Association vs. Categorization

Goal: Given unlabeled image, recognize objects inside the image by associating generated segments with previously seen object exemplars (see last Figure)

Segment

Exemplar representation

Background: Exemplar Theory from Psychology (Medin & Schaffer 1978, Nosofsky 1986, Krushke 1992) states that categories are represented in terms of remembered objects. When looking at a new object, similarity between all exemplars is computed.

13,905 objects from **LabelMe** w/ 171 unique labels

Similarity Occurs at Different Levels

- Similar Shape
- Similar Texture
- Similar Color

Idea: Represent each exemplar with features that encode shape, color, texture, and absolute position

Measuring Object Similarity

Approach: Measure L2 distance between corresponding features to obtain **Elementary Distances**, then combine them using positive weights (a.k.a distance function)

\[D_{i}(z) = w_{i} \cdot d_{z,i} \]

Distance Function Learning

Goal: Learn a different distance function per-exemplar; distance functions are learned independently

Distance function \(\Rightarrow \) linear decision boundary in 14-D “distance” space

Visualizing Distance Functions

Segment Labeling Task

Evaluate: Given perfect segment, determine object identity with single nearest neighbor

Recognition in Real Images

Problem: Objects are never presented one at a time, they are embedded inside images! If we only knew which pixels belonged to separate objects...

Multiple Segments

Approach: Generate multiple segmentations per image (Hoiem 2005, Russell 2006) and also consider pairs/triplets of contiguous segments (Malisiewicz 2007)

Our Contributions

1. Posing Recognition as Association
2. Learning Object Similarity Per Exemplar
3. Recognition-Based Object Segmentation

Toward Image Parsing

Greedy add most confident association while removing inconsistent (OS>5) associations

Results

Test-set: 159 Outdoor Images from single folder of LabelMe

Evaluate: Recognition-Based Object Segmentation; each generated object “hypothesis” is a bottom-up segment and its list of associating exemplars

Idea: Association confidence score favors more associations and smaller distances; we vary this threshold to look at precision-recall

\[s(S, E) = 1 - \sum_{i \in E} d_{i}(S) \]

Correct if OS>5 and labels match

Our Contributions

1. Posing Recognition as Association
2. Learning Object Similarity Per Exemplar
3. Recognition-Based Object Segmentation

Toward Image Parsing

Greedy add most confident association while removing inconsistent (OS>5) associations