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Lecture Outline 
 

  EM Algorithm for MLE (maximum likelihood estimation) 
 

•  A review of some theory 
 

 
•  An illustration involving missing data 

 
 

•  A result showing that EM’s convergence is monotone,  
and giving the rate of convergence for the EM algorithm 
in terms of the amount of missing information added.  

 



 2

EM for MLE – making a one-step likelihood maximization easier  
through a (convergent) sequence of simpler maximizations. 
 
Let X1, X2, … Xn be iid with common density function  p(X | θ). 
 
We are looking to maximize the likelihood function: 

θ̂   =   argmaxΘ L(θ | x) =   ∏ =
n
i 1 p(x | θ). 

This may be hard to do as the likelihood function L(θ | x) may be complicated. 
 
Instead, it may be easier to work with a likelihood function augmented by data Z  

L(θ | x, z) 

to be integrated out at a later stage of computation. 
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This is feasible when we can write 
p(x | θ)  =  ∫Z f(x, z | θ) dz 

for some convenient joint density function  f(x, z | θ). 

 

Now by the multiplication theorem for densities: 

f(x, z | θ)  =  h(z | x, θ) p(x | θ) 

where h(z | x, θ)  is a conditional density function for Z given X and θ. 

 

It is the convenience of working with the joint density f(x, z | θ)  and the  

conditional density h(z | x, θ) that drives EM calculations, as 

p(x | θ) = f(x, z | θ)  / h(z | x, θ) 
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Thus, quite generally:    

(*)     log L(θ | x) = log L(θ | x, z) – log h(z | x, θ). 

 

Following (Dempster, Laird and Rubin,1977), with θ0 arbitrary, define the two functions:

  

(**) E-step  Q(θ | x, θ0) =   ∫Z [log L(θ | x, z)] h(z | x, θ0) dz 

       and 

(***)   H(θ | x, θ0) =   ∫Z [log h(z | x, θ0)] h(z | x, θ0) dz. 

 

  Then  log L(θ | x)  =   Q(θ | x, θ0) –  H(θ | x, θ0). 
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Begin the iterative process by letting 

M-step     θ̂1 = argmaxΘ Q(θ | x, θ0) 

and then replacing θ0 with θ̂1 in (**), which leads to a revised (***) in the light of (*). 

 

Thus,      θ̂j+1 = argmaxΘ Q(θ | x, θ̂j). 

 

(DLR) EM -jargon:   log L(θ | x)  is the incomplete log-likelihood function. 

     log L(θ | x, z)  is the complete log-likelihood function. 

    and  Q(θ | x, θ0) is the expected log-likelihood function. 
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Theorem: For the sequence θ̂j+1 = argmaxΘ Q(θ | x, θ̂j),   j = 1, …. 

L(θ̂j+1 | x)  ≥  L(θ̂j| x) 

with equality if and only if  Q(θ̂j+1 | x, θ̂j) = Q(θ̂j | x, θ̂j). 

 
Proof:  Recall that  log L(θ | x)  =   Q(θ | x, θ0) –  H(θ | x, θ0).   

Then on successive iterations    

log L(θ̂j+1 | x) – log L(θ̂j | x)    =   

[Q(θ̂j+1 | x, θ̂j) – Q(θ̂j | x, θ̂j)] – [H(θ̂j+1 | x, θ̂j) – H(θ̂j | x, θ̂j)]. 

 

Evidently     [Q(θ̂j+1 | x, θ̂j) – Q(θ̂j | x, θ̂j)] ≥  0, by the iteration 
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Thus, we must show that:  

∫Z [log h(z | x, θ̂j+1) – log h(z | x, θ̂j)] h(z | x, θ̂j) dz.  ≤  0. 

Or,    ∫Z log [h(z | x, θ̂j+1)/h(z | x, θ̂j)] h(z | x, θ̂j) dz.  ≤  0. 

 
Recall, K-L information is non-negative and 0 only for identical distributions.  

Eh(z | x, θ̂j) log [h(z | x, θ̂j) / h(z | x, θ̂j+1)]  ≥  0. 

Aside: This follows by Jensen’s Inequality, twice, noting that for positive rv’s  
1/E[X] < E[1/X] and that E[log X] < log E[X] . 
  
So,    0  ≥  –Eh(z | x, θ̂j) log [h(z | x, θ̂j) / h(z | x, θ̂j+1)] 

  =    Eh(z | x, θ̂j) –log [h(z | x, θ̂j) / h(z | x, θ̂j+1)] 

  =    Eh(z | x, θ̂j) log [h(z | x, θ̂j+1) / h(z | x, θ̂j)] 

  =   ∫Z log [h(z | x, θ̂j+1)/h(z | x, θ̂j)] h(z | x, θ̂j) dz 
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 To insure that the sequence <θ̂j> converges the following result helps: 

 

Theorem: (Boyles, 1983; Wu, 1983) 

If the expected log-likelihood function Q(θ | x, θ0) is continuous in both θ and θ0, 

then all limit points of an EM sequence <θ̂j> are stationary points of L(θ | x) and 

L(θ̂j | x) converges monotonically to L(θ̂ | x) for some stationary point θ̂.   

That is, then   
θ∂

θ∂ )|(log xp  
θ=θ̂

 =  0. 
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EM with missing-data. 

One-way layout with missing data:   

Let Xij denote the response variable of the jth subject among those receiving 

treatment dose-i.  

 

Statistical model:  Assume Xij ∼   N(µi,σ2); i = 1, …, k; j = 1, …, ni. 

The µi are the parameters of interest: average effects of a given treatment dose. 

Let µ  be an average of average dose effects so that:  µi = µ  + αi, where ∑i αi = 0. 

That is      µ  = ∑i µi/k    and    αi = µi – µ . 

 

Note well the relation to the k-MoG problem! 
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The least squares estimator of µi is (evidently)  ix = (1/ni) ∑ =
in

j 1 xij. 

 

And the minimum variance (unbiased) estimators for the other parameters are:  

µ̂ = (1/k)∑i ix   and   iα̂  = ix  – µ̂ 

 

However, when the sample sizes (ni) are not all equal, the vectors of the 

coefficients of the Xij in the iα̂  are not orthogonal to the respective vector of 

coefficients of µ̂.  Thus, µ̂ is not independent of the iα̂ .   
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Suppose we have 4 treatment groups, with outcomes  
 

TREATMENTS 
 

T1  T2  T3  T4 
    x11       x21      x31      x41 
    x12       x22      x32      x42 
     z1              x23       z3       x43 
 

Observe Xij and use the Zs as the dummy missing values to create a balanced sample. 
 
 
Thus,  Xij ∼   N(µ+αi ,σ2) and our dimensional parameter θ = (µ , σ2, α1, α2, α3, α4). 



 12

The incomplete likelihood is: 

 L(θ | x) = p(x | θ)  = √ (1/2πσ2)10 exp[ ]/)( 224
1 1 σαµ ii

n
j iji x −−∑ ∑= =   

 

The complete likelihood is:  

 L(θ | x,z) = f(x,z | θ)  = √ (1/2πσ2)12 exp[ ]/)( 224
1

3
1 σα−µ−∑ ∑= = ii j ijx   

where, of course,   x13= z1 and x33= z3.   
 

Now, run the EM algorithm with the augmented data (x,z) and simplified likelihood 

(based on a balanced sample) in order to find the MLE for L(θ, x).  

 
 


