Lecture Outline

EM Algorithm for MLE (maximum likelihood estimation)

» A review of some theory

« An illustration involving missing data

A result showing that EM’s convergence is monotone,
and giving the rate of convergence for the EM algorithm
In terms of the amount of missing information added.



EM for MLE — making a one-step likelihood maximization easier
through a (convergent) sequence of simpler maximizations.

Let X, X,, ... X, be iid with common density function p(X| 8).

We are looking to maximize the likelihood function:

6 = argmaxgL(6|x)= [, p(x|8).

This may be hard to do as the likelihood function L (8 | X) may be complicated.

Instead, it may be easier to work with a likelihood function augmented by data Z
L(O | X, 2)

to be integrated out at a later stage of computation.



This is feasible when we can write
p(x|8) = [, f(x,2|6)dz

for some convenient joint density function f(x, z | 0).

Now by the multiplication theorem for densities:
f(x,z[6) = h(z|x, 6) p(x|6)

where h(z | X, 6) is a conditional density function for Z given X and 6.

It is the convenience of working with the joint density f(x, z | 6) and the
conditional density h(z | x, 8) that drives EM calculations, as
p(x|06)=1(x,z|0) /h(z|x, 0)



Thus, quite generally:
(*) log L(0|X) =1log L(O| X, z) —log h(z | x, 0).

Following (Dempster, Laird and Rubin,1977), with 8garbitrary, define the two functions:

(**) E-step QO|x, 08 = jz [log L(8 | X, z)] h(z | X, Bp) dz
and

(***) H®|x, 680 = I, [logh(z]|x, 60)]h(z]x, 8) dz.

Then log L(B|X) = Q(B]x,8g)— H(O|X, 6p).



Begin the iterative process by letting
M-step 6, =argmaxg Q(8 X, 8y)

and then replacing 6 with él in (**), which leads to a revised (***) in the light of (*).
Thus, 0j+1= argmaxg Q(8 | x, 6)).

(DLR) EM -jargon: log L(8 | x) is the incomplete log-likelihood function.

log L(O | X, z) is the complete log-likelihood function.

and Q(0 | x, 8p) Is the expected log-likelihood function.



Theorem:  For the sequence 8,1 = argmaxg Q(0 |, 8), j=1, ....
L(8j11%) 2 L(§j )

with equality if and only if  Q(Bj41 | X, 8)) = Q(8; | X, 6)).

Proof: Recallthat logL(B|x) = Q(B]X, 8g) — H(O|X, 6).
Then on successive iterations

log L(Bj41 |X) ~log L(8|x) =
[Q(Bj:1 1%, 6;) — Q(B; X, B)] - [H(Bj+1 | X, 8)) — H(B; | X, B))].

Evidently [Q(6;:1 1%, 6;) — Q(8; | %, B))] = 0, by the iteration



Thus, we must show that;

I, [log h(z| x, Bj,1) - log h(z | x, 8)] h(z| x, B dz. < 0.

Or, ], 1og [h(z | X, 8;41)/n(z | %, 8)] h(z|x, 8;) dz. < 0.

Recall, K-L information is non-negative and 0 only for identical distributions.
En | x, ) log [n(z| X, 8;) / h(z| X, B;41)] = O.

Aside: This follows by Jensen’s Inequality, twice, noting that for positive rv’s
1/E[X] < E[1/X] and that E[log X] < log E[X] .

So, 0 2 -En@z|x, §;)l0g [n(z|x, 6 /h(z|X, 8j.1)]
= Eh(z X. éj) —log [h(z | x, 8;) /' h(z| X, Bj41)]
= Eh(z X, éj) log [h(z | X, 8j:1) / h(z | X, 6;)]
= |, log [h(z| %, 8;41)/(z|x, 8)] h(z|x, 6;) dz




To insure that the sequence <éj> converges the following result helps:

Theorem: (Boyles, 1983; Wu, 1983)

If the expected log-likelihood function Q(0 | X, 8y) is continuous in both 6 and 6,
then all limit points of an EM sequence <éj> are stationary points of L(0 | x) and

L(6; | x) converges monotonically to L(6 | x) for some stationary point 6.

dlog p(9]x)

~ = 0.
00 6=6

That is, then



EM with missing-data.

One-way layout with missing data:

Let Xj; denote the response variable of the jth subject among those receiving

treatment dose-i.

Statistical model: Assume Xjj O N(uj,02);i=1, ...,k j=1, ..., nj.
The y; are the parameters of interest: average effects of a given treatment dose.
Let i be an average of average dose effects so that: p; = f + aj, where 2 ; a; = 0.

That is g =2iM/k and aj=pi—H.

Note well the relation to the k-MoG problem!



The least squares estimator of y; is (evidently) X;= (1/n;) Z?‘:l Xij-

And the minimum variance (unbiased) estimators for the other parameters are:

0=1KZ% and @; =% — i

However, when the sample sizes (n;) are not all equal, the vectors of the
coefficients of the Xjj in the d; are not orthogonal to the respective vector of

coefficients of {i. Thus, f1 is not independent of the &;.
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Suppose we have 4 treatment groups, with outcomes

TREATMENTS

X11 X21 X31 X41
X12 X22 X32 X42
Z9 X23 Z3 X43

Observe Xjj and use the Zs as the dummy missing values to create a balanced sample.

Thus, Xjj O N(H+aj,02) and our dimensional parameter 8 = (|1, 02, 0y, dy, O3, Oy4).
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The incomplete likelihood is:

L(8]x) =p(x|6) =V (1/2nc)10 exp[TL, ¥y (% - 71~ a1;)?  72]

The complete likelihood is:
L(®]x2) =f(xz]|8) =V (1/2n)12 exp[ Ly X3 (x ~H~0;)? /0°]

where, of course, Xq3=z; and Xz3= Z3.

Now, run the EM algorithm with the augmented data (x,z) and simplified likelihood

(based on a balanced sample) in order to find the MLE for L(9, x).
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