Lecture Outline

EM Algorithm for MLE (maximum likelihood estimation)

- A review of some theory
- An illustration involving missing data
- A result showing that EM's convergence is *monotone*, and giving the *rate of convergence* for the EM algorithm in terms of the amount of *missing* information added.

EM for *MLE* – making a one-step likelihood maximization easier through a (convergent) sequence of simpler maximizations.

Let $X_1, X_2, ... X_n$ be *iid* with common density function $p(X \mid \theta)$.

We are looking to maximize the likelihood function:

$$\hat{\theta} = \operatorname{argmax}_{\Theta} \mathbf{L}(\theta \mid \mathbf{x}) = \prod_{i=1}^{n} \mathbf{p}(\mathbf{x} \mid \theta).$$

This may be hard to do as the likelihood function $L(\theta \mid x)$ may be complicated.

Instead, it may be easier to work with a likelihood function augmented by data **Z**

$$L(\theta \mid x, z)$$

to be integrated out at a later stage of computation.

This is feasible when we can write

$$p(x \mid \theta) = \int_{Z} f(x, z \mid \theta) dz$$

for some convenient joint density function $f(x, z \mid \theta)$.

Now by the multiplication theorem for densities:

$$f(x, z \mid \theta) = h(z \mid x, \theta) p(x \mid \theta)$$

where $h(z \mid x, \theta)$ is a conditional density function for **Z** given **X** and θ .

It is the convenience of working with the joint density $f(x, z \mid \theta)$ and the conditional density $h(z \mid x, \theta)$ that drives *EM* calculations, as

$$p(x \mid \theta) = f(x, z \mid \theta) / h(z \mid x, \theta)$$

Thus, quite generally:

(*)
$$\log \mathbf{L}(\theta \mid x) = \log \mathbf{L}(\theta \mid x, z) - \log h(z \mid x, \theta).$$

Following (Dempster, Laird and Rubin, 1977), with θ_0 arbitrary, define the two functions:

(**) E-step
$$Q(\theta \mid x, \theta_0) = \int_{Z} [\log L(\theta \mid x, z)] h(z \mid x, \theta_0) dz$$
 and
$$H(\theta \mid x, \theta_0) = \int_{Z} [\log h(z \mid x, \theta_0)] h(z \mid x, \theta_0) dz.$$

Then
$$\log \mathbf{L}(\theta \mid x) = \mathbf{Q}(\theta \mid x, \theta_0) - \mathbf{H}(\theta \mid x, \theta_0).$$

Begin the iterative process by letting

$$\hat{\theta}_1 = \operatorname{argmax}_{\Theta} \boldsymbol{Q}(\theta \mid \boldsymbol{x}, \theta_0)$$

and then replacing θ_0 with $\hat{\theta}_1$ in (**), which leads to a revised (***) in the light of (*).

Thus,
$$\hat{\theta}_{j+1} = \operatorname{argmax}_{\Theta} \mathbf{Q}(\theta \mid \mathbf{x}, \hat{\theta}_{j}).$$

(DLR) *EM -jargon*: $\log L(\theta \mid x)$ is the *incomplete* log-likelihood function.

 $\log L(\theta \mid x, z)$ is the complete log-likelihood function.

and $Q(\theta \mid x, \theta_0)$ is the *expected* log-likelihood function.

Theorem: For the sequence $\hat{\theta}_{j+1} = \operatorname{argmax}_{\Theta} Q(\theta \mid x, \hat{\theta}_j), j = 1, \dots$

$$\mathbf{L}(\hat{\boldsymbol{\theta}}_{j+1} \mid \boldsymbol{x}) \geq \mathbf{L}(\hat{\boldsymbol{\theta}}_{j} \mid \boldsymbol{x})$$

with equality if and only if $Q(\hat{\theta}_{j+1} \mid x, \hat{\theta}_j) = Q(\hat{\theta}_j \mid x, \hat{\theta}_j)$.

Proof: Recall that $\log \mathbf{L}(\theta \mid x) = \mathbf{Q}(\theta \mid x, \theta_0) - \mathbf{H}(\theta \mid x, \theta_0)$.

Then on successive iterations

$$\log \mathbf{L}(\hat{\boldsymbol{\theta}}_{j+1} \mid \boldsymbol{x}) - \log \mathbf{L}(\hat{\boldsymbol{\theta}}_{j} \mid \boldsymbol{x}) =$$

$$[\boldsymbol{Q}(\hat{\boldsymbol{\theta}}_{j+1} \mid \boldsymbol{x}, \hat{\boldsymbol{\theta}}_{j}) - \boldsymbol{Q}(\hat{\boldsymbol{\theta}}_{j} \mid \boldsymbol{x}, \hat{\boldsymbol{\theta}}_{j})] - [\boldsymbol{H}(\hat{\boldsymbol{\theta}}_{j+1} \mid \boldsymbol{x}, \hat{\boldsymbol{\theta}}_{j}) - \boldsymbol{H}(\hat{\boldsymbol{\theta}}_{j} \mid \boldsymbol{x}, \hat{\boldsymbol{\theta}}_{j})].$$

Evidently $[Q(\hat{\theta}_{j+1} | x, \hat{\theta}_j) - Q(\hat{\theta}_j | x, \hat{\theta}_j)] \ge 0$, by the iteration

Thus, we must show that:

$$\int_{\mathbf{Z}} \left[\log h(z \mid x, \, \hat{\theta}_{j+1}) - \log h(z \mid x, \, \hat{\theta}_{j}) \right] h(z \mid x, \, \hat{\theta}_{j}) \, dz. \leq 0.$$
Or,
$$\int_{\mathbf{Z}} \log \left[h(z \mid x, \, \hat{\theta}_{j+1}) / h(z \mid x, \, \hat{\theta}_{j}) \right] h(z \mid x, \, \hat{\theta}_{j}) \, dz. \leq 0.$$

Recall, *K-L* information is non-negative and 0 only for identical distributions.

$$E_{h(z \mid x, \hat{\theta}_{j})} \log [h(z \mid x, \hat{\theta}_{j}) / h(z \mid x, \hat{\theta}_{j+1})] \ge 0.$$

Aside: This follows by Jensen's Inequality, twice, noting that for positive rv's 1/E[X] < E[1/X] and that $E[\log X] < \log E[X]$.

So,
$$0 \ge -\mathbb{E}_{h(z \mid x, \, \hat{\theta}_{j})} \log [h(z \mid x, \, \hat{\theta}_{j}) / h(z \mid x, \, \hat{\theta}_{j+1})]$$

$$= \mathbb{E}_{h(z \mid x, \, \hat{\theta}_{j})} -\log [h(z \mid x, \, \hat{\theta}_{j}) / h(z \mid x, \, \hat{\theta}_{j+1})]$$

$$= \mathbb{E}_{h(z \mid x, \, \hat{\theta}_{j})} \log [h(z \mid x, \, \hat{\theta}_{j+1}) / h(z \mid x, \, \hat{\theta}_{j})]$$

$$= \int_{Z} \log [h(z \mid x, \, \hat{\theta}_{j+1}) / h(z \mid x, \, \hat{\theta}_{j})] h(z \mid x, \, \hat{\theta}_{j}) dz$$

To insure that the sequence $<\hat{\theta}_i>$ converges the following result helps:

Theorem: (Boyles, 1983; Wu, 1983)

If the expected log-likelihood function $Q(\theta \mid x, \theta_0)$ is continuous in both θ and θ_0 , then all limit points of an EM sequence $\langle \hat{\theta}_j \rangle$ are *stationary points* of $\mathbf{L}(\theta \mid x)$ and $\mathbf{L}(\hat{\theta}_j \mid x)$ converges monotonically to $\mathbf{L}(\hat{\theta} \mid x)$ for some *stationary point* $\hat{\theta}$.

That is, then
$$\frac{\partial \log p(\theta \mid x)}{\partial \theta}\Big|_{\theta = \hat{\theta}} = 0.$$

EM with missing-data.

One-way layout with missing data:

Let X_{ij} denote the response variable of the jth subject among those receiving treatment dose-i.

Statistical model: Assume $X_{ij} \sim N(\mu_i, \sigma^2)$; $i = 1, ..., k; j = 1, ..., n_i$.

The μ_i are the parameters of interest: average effects of a given treatment dose.

Let $\overline{\mu}$ be an average of average dose effects so that: $\mu_i = \overline{\mu} + \alpha_i$, where $\sum_i \alpha_i = 0$.

That is $\overline{\mu} = \sum_i \mu_i / k$ and $\alpha_i = \mu_i - \overline{\mu}$.

Note well the relation to the *k*-MoG problem!

The least squares estimator of μ_i is (evidently) $\bar{x}_i = (1/n_i) \sum_{j=1}^{n_i} x_{ij}$.

And the minimum variance (unbiased) estimators for the other parameters are:

$$\hat{\mu} = (1/k)\sum_{i} \overline{x}_{i}$$
 and $\hat{\alpha}_{i} = \overline{x}_{i} - \hat{\mu}$

However, when the sample sizes (n_i) are not all equal, the vectors of the coefficients of the X_{ij} in the $\hat{\alpha}_i$ are not orthogonal to the respective vector of coefficients of $\hat{\mu}$. Thus, $\hat{\mu}$ is not independent of the $\hat{\alpha}_i$.

Suppose we have 4 treatment groups, with outcomes

TREATMENTS

T1	T2	T3	T4
x_{11}	x_{21}	x_{31}	x_{41}
x_{12}	x_{22}	x_{32}	x_{42}
z_1	x_{23}	z_3	x_{43}

Observe X_{ij} and use the **Z**s as the *dummy* missing values to create a balanced sample.

Thus, $X_{ij} \sim N(\overline{\mu} + \alpha_i, \sigma^2)$ and our dimensional parameter $\theta = (\overline{\mu}, \sigma^2, \alpha_1, \alpha_2, \alpha_3, \alpha_4)$.

The *incomplete* likelihood is:

$$\mathbf{L}(\theta \mid \mathbf{x}) = \mathbf{p}(\mathbf{x} \mid \theta) = \sqrt{(1/2\pi\sigma^2)^{10}} \exp\left[\sum_{i=1}^{4} \sum_{j=1}^{n_i} (x_{ij} - \overline{\mu} - \alpha_i)^2 / \sigma^2\right]$$

The *complete* likelihood is:

$$\mathbf{L}(\theta \mid \mathbf{x}, \mathbf{z}) = f(\mathbf{x}, \mathbf{z} \mid \theta) = \sqrt{(1/2\pi\sigma^2)^{12} \exp[\sum_{i=1}^{4} \sum_{j=1}^{3} (x_{ij} - \overline{\mu} - \alpha_i)^2 / \sigma^2]}$$

where, of course, $x_{13}=z_1$ and $x_{33}=z_3$.

Now, run the *EM* algorithm with the augmented data (x,z) and simplified likelihood (based on a balanced sample) in order to find the MLE for $\mathbf{L}(\theta, x)$.