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Abstract

Dialogue agents are often designed with the tacit as-
sumption that at any one time, there is but one agent and
one human, and that their communication channel is ex-
clusive. We are interested in examining situations in
which multiple heterogeneous dialogue agents need to
interact with a human interlocutor, and where the com-
munication channel becomes necessarily shared. To this
end we have constructed a multi-agent dialogue test-bed
on which to study dialogue coordination issues in multi-
robot scenarios.

Research Goals
Our goals are to:

• Understand the skills needed for communication in a
human-robot team. Aspects of such a language include
the mechanisms for initiating conversations with yet un-
seen robots, understanding their capabilities, sharing and
negotiating task allocation among robots, et cetera. Hu-
mans have little difficulty communicating such informa-
tion among themselves; we would like to computationally
reproduce these skills.

• Develop languages for robot navigation in novel envi-
ronments. Novel environments require on-the-fly map
building on the part of the robot. The robot must then
communicate it’s map to the human in terms that the hu-
man can understand. The human, in turn, needs to com-
municate goals that reference the robot’s map. Rapid con-
verge on mutually understood descriptions and labels is a
necessary aspect of the problem.

• Understand how novel objects, locations, and tasks
come to be described in language.Robots and humans
will need to mutually ground their perceptions to effec-
tively communicate about novel objects, locations, and
tasks. Current speech understanding technologies do not
easily support such interaction.

The Treasure–Hunt Scenario
We have selected a multi–robot–assisted treasure–hunt do-
main to pursue research towards these goals. This scenario is
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designed with some complications intended to provide real-
world plausibility, and some constraints intended to make
the problem tractable.

A “treasure–hunt” is a domain in which one is tasked to
search a space for one or more objects of interest, and to
bring those objects back to some specified location. It is
a domain that has wide applicability in terms of real-world
scenarios, encompassing warehouse retrieval, search–and–
rescue, “broken arrow” situations, biological sample collec-
tion, et cetera.

Robots have a great potential to contribute to treasure–
hunt domains in three ways:

• Robots are sometimes able to traverse areas that are dif-
ficult or dangerous for humans to explore. Space explo-
ration and search–and–rescue operations obviously have
a dramatically difficult and dangerous search space, but
even mundane scenarios such as collecting golf-balls
from the woods or oysters from a bay present spaces that
provide difficulty for humans.

• Robots are able to explore without rest.

• Multiple parties of robots may be able to explore spaces
quite rapidly.

Effectively conducting a treasure-hunt involves the mas-
tery of several skills:

• Identifying and prioritizing search spaces.

• Moving or deploying sensors to cover search spaces.

• Analysing sensor data to classify objects or spaces as in-
teresting or not.

• Capturing and transporting objects of interest.

Where robots are employed in treasure–hunts, we expect
that human–robot communication will be an important as-
pect of the treasure–hunt. There are three reasons:

• We expect that in many treasure–hunt domains, robots
will posses some but not not all of these skills. A robot
that cannot identify and prioritize search spaces will need
to be told where to look and will need to be able to in-
dicate when it has finished searching in a space. A robot
that cannot capture or transport objects will need to lead
people (or other robots) toward the object of interest.
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vision, is one of the most problematic aspects of current
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need to confirm this object with a human through some
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• While robots may posess one of these treasure–hunt skills,
they might not be fully capable. Sensing, and especially
vision, is one of the most problematic aspects of today’s
robots. We expect that in many situations where robots
may be able to identify an object of interest, they may
need to confirm this object with a human through some
kind of communication.

• While robots may posess one of these treasure–hunt skills,
they might not be fully capable. Sensing, and especially
vision, is one of the most problematic aspects of today’s
robots. We expect that in many situations where robots
may be able to identify an object of interest, they may
need to confirm this object with a human through some
kind of communication.

• While robots may posess one of these treasure–hunt skills,
they might not be fully capable. Sensing, and especially
vision, is one of the most problematic aspects of today’s
robots. We expect that in many situations where robots
may be able to identify an object of interest, they may
need to confirm this object with a human through some
kind of communication.

• Even in cases where robots are fully capable in all of these
skills, humans might still participate with robots as regu-
lar partners. Coordination is an inherent prerequisite for
any useful multi-party search.

Although many communication modalities could be ex-
plored to exchange information between human and robot
partners in a treasure–hunt scenario, we have focused on
spoken language interfaces. Spoken language is a natural
modality for humans and is the one most likely to be useful
in the widest array of treasure–hunt situations. (For exam-
ple, where mobilityt is necessary or where the environment
is not illuminated.)

Problems with the Communication Channel
Multiple spoken dialogue agents will face some of the same
main communication issues that have been active areas of
research in the domain of computer networks, namely the
issues of message identification, message addressing, chan-
nel contention, and session identification.

Message Identification With multiple spoken dialogue
agents in an environment, there is the unintended poten-
tial (and sometimes the need) for dialogue agents to speak
to each other. Dialogue agents will undoubtedly misbehave
unless they can identify who is speaking. Speaker identifica-
tion has had some success recently and may be employed to
address this issue, but serious issues remain to be resolved,
such as its scalability.

Message Addressing When an environment contains
more than one spoken dialogue agent, each agent must re-
solve who a particular utterance is addressed to. Evidence
from acoustic, linguistic, and pragmatic sources of knowl-
edge, combined with additional information from other
communication modalities such as gesture, gaze, and touch
have been used to perform address resolution. Systems that
perform such resolution however often make use of deep do-
main knowledge, or make the simplifying assumption that
other dialogue agents in the environment have domains that
are sufficiently different from its own.

Channel Contention With multiple spoken dialogue
agents in an environment, there is the potential that they will
speak simultaneously, or that they will interrupt each other.
Methods currently employed to resolve these contentions of-
ten consist simply of waiting until nobody else is speaking
for a second or so, and then to begin speaking until some-
one interrupts. In environments with one dialogue agent and
one human interlocutor, this algorithm is usually sufficient,
but studies of larger human group dynamics show that many
important subtleties are missing. As well, high-priority mes-
sages must be able to interrupt on-going communications.
Agents who do not indicate their desire to speak, or who do
not introduce themselves before they speak are likely to not
be understood by their listeners, or, at the very minimum,
such agents are likely to add to the cognitive load of their
listeners.

Sessions Identification Although communication be-
tween humans and agents is improved when those agents
introduce themselves before speaking, they cannot introduce
themselves before every utterance. A concept of a commu-
nication session must be developed.

An Experimental Multiple Agent Dialogue
System

We have engaged in a systematic approach to finding effi-
cient solutions through empirical experiments for the four
communication issues identified above. In particular, we
have developed a multi–agent dialogue (MAD) system,
which can accommodate multiple dialogue agents in a single
experimental framework (see Figure 1). The system works
both with real robots adapted for the Carmen robot platform
(Montemerlo, Roy, & Thrun, 2002), and in a simulated Car-
men environment.

The front-end architecture is an instance of the Galaxy-
II spoken dialogue system reference architecture (Seneff et
al., 1998). We use Sphinx-II (Huang et al., 1993) for auto-
matic speech recognition, Phoenix (Ward, 1994) for context-
free grammar parsing, Helios (Bohus & Rudnicky, 2002)
for confidence annotation, Ravenclaw (Bohus & Rudnicky,
2003) for dialogue management, ROSETTA (Oh & Rud-
nicky, 2000) for natural language generation, and Festival
(Black, Clark, Richmond, & King, 2004) for text-to-speech
rendering. The robots, named Bashful and Clyde (ghosts
from Namco Ltd.’s Pac-Man R©), each have their own Raven-
claw dialogue system. Ravenclaw is a generalized tree-
based dialogue management framework that provides the
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Figure 1: Multiple Agent Dialogue System

designer of a dialogue management system with mecha-
nisms through which to specify dialogue tasks. Essentially
a designer specifies the various actions that must take place
in the system (e.g. the action to be taken when the user asks
a robot where it is) and the flow of the dialogue.

The back-end consists of programs that use the Carmen
set of libraries to communicate with the robots. The libraries
currently utilized in our project include those that allow the
user to send messages to the robots to get them to move a
specified distance in a certain direction, and those that allow
the user to set a goal position and then allow the robot to
plan a route to that position.

User Studies
Goals
We have used the system described above to conduct a pre-
liminary set of pilot studies. We have two goals in perform-
ing these studies. The first goal is to establish the usability
of our system, that is, we ask the question: Can this system
be used by a human being to successfully interact with the
robots? A large system like the one above can fail to be us-
able for a variety of reasons: the speech recognition may be
too error prone, the speech synthesis may be unintelligible,
the pace of the interaction too slow, the robot navigation li-
braries too unreliable, etc. Our experimentation is designed
to show that our system can indeed be used to interact nat-
urally with the robots. The second goal of our studies is to
experiment with a very simple mechanism for dealing with
multi-agent communication issues. Specifically, we tested
a simple strategy for disambiguating the intended addressee
of each user utterance.

Addressee Disambiguation Algorithm
We have found that a simple algorithm for disambiguating
the intended addressee of each user utterance. It can be de-

scribed as follows:

• If an utterance starts with the name of a robot, then that
is the robot this utterance is addressed to. We call this
form of addressing explicit addressing, and the robot be-
ing addressed the explicit addressee. For example, in the
utterance Bashful, where are you?, the form of addressing
is explicit, and Bashful is the explicit addressee.

• If an utterance does not start with the name of a robot,
then the last explicitly addressed robot is being addressed
in this utterance. We call this form of addressing implicit
addressing, and the robot being addressed the implicit ad-
dressee. For example, if the utterance above is followed
by the utterance Go ten meters north, the form of address-
ing is implicit, and Bashful is the implicit addressee.

Task Description
In our experiment, users were required to navigate the two
robots (Bashful and Clyde) through a maze of corridors us-
ing only the speech channel to communicate with the robots.
The users were not allowed to see the robots and therefore
had to rely on spoken dialogue to query the robots regarding
their positions in the maze at all points of time.

Specifically, the task involved first finding out the initial
positions of the two robots in the maze, and then navigating
them to the point in the maze marked with an X. Figure 2
shows a map of the maze used. Participants were provided
with a hard–copy of this map (without the initial locations
of the robots) and were asked to mark on it the positions
they believed the robots were at initially. Users were given
a maximum of 30 minutes to finish the task, and were al-
lowed to give up earlier if they wished. Note that users were
not informed of the addressing mechanism described above
since one of the aims of this experiment is to determine if
the addressing mechanism can be intuited by the users and,
in general, if it makes for naturalistic dialogue.



Figure 2: Maze Map

Grammar for User Utterances
We used the following simple grammar to parse the user’s
utterances:

HumanReportCommand →
([RobotName]? report) | ([RobotName])

RobotName could be either Bashful or Clyde. The
user could either utter “Bashful” or “Bashful report” to
address Bashful explicitly, or just utter “report” to implicitly
address the last explicitly addressed robot.

HumanLocationQuery →
([RobotName]? where are you)

This command could be used to query (either explic-
itly or implicitly) a robot’s location.

MoveVector →
([RobotName]? MOVE [Direction]?
[Distance]?)

This command could be used to direct a robot to move a
certain distance along a certain direction. We restricted
distance to be any integer distance from 1 to 20 meters,
and direction to be either north, south, east or west.
Although utterances that did not contain both a direction
and a distance were parsed by the grammar, both pieces of
information were needed to perform the move. Hence in a
situation where the user provided only one or neither of the
pieces of information, the dialogue manager would ask the
user to supply the missing information.

Although users were not presented with the above gram-
mar, they were informed that they could ask “Where are
you?” and that they could instruct the robot to move be-
tween 1 and 20 meters in one of the four directions.

Robot Responses to User Utterances

The Ravenclaw dialog system used in this platform requires
the designer to specify the response of the system for every
parse–able user utterance. Responses may include speech
output, back–end actions taken by the system, or a combi-
nation of the two. Following is a description of the system
responses for each of the three families of user utterances
described above.

Response to HumanReportCommand: Robots responded
to this family of utterances by saying Bashful here, or Clyde
reporting, etc. This dialog helped the user initiate a commu-
nication channel with a robot.

Response to HumanLocationQuery: Robots responded to
this family of utterances by specifying where in the maze
they were. Each part of the map a robot could be in was
pre–assigned a name as shown in figure 2. The system’s
back–end mapped the robot’s absolute (x, y) coordinates ob-
tained from the CARMEN robot API to the corresponding
area name. The system also computed the approximate dis-
tance from the closest end of the area. A typical reply to a
HumanLocationQuery would be I am now in the fifty three
hundred corridor, about five meters from the east end.

Response to MoveVector: The addressed robot responded
to this family of utterances by first making sure it had a value
for both the distance and the direction components. If one
or both values were missing, the system engaged the user in
a follow–up dialog by asking, for example, How far do you
want me to go east? or In which direction do you want me to
go five meters? Once both values were provided, the system
used the robot’s current (x, y) coordinates to compute the
destination position, and then used CARMEN’s autonomous
navigation API to move the robot to the new position. At
the same time, the robot would inform the user that it was
following the command by uttering, for example, Going five
meters toward the north.



Other Details
For the current study, we used simulated robots in a sim-
ulated environment. These robots were initially placed at
the positions shown in Figure 2 for each participant in this
user study. Participants used a single head–mounted close–
talking microphone to speak to both robots, and the speech
from both the robots was routed through a single set of
speakers. To help the user to distinguish between the speech
from the two robots, we used a male voice to synthesize the
speech from Bashful, and a female voice to synthesize the
voice from Clyde.

Results

Table 1: Pilot–study Results

Time Addressing
Part. Task Taken Mechanisms

# Success (mins) Used
1 Both 28 Only explicit
2 One 21 Both forms
3 Both 28 Both forms
4 None 18 Both forms
5 One 20 Only explicit
6 One 12 Only explicit

We ran the experiment with 6 different participants. Every
participant could correctly identify the approximate initial
positions of the robots on the map. We defined task suc-
cess as follows: A participant was completely successful
(denoted as “both”), partially successful (“one”) and com-
pletely unsuccessful (“none”) if he or she managed to nav-
igate both, one or none of the robots to their destinations
respectively. We also measured the time taken till the end of
the experiment. Table 1 shows task success and time taken
for each of the 6 participants.

During the experiment we also noted what addressing
mechanisms, explicit or implicit, the participant was using
in his or her utterances. Three participants used only the ex-
plicit form of addressing; that is, each of their utterances was
prefaced with the name of the robot. When asked at the end
of the experiment whether they understood that they could
engage in implicit addressing and simply chose not to, all
three replied that they did not realize that implicit address-
ing was possible. The remaining three participants used both
forms of addressing.

We also noted the strategy used by each participant in
moving the robots to their final destinations. Four partici-
pants elected to simultaneously move both robots, convers-
ing with one robot after giving the other robot a move com-
mand, for example. The two remaining participants chose
to complete moving one robot to its final destination before
commencing on the other robot.

Analysis and Lessons Learned
We analyzed the participants’ utterances, and, for each par-
ticipant, counted the number of utterances that the system
recognized and processed without any errors, the number of

Table 2: Utterance Analysis

# utts w/o # utts with # utts
Part. recognition recognition outside

# errors errors grammar
1 ? ? ?
2 52 (77.6%) 9 (13.4%) 6 (9.0%)
3 88 (91.7%) 6 (6.2%) 2 (2.1%)
4 52 (70.3%) 18 (24.3%) 4 (5.4%)
5 103 (76.3%) 31 (23.0%) 1 (0.7%)
6 37 (43.0%) 47 (54.7%) 2 (2.3%)

utterances that had at least one error in them, and the num-
ber of utterances that were outside the system’s grammar de-
scribed in section . Utterance errors included either speech
recognition errors (such as misrecognizing the word east as
west) or dialog processing errors (such as ignoring a Human-
LocationQuery command while the robot was in the process
of engaging the user in confirmation dialog regarding a pre-
vious MoveVector command). Table 2 shows the results of
this analysis. Corresponding participant numbers in tables
1 and 2 refer to the same participants. Due to a technical
problem we lost the utterances of participant #1.

Note from table 2 that more than 70% utterances for 4
subjects had no errors at all, and that less than 10% utter-
ances for each subject were outside the system’s grammar.
These numbers result from the fact that the system used a
very constrained grammar, making the speech recognizer’s
task relatively easy. The number of recognition errors seem
to correspond somewhat with task success. Thus, the par-
ticipant who managed to move both robots to their destina-
tion had the largest percentage of correctly recognized ut-
terances, while the participant who had the lowest success
had the second lowest percentage. Due to the small scale
of this pilot experiment however, larger experiments may be
needed to evaluate such hypotheses.

When asked to rate the interaction after the experiment,
every participant replied that he or she found both the di-
alogue and the pace of the interaction naturalistic. These
reports established that our implemented system can be
used successfully to interact with robots. Furthermore, the
fact that every participant understood the explicit addressing
mechanism and half the participants understood the implicit
mechanism implies that our simple addressee disambigua-
tion algorithm is easy to understand and makes for natural
dialogue.

Participants were also asked to provide feedback on any
aspect of the experiment. Every participant felt that the
robots do not always provide as much feedback as they
could. For example in the current design when a robot is
asked to go further than it can, they do not report this inabil-
ity. Participants also expressed satisfaction at having two
robots to work with instead of one. They felt that the pace
of the interaction would have been too slow if there was only
one robot, since robots take a long time to move from one
point to another. Participants also felt that the set of com-
mands that the user can issue was limiting. When the robot



was stuck against an unknown obstruction, the participants
felt that more exploratory commands such as What can you
see? would have been very useful to make progress toward
the goal. Some participants felt that descriptions of the lo-
cations as spoken by the robots were sometimes unintuitive.
For example, when the robot said I am in front of the eleva-
tors about 3 meters from the east end, the robot was referring
to the east end of “in front of the elevators”. Since “in front
of the elevators” is not normally the type of area with clear
boundaries, the subject naturally thought that “east end” was
the east end of the map. Further research is necessary to de-
termine how to describe the current location of a robot such
that the description is maximally intuitive from a human’s
point of view.

Conclusions
Heterogeneous interface agents cannot act in concert,
achieving a globally optimal interface strategy by under-
standing or predicting each others’ behavior. Some research
groups have taken the approach that constructs an aggre-
gated spoken dialogue front-end for a community of under–
specified agents. The Speech Graffiti Personal Universal
Controller (Harris, 2004), which was designed explicitly
with multi-agent control in mind, is such an aggregating sys-
tem. This system severely limits the expressive power of
natural language, however, and any aggregating spoken di-
alogue front-end will potentially sacrifice the integration of
domain knowledge into the dialogue.

In order to directly address heterogeneous multi-agent
communication problems, we have established an under-
standing of the issues and a platform for experimentation
in that domain. The platform, with a few simple strategies,
has yielded interesting lessons and results from a small pilot
study.

Future Directions
We seek strategies that support the protocol-minimum so-
lutions. We examine those sets of solutions to these com-
munication problems that would place the smallest burden
on some new robot. For example, one solution to speak-
ing in turn would be to monitor the acoustic channel for
speech, and wait for an absence of speech before speaking
oneself. Another approach would be to assign one robot to
be the server, and that server itself would manage the speak-
ing turns as if the robots had monitored the speech channel
for each others’ acoustic utterances. Both solutions have an
identical performance, but the first solution required each
robot to monitor the acoustic channel while the second solu-
tion requires no monitoring of the acoustic channel. Because
the second approach assumes less about the robots’ capabil-
ities, it may be preferred as a protocol.

We believe it is possible for systems to adhere to proto-
cols when these are lightweight, orthogonal and naı̈ve of the
research topics, and the advantages are clear. Computer net-
work protocols are one such example. Computer network
protocols such as the Ethernet protocol exist in environments
of heterogeneous computer systems, are lightweight proto-
cols, are orthogonal and not committed to a particular ap-

proach to communication. The advantages of having such
protocols are clear. The analogy can be carried further when
one realizes that computer network protocols also address
the four problem areas that we have identified for environ-
ments of multiple dialogue agents: message identification,
message addressing, channel contention, and session identi-
fication.
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