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Abstract

We present a learning algorithm for non-parametric
hidden Markov models with continuous state and
observation spaces. All necessary probability den-
sities are approximated using samples, along with
density trees generated from such samples. A
Monte Carlo version of Baum-Welch (EM) is em-
ployed to learn models from data. Regularization
during learning is achieved using an exponential
shrinking technique. The shrinkage factor, which
determines the effective capacity of the learning al-
gorithm, is annealed down over multiple iterations
of Baum-Welch, and early stopping is applied to
select the right model. Once trained, Monte Carlo
HMMs can be run in an any-time fashion. We prove
that under mild assumptions, Monte Carlo Hidden
Markov Models converge to a local maximum in
likelihood space, just like conventional HMMs. In
addition, we provide empirical results obtained in a
gesture recognition domain.

1 Introduction

Hidden Markov models (HMMs) [27] have been applied
successfully to a large range of temporal signal processing
problems, for tasks such as modeling, filtering, classifica-
tion and prediction of partially observable time sequences,
stochastic environments. Hidden Markov models are often
the method of choice in areas such as speech recognition
[27, 33], natural language processing [3], robotics [21, 29],
biological sequence analysis [11, 16], and time series anal-
ysis [10].

We present a new hidden Markov model, calledMonte-
Carlo Hidden Markov Models (MCHMMs). MCHMMs
use samples and non-parametric density trees to repre-
sent probability distributions. This makes it possible to

learn non-parametric hidden Markov models with contin-
uous state and observation spaces. Since continuous state
spaces are sufficiently rich to overfit any data set, our ap-
proach uses shrinkage as a mechanism for regularization.
The shrinkage factor, which determines the effective capac-
ity of the HMM, is annealed down over multiple iterations
of EM, and early stopping is applied for model selection.

MCHMMs possess the following four characteristics,
which distinguishes them from the traditional HMM ap-
proach [27]:

1. Real-valued spaces.Both the state space and the ob-
servation space of MCHMMs are continuous. This is
important in domains where the true state and obser-
vation space of the environment is continuous. The
importance of continuous-valued spaces has been rec-
ognized by several authors, which have proposed real-
valued extensions using parametric models such as
Gaussians and neural networks [2, 8, 9, 13, 17].

2. Non-parametric. Most existing HMM models rely on
parametric densities, defined by a small set of param-
eters (discrete distributions included). This is clearly
appropriate when one has reason to believe that the
parametric model is correct. In practice, however, one
might lack such strong prior knowledge. MCHMMs
learn non-parametric models of partially observable
stochastic systems. Such non-parametric methods can
fit much larger sets of functions, hence provide addi-
tional flexibility.

3. Built-in complexity control. MCHMMs make it pos-
sible to control the complexity of the state space during
learning. In contrast, the complexity of discrete HMMs
is determined by the number of states, which has to be
determined in advance, before training. Multiple train-
ing runs may thus be necessary to determine the right
number of states.

4. Resource adaptive.Finally, after training MCHMMs



can be used in anany-time fashion. Any-time al-
gorithms can generate an estimate atany time; the
more time available, however, the better the answer
[4, 34]. The any-time property is directly inherited
from sampling-based methods, as the number of sam-
ples can be controlled on-line.

This paper presents MCHMMs. It describes a sample-
based learning algorithm that extends Baum-Welch to
MCHMMs. We also give theoretical results that prove
(with probability one) convergence of the learning algo-
rithm to a local maximum in likelihood space. This re-
sult, whose proof is only outlined here (see [32] for all
proofs), extends the well-known convergence result for dis-
crete HMMs to the real-valued, non-parametric case. We
also present empirical results obtained in a gesture recog-
nition domain, which seek to provide the first evidence of
the usefulness of MCHMMs in practice.

2 Generalized Hidden Markov Models

This section introduces the necessary notation to extend
HMMs to continuous state and observation spaces. It fol-
lows the excellent deposition of [27], with continuous den-
sity replacing discrete distributions throughout. For con-
vergence, we assume all event spaces and random variables
(e.g., state, observations) are measurable. Unless other-
wise specified, all probability density functions are Lips-
chitz (implying continuity) and non-zero over some com-
pact interval.

A generalized HMM(in short: GHMM) is a partially
observable, time-invariant Markov chain with continuous
state and observation spaces and discrete time. At each
time t � 1, the HMM’s state is denotedxt. Initially, at
time t = 1, the state of the HMM is selected randomly
according to the density�. State transitions are governed
by a conditional probability density, denoted�(x0 j x) and
calledstate transition density.

In HMMs (and thus in GHMMs), the state cannot be ob-
served directly. Instead, only a probabilistic projection of
the state is observable. Letbt denote a measurable ran-
dom variable that models the observation at timet. Ob-
servations are generated according to a probability density
conditioned on the state of the HMM (called theobserva-
tion density), denoted�(b j x) . A generalized HMM is
uniquely defined trough three densities:� = f�; �; �g.
Putting computational considerations aside for the mo-
ment, knowledge of� is sufficient to tackle a variety of
interesting practical problems, such as computing distri-
butions over states and observations at arbitrary points in
time, generating representative example trajectories in state
and observation space, determining the likelihood of ex-

ample trajectories under an HMM, and classifying data se-
quences generated by mixtures of labeled HMMs. Algo-
rithms for these problems are described in detail in [27];
they are easily transferred from the finite to the continuous
case.

In practice, the densities� are often unknown and have to
be estimated from data. The data, denotedd, is a sequence
of observations1, denoted

d = fO1; O2; : : : ; OTg: (1)

HereOt denotes the observation at timet. The total number
of observations ind is T .

The well-known Baum-Welch algorithm [1, 20, 27] pro-
vides a computationally efficient and elegant approach for
learning�, �, and�. Baum-Welch begins with an initial
model, denoted�(0). It iterates two steps, an E-step and an
M-step (see also [6]). In then-th E-step, distributions for
the various state variablesxt are computed under a fixed
model�(n) (with n � 0). Then-th M-step uses these dis-
tributions to derive a new, improved model�(n+1).

In the E-step, distributions are computed for the state vari-
ablesxt conditioned on a fixed model� and the datad.
Recall from [27] that in the discrete case,

�
(n)
t (x) = Pr(xt = x j O1; : : : ; Ot; �

(n)) (2)

�
(n)
t (x) = Pr(Ot+1; : : : ; OT j xt = x; �(n)) (3)



(n)
t (x) = Pr(xt = x j d; �(n)) (4)

�
(n)
t (x; x0) = Pr(xt = x; xt+1 = x0 j d; �(n)) (5)

The continuous case is analogous; however, here� and�
are densities (and thus may be larger than 1). Following
[27], these densities are computed incrementally;� is com-
puted forward in time, and� backwards in time (for which
reason this algorithm is often referred to as theforward-
backward algorithm). Initially,

�
(n)
0 (x) = �(n)(x) and �

(n)
T (x) = 1 (6)

and for all other�t and�t:

�
(n)
t (x) =

Z
�
(n)
t�1(x

0) �(n)(x j x0) �(n)(Ot j x) dx0 (7)

�
(n)
t (x) =

Z
�
(n)
t+1(x

0) �(n)(x0 j x) �(n)(Ot+1 j x0) dx0(8)

Bayes rule governs the conditional density over the state
space at timet:



(n)
t (x) =

�
(n)
t (x) �

(n)
t (x)Z

�
(n)
t (x0) �

(n)
t (x0) dx0

(9)

1For simplicity of the presentation, we only present the case
in which the data consist of a single sequence. The extension
to multiple sequences is straightforward but requires additional
notation.



Similarly, the state transition densities�(n) are computed
as

�
(n)
t (x; x0) = (10)

�
(n)
t (x) �(n)(x0 j x) �(n)(Ot+1 j x0) �(n)t+1(x

0)Z Z
�
(n)
t (�x) �(n)(�x0 j �x) �(n)(Ot+1 j �x0) �(n)t+1(�x

0) d�x d�x0

This computation is completely analogous to the finite
case, replacing conditional probabilities by conditional
densities.

The M-step uses
(n)t (x) and�(n)t (x; x0) to compute a new
model�(n+1), using the maximum likelihood estimator:

�(n+1)(x) = 

(n)
0 (x) (11)

�(n+1)(x0 j x) =

PT�1
t=1 �

(n)
t (x; x0)PT�1

t=1 

(n)
t (x)

(12)

�(n+1)(b j x) =

PT

t=1 IOt=b 

(n)
t (x)PT

t=1 

(n)
t (x)

(13)

HereIcond denotes an indicator variable that is 1 if the con-
dition condis true, and 0 otherwise. A straightforward re-
sult is the convergence of GHMMs.

Theorem 1. (GHMM Convergence Theorem)Under the
assumptions above, the GHMM learning algorithm does
not decrease the likelihood of the observation sequence
with probability 1. With probability 1, it does not improve
the likelihood if, and only if a local maximum or a saddle
point has been reached.

The full proof can be found in [32]. Our proof is a direct
extension of a result by Juang [13], who has shown conver-
gence to local maxima for HMMs with a finite number of
states and continuous observations, where the observation
densities are a mixture of log concave or ellipsoidal sym-
metrical densities. The convergence of GHMMs follows
from the fact that any continuous and Lipschitz density can
be approximated by mixtures of Gaussians, hence by a se-
quence of HMMs that meet Juang’s assumptions.

3 Sampling and Density Trees

3.1 Sampling

MCHMMs use samples to approximate all densities (mod-
els, posteriors, conditional and joint densities). Sample sets
are (finite) sets of values, annotated by numerical proba-
bilities [18, 23]. More specifically, letf be a probability
density function, and letN denote a positive number (the
cardinality of a sample set). Asample setis a set

X = fhx1; px1i : : : ; hxN ; pxN ig (14)

where for alln with 1 � n � N : xn 2 dom(f), pxn 2
[0; 1], and

PN

n=1 pxn = 1. Sample sets can be thought
of as discrete probability distributions over the event space
fx1; : : : ; xNg, defined through thep-values [23, 26] For
reasons that will become clear below,p-values are often
referred to asimportance factors[28].

A sampling methodis a method that approximatesf
through samples. We will call a sampling methodasymp-
totically consistentif for N ! 1, X converges tof with
probability 1 when integrated over the system of half-open
Borel sets:

lim
N!1

X
hx;pxi2X

Ix0�x<x1 px =

Z x1

x0

f(x) dx (15)

Sampling can be applied to approximate any probability
densityf [31].

We will distinguish two methods for sampling, both of
which are asymptotically consistent:

1. Likelihood-weighted sampling. Whenf is available
explicitly, we will directly sample fromf (e.g., using
rejection sampling [31]). In likelihood-weighted sam-
pling, all p-values are1=N . The concentration of the
resulting sample set will be proportional to the density
f , i.e., the larger the measure off over a regionA, the
more samples will be inA (in expectation).

2. Importance sampling. In some cases, however,
likelihood-weighted sampling cannot be applied. This
is the case, for example, when approximating�

(n)
t (x),

which is a recursive product of convolved densities and
other densities conditioned on observations (c.f., (7)).
Instead of sampling directly fromf , importance sam-
pling [28] samples from a different distributiong that
has the propertyf(x) > 0 =) g(x) > 0. The dif-
ference betweenf andg is accounted by thep-values,
which are defined as follows:

�pxn = f(xn)=g(xn) (16)

pxn =
�pxnPN

n=1 �pxn
(17)

Importance sampling [28] has been studied extensively
in the statistics literature (see for example [31]). The
reader may notice that likelihood-weighted sampling is
a special case of importance sampling (withf � g).

Figure 1a shows a sample set drawn by likelihood-weighted
sampling from a distribution that resembles the shape of a
sine wave. All probabilitiespx of the sample set shown
there are the same, and the samples are concentrated in a
small region of the<2.
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Figure 1: (a) Data set (b) partitioned by a density tree. (c) Density tree with shrinkage for complexity control. Each
branch cuts the area under a node into two equally-sized, rectangular halves, shown in grey. The density ofeachnode is
an exponentially weighted mixture of densities of the nodes along the path to the leaf. The�-terms describe the mixture
coefficients for this example.

Both sampling methods can equally be applied tosample
from a sample set(often referred to asresampling[28]).
Let X be a sample set. Likelihood-weighted sampling
draws samples fromX according to the (discrete) proba-
bility distribution induced by theirpx-values. Each sample
is then assigned the same probability (1=N ). Importance
sampling draws samplesx fromX according to some other
densityg, and assignspx

g(x) to the new sample’sp-value.
Sampling from sample sets plays an important role in the
Monte Carlo HMM algorithm described below.

A straightforward but important result is the following:

Theorem 2. Likelihood-weighted sampling converges (in
the sense of (15) with probability one tof asN �! 1,
at a rate of1=

p
N . Importance sampling also converges

with probability one tof at the same asymptotic rate if
f(x)
g(x) <1.

The proof, which is given in detail for likelihood-weighted
sampling in [32], follows directly from a result in [31],
pg. 33. For the importance sampler, the variance of the
error depends on the “mismatch” betweenf andg.

3.2 Particle Filters

Armed with the definition of sample sets and procedures for
generating them, we can now devise a sample-based algo-
rithm for tracking the state of a dynamical system:particle
filters [26]. Variants of this algorithm, which have become
popular in recent years, can be found in the literature under

names such assurvival of the fittest[14], condensation al-
gorithm [12], or, in the context of mobile robotics,Monte
Carlo localization[5, 7].

Particle filters assume that the model� is known.
They approximate the distributions of�t using sam-
pling/importance resampling:

1. Initialization: GenerateN samples of� (e.g., using
likelihood-weighted sampling).

2. For eacht = 1; : : : do:

(a) GenerateN sampleshx0; px0i from the sample set
representing�t�1 using likelihood-weighted sam-
pling.

(b) For each samplehx0; px0i, generate a randomx
from �(x j x0) using likelihood-weighted sam-
pling.

(c) Setpx to a value proportional to�(Ot j x), where
Ot is thet-th observation in the data set.

Particle filters have successfully been applied to state es-
timation problems in computer vision [12] and robotics
[5, 7]. In MCHMMs, this algorithm is used to approximate
the distributions of�t and�t.

3.3 Density Trees

While sample sets are sufficient to approximate con-
tinuous-valued distributions, they differ from those in that



they arediscrete. This is problematic if one wants to com-
bine densities represented through different sample sets.
For example, according to Equation (9),
t is the normal-
ized product of two densities,�t and�t, each of which rep-
resented by its own sample set. Unfortunately, with prob-
ability one, none of the samples in�t and�t are identical,
and thus it isnotstraightforward how to obtain an approxi-
mation of their product.

MCHMMs solve this problem by transforming sample sets
into (non-parametric) density trees [15, 22, 25], which ef-
fectively “generalize” discrete distributions (samples) to
continuous distributions. Each node in a density tree is an-
notated with a hyper-rectangular subspace ofdom(f), de-
notedV (or Vi for thei-th node). Initially, all samples are
assigned to the root node, which covers the entire domain
of f . The tree is grown by splittingeachnodei whenever
the following two conditions are fulfilled:

1. At least
p
N sampleshx; pxi 2 X fall into Vi.

2. Its depth, i.e., its distance from the root node, does not
exceedb14 log2Nc.

If a node is split, its hyper-rectanglev is divided into two
equally sized hyper-rectangles along its longest dimension,
as illustrated in Figure 1c. Figure 1b shows a density tree
generated for the sample set shown in Figure 1a.

Let f be a density function,X a sample drawn from this
density, and for allx 2 dom(f) let i(x) denote the leaf
whose regionVi containsx. Furthermore, let̂�i denote the
relative frequency of samples in thei-th node weighted by
their respectivepx values:

�̂i =
X

hx;pxi2X

Ix2Vi px (18)

Hence the density function of a tree, denotedf̂ , is defined
as follows:

f̂ (x) =
�̂i(x)

jVi(x)j (8x 2 dom(f)) (19)

The numerator of (19) describes the weighted relative fre-
quency that a sample falls into the interval of the nodei(x).
The denominator is the size of the interval, which is nec-
essary to transform a relative frequency into a density over
the intervalVi(x). The density function̂f (x) can be equally
defined forinternal nodes(non-leaf nodes). This will be
important below, where estimates at different levels of the
tree are mixed for regularization.

In [32] we prove the following important convergence re-
sult:

Theorem 3. With probability one, density trees converge
to f asN!1.

The proof exploits the fact that our splitting rule ensures
that (1) the depth of the tree grows without bounds and
(2) the number of samples in each leaf also grows with-
out bound asN!1. The convergence then follows from
the fact thatf is Lipschitz.2

3.4 Regularization Through Shrinkage and
Annealing

The continuous nature of the state space in GHMMs (and
hence in MCHMMs), makes it possible to overfitanydata
set, no matter how large. This is because GHMMs are rich
enough to assign a different state toeach observation in
the training data (of which there are only finitely many),
making it essentially impossible to generalize beyond se-
quences other than the ones presented during training. A
similar problem arises in conventional HMMs, if they are
given more states than there are training examples. In GH-
MMs the problem is inherent, due to the topology of con-
tinuous spaces. Thus, some kind of regularization is needed
to prevent overfitting from happening.

Our approach to regularization is based onshrinkage
[30]. Shrinkage is a well-known statistical technique for
“lumping together” different estimates from different data
sources. In a remarkable result by Stein [30], shrinking
estimators were proven to yield uniformly better solutions
over unbiased maximum-likelihood estimators in multi-
variate Gaussian estimation problems.Shrinkage trees
were introduced by McCallum [19]. Instead of using the
density estimates at the leafs of a tree, shrinkage trees mix
those densities with densities obtained further up in the
tree. These internal densities are less specific to the region
covered by a leaf node; however, their estimates are usually
obtained from more data, making them less susceptible to
variance in the data.

Figure 1c shows an example using shrinkage with an expo-
nential factor, parameterized by� (with 0 � � � 1). Here
eachnode in the tree, with the exception of the root node,
weighs its own density estimate by(1 � �), and mixes it
with the density estimate from its parent using the weight-
ing factor�. As a result, every node along the path con-
tributes to the density estimate at the leaf; however, its
influence decays exponentially with the distance from the
leaf node. Obviously, the value of� determines the amount
of shrinkage. If� = 1, only the root node is consulted,

2The termination conditions for growing trees where chosen
to facilitate the derivation of Theorem 3. In practice, these condi-
tions can be overly restrictive, as they often require large sample
sets to grow reasonable-sized trees. Our actual implementation
sidesteps these conditions, and trees are grown all the way to the
end. While the convergence results reported here are not appli-
cable any longer, our implementation yielded much better perfor-
mance specifically when small sample sets were used (e.g., 100
samples).



Model Initialization: Initialize � = f�; �; �g by three randomly drawn sets of samples of the appropriate dimension. Generate density
trees from these samples. Set� = 1, and chose an initial sample set sizeN > 0.

E-step:

1. Computation of�0 (c.f., (6)). GenerateN samples from the tree representing� using likelihood-weighted sampling.
2. Computation of�t (c.f., (7)). For eacht with 1 < t � T do:

(a) GenerateN sampleshx0; px0 i from the sample set representing�t�1 using likelihood-weighted sampling.
(b) For each samplehx0; px0 i, generate the conditional density�(x j x0) using the tree-version of�. Sample a singlex from

this tree, using likelihood-weighted sampling.
(c) Setpx to a value proportional to�(Ot j x), whereOt is thet-th observation in the data set. This density value is obtained

using the tree representing�.
(d) Generate a tree from the new sample set.

3. Computation of�T (c.f., (6)). GenerateN uniformly distributed samples.
4. Computation of�t (c.f., (8)). For eacht with T > t � 1 do:

(a) GenerateN sampleshx0; px0 i from the sample set representing�t+1 using likelihood-weighted sampling.
(b) For each samplehx0; px0 i, generate the conditional density�(x0 j x) using the tree-version of�. Sample a singlex from

this tree, using likelihood-weighted sampling.
(c) Setpx to a value proportional�(Ot+1 j x

0), whereOt+1 is thet+ 1-th observation in the data set. This density value is
obtained using the tree representing�.

(d) Generate a tree from the new sample set.
5. Computation of
t (c.f., (9)). For eacht with 1 � t � T do:

(a) GenerateN=2 sample from�t by likelihood weighted sampling, and assign to each samplex an importance factorpx
proportional to�t(x), using the tree approximation of�t.

(b) GenerateN=2 sample from�t by likelihood weighted sampling and assign to each samplex an importance factorpx
proportional to�t(x), using the tree approximation of�t.

M-step:

1. Estimation of the new state transition density� (c.f., (12)): PickN random timest 2 f1; : : : ; T � 1g and generate samples
hx; pxi andhx0; px0 i from 
t, and
t+1, respectively, by likelihood-weighted sampling. Addh(x; x0);N�1i into the sample
set representing�. Generate a tree from the sample set. When using�(x0 j x), condition the tree onx.

2. Estimation of the new observation density� (c.f., (13)): PickN randomt 2 f1; : : : ; Tg and generate a samplehx;pxi from

t by likelihood-weighted sampling. Addh(x;Ot);N

�1i into the sample set representing�. Generate a tree from the sample
set. When using�(b j x), condition the tree onx.

3. Estimation of the new initial state distribution� (c.f., (11)): Copy the sample set
0 into �. Generate a tree from the sample
set.

Annealing: Set� ���. Stop when the likelihood of an independent cross-validation set is at its maximum.

Sample set size:N  � �N , for some� > 1.

Table 1: The MCHMM algorithm.

hence, the probability density induced by the tree is uni-
form over its domain. If� = 0, on the other hand, there
is no shrinkage and only the estimates in the leaf nodes de-
termine the shape of the density function. For intermediate
values of�, estimates along the entire path are combined.

Since the optimal value of� is problem-specific—de facto
it depends on the nature of the (unobservable) state space—
our approach uses annealing and cross validation to deter-
mine the best value for�. More specifically,

�(n) = �� n�1 (20)

where �� < 1 is a constant (e.g., 0.9) andn denotes the
iteration counter of the Baum-Welch algorithm (starting at
1). Thus,� starts with�(0) = 1, for which nothing can
be learned, since every density is uniform. The parameter
� is then annealed towards zero in an exponential fashion.

Cross validation (early stopping) is applied to determine
when to stop training.

4 Monte Carlo HMMs

We are now ready to present the main algorithm of this
paper, along with the main theoretical result: The Monte
Carlo algorithm for GHMMs, calledMonte Carlo hidden
Markov models(in short MCHMM). An MCHMM is a
computational instantiation of a GHMM that represents all
densities through samples and trees.

The learning algorithm for MCHMMs is depicted in Ta-
ble 1. MCHMMs use both sample-based and tree represen-
tations during learning. In a nutshell,

� E-step. Particle filters are applied for forward and



Figure 2: Examples of gestures. The first two gestures were drawn counterclockwise; whereas the other two were drawn
clockwise. The MCHMM learning task is to differentiate them.

backward projection (c.f., Section 3.2 and Equations
(7) and (8)), using the tree approximations of�, � and
�.

Forward and backward densities are multiplied (c.f.,
Equation (9)) by multiplying the importance factors of
one of the sample sets (e.g.,�t) with their density val-
ues under the tree induced from the other sample set
(e.g., �t). This “trick” overcomes the problem dis-
cussed in the beginning of Section 3.3, namely that
with probability 1 no two samples in the sets represent-
ing �t and�t are the same. Its asymptotic correctness
follows from the convergence results for sampling and
density trees, and the convergence of importance sam-
pling [28, 31].

� M-step. The new model� = f�; �; �g is obtained
by generating samples from the initial state distribu-
tion (in the case of�), distributions of pairs of consec-
utive states (in the case of�), and distributions of states
paired with the corresponding observations (in the case
of �). Trees are then induced from these sample sets.

The trees of� and� represent joint distributions, not
conditional distribution. Hence, when using these trees
they are conditioned on a statex (c.f., Equations (12)
and (13)).

For regularization, MCHMMs use annealing and cross-
validation to determine the best shrinkage factor. To ensure
convergence, the number of samplesN is increased over
time.

The convergence of MCHMMs is guaranteed by the fol-
lowing important theorem:

Theorem 4 (MCHMM Convergence Theorem). Under
the assumptions stated above, any strictly monotonically
increasing schedule ofN ’s will cause an MCHMM to con-
verge to a local maximum of the corresponding GHMM
with probability 1.

We omit the lengthy proof, which can be found in [32].

Once an MCHMM has been trained, it suffices to memorize

only the tree-based version of the model� = f�; �; �g; all
sample sets can be discarded. Problems such as state track-
ing, prediction, analysis and discrimination can then typi-
cally be solved using particle filters (or variants/extensions
thereof). By adapting the sample set size on-line, these
methods can be implemented asany-timealgorithms [4,
34] that adapt their computational complexity to the avail-
able resources. In addition, sampling in a likelihood-
weighted manner places computation where needed: at re-
gions with high likelihood. These properties make MCH-
MMs attractive for real-time tracking and control [7].

5 Experimental Results

This section reports experimental results, obtained for
MCHMMs applied to two problems: an artificial one which
was chosen for demonstration purposes, and a gesture
recognition problem. The results are primarily intended to
illustrate MCHMMs in the finite sample case. Compar-
isons with existing HMM methods is beyond the scope of
this paper.

The artificial data set consists of multiple oscillatory se-
quences. Observations are 10-dimensional and governed
by

Ot =

8>>><
>>>:

h0:25 + "t;1; 0:25 + "t;2; 0:25+ "t;3;
: : : ; 0:25+ "t;10i if t odd

h0:75 + "t;1; 0:75 + "t;2; 0:75+ "t;3;
: : : ; 0:75+ "t;10i if t even

where"t;i (with 1 � t � 20 and1 � i � 10) are in-
dependent and identically distributed noise variables with
zero-centered triangular distribution over[�0:15; 0:15]. To
test the discriminatory accuracy of the learned model, we
also generated a second, similar data set (using other inde-
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Figure 3: Log likelihood as a function of the iteration of EM, for the synthetic data set.(a) Training : Top curve: 1000
samples for all densities. Middle curve: 1000 samples for� and�, 100 samples for�, �, 
, and�. Bottom curve: 100
samples for� and�, 10 samples for�, �, 
, and�. (b) Testing: The top curve shows the log likelihood of “positive”
training data (same orientation as used for training), whereas the bottom curve shows the log likelihood for the “negative”
class (opposite orientation as used for training). Each result is averaged over 10 independent experiments; 95% confidence
bars are also shown.
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Figure 4: (a) Log likelihood for the gesture data base obtained for independent testing data. The top curve shows the log
likelihood of gestures drawn in same same way as the training gesture, whereas the bottom curve shows the log likelihood
of gestures drawn in opposite direction. (b) Trade-off between sample set size and log likelihood, for the gesture data
set. The more samples are available, the higher the likelihood, and hence the moreaccurate the results. However, even
extremely small sample sets yield reasonable discrimination.

pendent noise variables"):

Ot =

8>>><
>>>:

h0:25 + "t;1; 0:75 + "t;2; 0:25+ "t;3;
: : : ; 0:75+ "t;10i if t odd

h0:75 + "t;1; 0:25 + "t;25; 0:75 + "t;3;
: : : ; 0:25+ "t;10i if t even

The second data set consisted of a collection of hand-
drawn gestures. Figure 2 shows examples. Once drawn,
all gestures in our data base look quite similar. However,
some of the gestures were drawn clockwise, whereas oth-
ers were drawn counterclockwise. Here we are interested in
discriminating clockwise from counterclockwise gestures.

Notice that this problem is more difficult then the artifi-
cial one, as the observations alone (stripped of their tem-
poral order) are insufficient for discrimination; instead, the
MCHMM has to learn a meaningful model of the internal
state.

Figures 3 shows results obtained for the first dataset.
Shown in both figures are curves that characterize the log
likelihood (notice that the log likelihood is unbounded for
continuous distributions). Figure 3a illustrates that the log
likelihood of thetraining setincreases monotonically over
multiple iterations of EM (Baum-Welch), for different ex-
perimental conditions described in the figure caption. Fig-



ure 3b shows testing results. The upper curve depicts the
log likelihood for a set of random sequences that are gen-
erated from the same model as the training sequences. The
bottom curve depicts the log likelihood for independently
generated sequences using the other model, for which the
MCHMM was not trained. In both cases, only a single data
set (of length 20) was used for training, and testing was
performed using 20 data sets generated independently. The
initial shrinkage factor was� = 1, which was annealed
down at the rate�� = 0:9. Figure 3b shows the effect of
overfitting: the testing likelihood increases first, but then
levels off (approx. iteration 6) and decreases. Using early
stopping, we obtained 100% generalizationaccuracy in all
experiments, even if as few asN = 10 samples were used.

Figure 4a shows the corresponding testing result for the
more difficult gesture recognition problem. These results
were obtained using a single gesture for training only, and
using 50 gestures for testing. The top curve depicts the log
likelihood for gestures drawn in the same direction as the
training gesture, whereas the bottom curve shows the log
likelihood for gestures drawn in the opposite direction. As
easily noticed in Figure 4a, the difference between classes
is smaller than in Figure 3b—which comes at no surprise—
yet the likelihood of the “correct” class is still a factor of
4 to 5 larger than that of the opposite class. Figure 4a also
shows the effect of annealing. The best shrinkage value is
obtained after 12 iterations, where� = 0:28. As in the
previous case, cross-validation using a single gesture per-
forms well. On average, the classification accuracy when
using cross-validation for early stopping is 86.0%. This
rate is remarkably high, given that only a single gesture per
class was used for training.

Figure 4b illustrates the trade-off between computation and
accuracy empirically for the gesture data base. Shown there
is the log likelihood of the testing data as a function of the
sample set sizeN . Notice that the horizontal axis is log-
arithmic. All of these points are generated using a model
� obtained using early stopping. The sample set size was
generatedafter training, to investigate the effect of com-
putational limitations on the on-line performance of the
MCHMM. As in Figure 4a, the top curve in Figure 4b de-
picts the log likelihood of gestures drawn in the same direc-
tion as the training data, whereas the bottom curve shows
the log likelihood of gestures drawn in opposite direction.
The result in Figure 4b illustrates that the likelihood (and
hence the accuracy) of both data sets increases with the
sample set size. This is not surprising, as the accuracy
of the approximations increases with the sample set size.
In addition, Figure 4b suggests that the distance between
clockwise and counterclockwise gestures is approximately
constant in log likelihood space (hence it grows in likeli-
hood space). Thisillustrates that better results are achieved
with larger sample sets. In our experiments, however, even

small sample sets yielded good discrimination (after train-
ing with larger sample sets). For example, we observed on
average 16% classification error withN = 10 samples.

For the gesture data base, one iteration of EM (using the
settings described in the caption of Figure 3a) took the fol-
lowing time:

sample set size sample set size training time
for �; � for �; �; 
; � (in seconds)

100 100 0.852
1000 100 1.53
100 1000 10.36
1000 1000 18.38

After training, processing a single gesture (which involves
running the particle filter on two different MCHMMs) took
the following time:

sample set size for� running time (in seconds)
10 0:00242
100 0:0242
1000 0:260

These numbers were obtained on a low-end PC (equipped
with a 266Mhz Pentium II). The latter numbers illustrate
that after learning, the processing of a gesture is several
orders of magnitude faster than the hand motion involved
in gesture generation.

6 Conclusion

We have presented Monte Carlo Hidden Markov Models
(MCHMMs), a new algorithm for hidden Markov model
learning. MCHMMs extend HMMs to real-valued state
and observation spaces andnon-parametric models. They
represent all densities by samples, which are transformed
into probability density functions using density trees. Be-
cause the continuous state spaces are rich enough to fit (and
overfit!) arbitrary data sets, our approach uses shrinkage to
reduce its complexity. The shrinkage parameter is gradu-
ally annealed down over time, and cross-validation (early
stopping) is used for model selection (regularization).

In this paper, MCHMMs have been shown to converge to
local maxima in likelihoodspace for a large non-parametric
class of probability density functions. Empirical results,
carried out in an artificial and a gesture recognition domain,
demonstrate that our approach generalizes well even when
trained with extremely scarce data. Additional experiments
characterize the natural trade-off between sample set size
and accuracy,illustrating that good results may be achieved
even from extremely small sample sets. Additional results
described in [32] illustrate the effect ofsmoothingin the
forward/backward project step.

The choice of density trees for representing densities in



MCHMMs is somewhat ad hoc. In principle, a range of
methods could be applied, such as Gaussian kernels. The
trade-offs involved in choosing the right density model are
currently poorly understood and therefore warrant future
research.
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