\mathbf{E}[T(z) \mid \theta] = \alpha'(\theta)$ and that $\mathbf{E}[T(z) \mid x, \theta] = \alpha'(\theta) + L'(\theta)$.

Hint: Remember that $h(z|x, \theta) = f(z|\theta)/g(x|\theta)$ is the conditional density for the complete data z, given the observed data x.

Thus,
$$\log h(z \mid x, \theta) = T(z)\theta + \beta(z) - \alpha(\theta) - L(\theta)$$
, since $\log f(z \mid \theta) = T(z)\theta + \beta(z) - \alpha(\theta)$ where $\alpha(\theta) = \log a(\theta)$ and likewise $\beta(z) = \log b(z)$

Differentiate and take expectations.

Argue that
$$\mathbf{E}[\partial/\partial\theta \log f(z \mid \theta)] = \mathbf{E}_{\chi}[\partial/\partial\theta \log h(z \mid x, \theta)] = 0$$
.

Thus,
$$L'(\theta) = \mathbf{E}[T(z) \mid x, \theta] - \mathbf{E}[T(z) \mid \theta]$$

Side remark: As $L(\hat{\theta}) = 0$, then $\mathbb{E}[T(z) | \hat{\theta}] = \mathbb{E}[T(z) | x, \hat{\theta}]$. That is, the MLE $\hat{\theta}$ makes the incomplete and complete data uncorrelated!

Second. Solve for θ_{j+1} which is the $j+1^{st}$ *EM* estimate of the MLE.

Hint: Argue that θ_{j+1} solves $\alpha'(\theta_{j+1}) = \mathbb{E}[T(z) \mid x, \theta_j] = \mathbb{E}[T(z) \mid \theta_{j+1}]$.

Third. Conclude that,

because $\delta(\theta) = \mathbf{E}[T(z) \mid x, \theta] - \mathbf{E}[T(z) \mid \theta] > 0$ for $\theta < \hat{\theta}$ and $\delta(\theta) < 0$ for $\theta > \hat{\theta}$,

then the sequence of *EM* estimators converges

monotonically upwards to $\hat{\theta}$ if started from below $\hat{\theta}$

and monotonically downwards to $\hat{\theta}$ if stared from above $\hat{\theta}$.

Next, for determining the *rate of convergence* in the sequence of *EM* estimates of the MLE, $\hat{\theta}$, argue as follows:

Denote by $I_Z(\theta)$ the Fisher Information contained in the complete data with respect to θ , associated with the density $f(z \mid \theta)$.

Likewise, denote by $\mathbf{I}_{z|x}(\theta)$ the Fisher information with respect to θ associated with the conditional density $h(z|x,\theta)$.

Fourth: Show that $I_z(\theta) = \alpha''(\theta)$ and that $I_{z|x}(\theta) = \alpha''(\theta) + L''(\theta)$.

Fifth: Show that as $j \to \infty$, the ratio $(\theta_{j+1} - \hat{\theta}) / (\theta_{j} - \hat{\theta}) = \mathbf{I}_{Z|X}(\hat{\theta}) / \mathbf{I}_{Z}(\hat{\theta})$.

Hint: Use these two linear approximations for θ in the neighborhood of $\hat{\theta}$:

$$\mathbf{E}[T(z) \mid x, \theta] = \mathbf{E}[T(z) \mid x, \hat{\theta}] + \mathbf{I}_{z|x}(\theta)(\theta - \hat{\theta})$$

$$\mathbf{E}[T(z) \mid \boldsymbol{\theta}] = \mathbf{E}[T(z) \mid \hat{\boldsymbol{\theta}}] + \mathbf{I}_{z}(\boldsymbol{\theta})(\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}).$$

- This results shows that the *rate of convergence* in the *EM* estimate of the *MLE* is a function of how much information is added to *X* in order to make up the complete data *Z*.
- The more information that is added, the larger the ratio (above), and the *slower* the rate of convergence to the MLE.