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Abstract

This paper describes an online algorithm for generating com-
pact 3D maps of mobile robot environments. Maps generated
by our approach consist of small numbers of planar surfaces,
which are augmented by fine-grained polygons for non-flat en-
vironmental features. Our approach builds on the expectation
maximization (EM) algorithm, but develops a new, incremen-
tal version that can be executed in real-time. Experimental
results obtained in corridor-type environments illustrate that
compact and accurate maps can be acquired in real-time, from
range and camera data collected by a mobile robot.

1 Introduction

This paper presents an algorithm for generating compact mod-
els of indoor environments in real-time from range and camera
measurements. The vast majority of successful robot mapping
algorithms represent maps by grids [4], raw point measure-
ments [5, 7], or line segments [1]. While such representations
appear to be sufficient for navigation, they suffer from two ma-
jor disadvantages. First, there are intrinsic scaling limitations.
For example, while two-dimensional occupancy maps require
relatively little memory, the memory requirements of the same
approach in 3D are prohibitive (despite recent work on this
topic[9]). Second, and more importantly, such maps fail to
capture the true nature of indoor environments. Indoor envi-
ronments are often composed of walls, furniture, doors, win-
dows etc, many of which are characterized by specific geomet-
ric features (e.g., are flat). An understanding of such objects
and their geometric properties (e.g., flatness) will inevitably
lead to new, more powerful mapping algorithms that can gen-
erate more accurate maps.

This paper provides a step in the direction of building more
compact maps, using a simple object representation. We de-
scribe an algorithm that identifies flat rectangular surfaces
form the sensor data, such as walls, ceilings, and doors. The
mathematical approach for finding such objects is the expec-
tation maximization (EM) algorithm [2]. The EM approach
combines a phase of searching for a compact map with planar
rectangular surfaces, with one that associates measurements
with individual surfaces. By doing so, it can generate accu-
rate surface maps even at the boundary of different surfaces.

In addition, our approach allows for objects that are not part
of any rectangular surface, which are then represented using
fine-grained polygons.

EM has previously been proposed for building 3D maps [6].
A well-known limitation of the classical EM algorithm is its
inherent offline nature [8]. This is because EM requires mul-
tiple passes through the entire data set when generating maps.
This is problematic for many application scenarios, such as
robot exploration [11], where map building and control is in-
terleaved. To overcome this problem, this paper develops
the basic EM algorithm into an online (and real-time) algo-
rithm. The online property is obtained by limiting the num-
ber of times a measurement is considered in EM calculations.
A carefully crafted strategy for determining when to consider
what measurement in the EM procedure leads to an algorithm
that can be executed in real-time on a low-cost PC, as docu-
mented in the experimental results section of this paper.

Our approach rests on two key assumptions. First, it assumes
that a good estimate of the robot pose is available. The issue of
pose estimation (localization) in mapping has been studied ex-
tensively in the robotics literature. In all our experiments, we
use a real-time algorithm described in [12] to estimate pose;
thus, our assumption is not unrealistic at all, but it lets us focus
on the 3D mapping aspects of our work. Second, we assume
that the environment is largely composed of flat surfaces. The
flat surface assumption leads to a convenient close-form solu-
tion of the essential steps of our EM algorithm. Flat surfaces
are commonly found in indoor environments, specifically in
corridors. We also notice that our algorithm retains measure-
ments that cannot be mapped onto any surface and maps them
into finer grained polygonal approximations. Hence, the final
map may contain non-flat regions in areas that are not suffi-
ciently flat in the physical world.

Our approach has been applied to building multi-planar tex-
tural maps of several indoor environments in real-time. The
robot shown in Figure 1a is equipped with a forward-pointed
laser range finder for localization during mapping, an upward-
pointed laser range finder for structural mapping, and a
panoramic camera for recording the texture of the environ-
ment (see Figure 1b). Our results illustrate that the algorithm
is highly robust and effective in generating compact maps in
real-time.
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(a) (b)

Figure 1: Mobile robot, equipped with two 2D laser range finders
and a panoramic camera. The camera uses a panoramic
mirror mounted only a few centimeters away from the op-
tical axis of the laser range finder.

2 Flat Surface Model

Mathematically, a map is a finite collection of rectangular flat
surfaces, representing doors, walls, ceilings, plus a set of small
polygons representing non-flat artifacts in the environment.
We will denote the set of rectangular flat surfaces by θ, where

θ = {θ1, . . . , θJ} (1)

Here J is the total number of rectangular surfaces θj . Each
θj is described by a total of 9 parameters, arranged in three
groups:

θj = 〈αj , βj , γj〉 (2)

Here αj is the three-dimensional surface normal of the rect-
angular surface, βj is the one-dimensional offset between the
surface and the origin of the coordinate system, and γj are five
parameters specifying the size and orientation of the rectan-
gular area within the (infinite) planar surface represented by
αj and βj . The Euclidean distance of any coordinate z in 3D
space to any surface θj will be denoted

d(z, θj) (3)

In our implementation, we distinguish two cases: The case
where the orthogonal projection of z falls into the rectangle,
and the case where it does not. In the former case, d(z, θj)
is given by αj · z − βj ; in the latter case, d(z, θj) is the Eu-
clidean distance between the bounding box of the rectangle
and z, which is either a point-to-line distance or a point-to-
point distance.

Measurements correspond to points in 3D space. The i-th sen-
sor measurement, denoted

zi ∈ <3 (4)

is a 3D coordinate of a point detected by a laser range finder.
Such point obstacles are easily recovered from range measure-
ments, such as the laser ranger finders used in the experiments
below, subject to knowledge of the robot’s location. We denote
the set of all measurements by

Z = {zi} (5)

The measurement model ties together the volumetric map and
the measurements Z. The measurement model is a probabilis-
tic generative model of the measurements given the world:

p(zi|θ) (6)

Our approach assumes Gaussian measurement noise. In par-
ticular, let j be the index of the surface nearest to the measure-
ment zi. Then the error distribution is given by the following
normal distribution with variance parameter σ

p(zi|θj) :=
1√

2πσ2
e−

1
2

d2(zi,θj)

σ2 (7)

Notice that the log likelihood of this normal distribution is pro-
portional to the Euclidean distance d(zi, θj) between the mea-
surement zi and the surface θj .

The normal distributed noise is a good model if a range finder
succeeds in detecting a flat surface. Sometimes, however,
range finders fail to detect the nearest object altogether, or the
object detected by a range finder does not correspond to a flat
surface. In our approach, we will model such events using a
uniform distribution over the entire measurement range:

p(zi|θ∗) :=

{

1/zmax if 0 ≤ zi ≤ zmax

0 otherwise
(8)

Here θ∗ denotes a ‘phantom’ component of the map θ, which
accounts for all measurements not caused by any of the sur-
faces in θ. The interval [0; zmax] denotes the measurement
range of the range finder.

3 The Log-Likelihood Function

In statistical terms, finding a plausible map is equivalent to
maximizing a likelihood function. To define the likelihood
function, we have to introduce a new set of random variables,
called the correspondences cij and ci∗. Each correspondence
variable is a binary random variable. The variable cij is 1 if
and only if the i-th measurement zi corresponds to the j-th
surface in the map, θj . Likewise, the correspondence ci∗ is 1
if and only if the i-th measurement was not caused by any of
the surfaces in the map θ. The correspondence vector of the
i-th measurement is given by

Ci = {ci∗, ci1, ci2, . . . , ciJ} (9)

By definition, the correspondences in Ci sum to 1 for all i,
since each measurement is caused by exactly one component
of the map θ.

If we know the correspondences Ci, we can express the mea-
surement model p(zi|θ) as follows

p(zi|Ci, θ) =
1√

2πσ2
e
− 1

2

[

ci∗ ln
z2
max

2πσ2 +
∑

j
cij

d2(zi,θj)

σ2

]

(10)

This obviously generalizes our definition in the previous sec-
tion, since for every measurement zi only a single correspon-
dence will be 1; all other c-variables will be zero. Making the
correspondence explicit in the measurement model enables us
to compute the joint probability of a measurement zi along
with its correspondence variables Ci:

p(zi, Ci|θ) =
1

(J+1)
√

2πσ2
e
−

1
2

[

ci∗ ln
z2
max

2πσ2 +

∑

j
cij

d2(zi,θj)

σ2

]

(11)
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Assuming independence in measurement noise, the likelihood
of all measurements Z and their correspondences C := {Ci}
is then given by

p(Z,C|θ) (12)

=
∏

i

1

(J+1)
√

2πσ2
e
− 1

2

[

ci∗ ln
z2
max

2πσ2 +
∑

j
cij

d2(zi,θj)

σ2

]

This equation is simply the product of (11) over all measure-
ments zi.

It is common practice to maximize the log-likelihood instead
of the likelihood (12):

ln p(Z,C|θ) =
∑

i

ln
1

(J+1)
√

2πσ2
− 1

2
ci∗ ln

z2
max

2πσ2

−1

2

∑

j

cij

d2(zi, θj)

σ2
(13)

Finally, while the formulas above all compute a joint over map
parameters and correspondence, all we are actually interested
in are the map parameters. The correspondences are only in-
teresting to the extent that they determine the most likely map
θ. Therefore, the goal of estimation is to maximize the ex-
pectation of the log likelihood (13), where the expectation
is taken over all correspondences C. This value, denoted
EC [ln p(Z,C|θ)], is the expected log likelihood of the data
given the map with the correspondences integrated out. It is
obtained directly from Equation (13):

EC [ln p(Z,C|θ)]

=
∑

i

ln
1

(J+1)
√

2πσ2
− 1

2
E[ci∗] ln

z2
max

2πσ2

−1

2

∑

j

E[cij ]
d2(zi, θj)

σ2
(14)

This equation is the basis for the EM algorithm for maximizing
the log-likelihood described in turn.

4 Likelihood Maximization Via EM

The expected log-likelihood (14) is maximized using EM, a
popular method for hill climbing in likelihood space for prob-
lems with latent variables [2]. In essence, EM generates a
sequence of maps, θ[0], θ[1], θ[2], . . .. Each map improves the
log-likelihood of the data over the previous map until conver-
gence. EM starts with a random map θ[0]. Each new map is
obtained by executing two steps: an E-step, where the expec-
tations of the unknown correspondences E[cij ] and E[ci∗] are
calculated for the n-th map θ[n], and an M-step, where a new
maximum likelihood map θ[n+1] is computed under these ex-
pectations.

The E-Step: In the E-step, we are given a map θ[n] for which
we seek to determine the expectations E[cij ] and E[ci∗] for all
i, j. Bayes rule, applied to the sensor model, gives us a way to

calculate the desired expectations (assuming a uniform prior
over correspondences):

E[cij ] = p(cij |θ[n], zi)

=
p(zi|θ[n], cij)p(cij |θ[n])

p(zi|θ[n])

=
e−

1
2

d2(zi,θj)

σ2

e−
1
2 ln

z2
max

2πσ2 +
∑

k e−
1
2

d2(zi,θj)

σ2

(15)

E[ci∗] =
e−

1
2 ln

z2
max

2πσ2

e−
1
2 ln

z2
max

2πσ2 +
∑

k e−
1
2

d2(zi,θk)

σ2

(16)

The M-Step: In the M-step, we are given the expectations
E[cij ] and seek to calculate a map θ[n+1] that maximizes
the expected log-likelihood of the measurements, as given by
Equation (14). In other words, we seek surface parameters
〈αj , βj〉 that maximize the expected log likelihood of the map.

Obviously, many of the terms in (14) do not depend on the
map parameters θ. This allows us to simplify this expression
and instead minimize

∑

i

∑

j

E[cij ]d
2(zi, θj) (17)

The actual M-step proceeds in two steps. First, the parameters
αj and βj are computed that specify the principal orientation
and location of the rectangular surface, without considerations
of the surface boundaries. If walls are assumed to be bound-
less, minimizing (17) is equivalent to minimizing

∑

i

∑

j

E[cij ](αj · zi − βj)
2 (18)

subject to the normality constraint αj ·αj = 1. This quadratic
optimization problem is commonly solved via Lagrange mul-
tipliers λj for j = 1, . . . , J :

L :=
∑

i

∑

j

E[cij ](αj · zi − βj)
2 +

∑

j

λjαj · αj (19)

This problem is easily solved using eigenvalue decomposition,
as described in [3, 6].

Our algorithm proceed by calculating the bounding boxes γj .
It does so by determining the minimum rectangular box on the
surface which includes all points whose maximum likelihood
assignment is the j-th surface: θj :

{i such that i = argmax
k∈{1,...,k,∗}

E[ckj ]} (20)

The optimization searches a finite number of possible surface
orientations and then calculates the minimum bounding box
for this orientation. Finally, the bounding box with the small-
est enclosed surface is selected. This step leads to a rectan-
gular surface of small size, but which nevertheless contains
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all measurements that most likely correspond to the surface at
hand.

Model Selection: In addition to computing the surface pa-
rameters, the number of surfaces J has to be determined. Our
approach involves a straightforward Bayesian prior that penal-
izes complex maps using an exponential prior, written here in
log-likelihood form:

p(θ|Z) ∝ p(Z|θ) − κJ (21)

Here κ is a constant factor (e.g., 0.02). The final map estimator
is, thus, a maximum posterior probability estimator (MAP),
which combines the complexity-penalizing prior with the data
likelihood calculated by EM. In practice, this approach implies
that surfaces that are not supported by sufficiently many data
measurements weighted by their expectation, are discarded.
This approach makes it possible to choose the number of map
components J (rectangular surfaces) dynamically, during the
execution of EM.

Texture Mapping: Textures are extracted from the panoramic
camera, along a stripe shown in Figure 1b that corresponds
to the range measurement taken by the vertical laser range
finder. These stripes are collected at frame rate and pasted
together into raw texture maps. These maps are then mapped
onto the planar surfaces in real-time, using a technique de-
scribed in [10]. Textures of the same feature in the environ-
ment recorded at different points in time are presently not
merged due to tight computational constraints—which should
be considered a shortcoming of our present implementation.

5 Online EM

Online mapping is achieved through several modifications of
the basic EM algorithm, which ensure that the computation at
each time is independent of the data set size, and that leverages
past optimization as much as possible when constructing a new
map.

In the E-step, the expectation is only calculated for a small
(and bounded) number of measurements, in a way that the to-
tal number of such calculations does not depend on the amount
of available data. Our approach calculates expectations for
all current measurements. In addition, expectations are re-
calculates for older measurements which meet several condi-
tions: They lie at the boundary of two surfaces (judging from
their maximum likelihood assignment), or are entirely unex-
plained by any existing surface and they have been considered
no more than a fixed number of times in previous E-steps. The
latter condition assures that measurements cannot be consid-
ered infinitely often in the E-step, hence bounds the number
of measurements that can be considered in any E-step. The
number of surfaces considered in the E-step is also bounded
and typically includes all nearby surfaces.

In the M-step, only surfaces are re-estimated whose maximum
likelihood assignments were changed in the E-step. This nat-

(a) Raw data map (15 scans) (f) Map with online EM (15 scans)

(b) Raw data map (43 scans) (g) Map with online EM (43 scans)

(c) Raw data map 62 scans) (h) Map with online EM (62 scans)

(d) Raw data map (172 scans) (i) Map with online EM (172 scans)

(e) Raw data map (274 scans) (j) Map with online EM (274 scans)

Figure 2: Raw data (left column) and maps generated using online
EM (right column). Some of the intermediate maps ex-
hibit suboptimal structures, which are resolved in later it-
erations of EM. Despite this backwards correction of past
estimates, the algorithm presented in this paper still runs
in real-time, due to careful selection of measurements that
considered in the EM estimation.

urally guarantees that only a small number of surfaces is re-
calculated in the M-step, with the total number being inde-
pendent of the total number of surfaces J . However, each
such surface might still be supported by an unbounded number
of measurements, hence the calculation of surface parameters
may take time that grows with the total number of measure-
ments. To avoid the latter, the number of measurements in-
volved in re-computing surface parameters in the M-step is
subsampled so as to not to exceed a fixed number. This is
necessary to guarantee the incrementally of the EM algorithm.

p. 4



Figure 3: Views of a compact 3D texture map built in real time with
an autonomously exploring robot.

To guide the search in the likelihood space, the map generated
at time t − 1 is used as initial map at time t. This greatly
reduces the number of iterations required at any point in time.

Finally, our approach implements Bayesian model selection
in real-time. New surfaces may be introduces based on new
measurements which are not “explained” (in an ML fashion)
by any of the existing surfaces in the map. Surfaces are re-
moved form the map if after a fixed number of iterations they
are not supported by sufficiently many measurements in accor-
dance with the map complexity penalty factor κ (see Equation
(21)).

6 Experimental Results

Our online EM algorithm for 3D multi-planar mapping was
successfully tested in several corridor-style environments,
some of which are shown in various figures in this paper. All
results shown in this paper were generated in real-time, in
some cases using an autonomously exploring robot, in others
using a manually controlled robot.

Figure 2 illustrates the online creation of a compact map.
Shown in the left column are maps generated directly from
the raw measurement data by creating polygons for any set of

Figure 4: View of a trash bin in the final map, with a large planar
rectangular surface patch in the background. Our algo-
rithm recognizes that this object cannot be explained by
planar surfaces with sufficient likelihood, hence it retains
the polygonal representation.

nearby measurements. Views of a map with full texture are
shown in Figure 3. This map, including the texture informa-
tion, was entirely built in real-time. A comparison of raw data
maps, the flat surfaces extracted in real-time, and the final tex-
ture maps is shown in Figure 5. Figure 4 shows the structure
of a non-planar object (a trash bin) in one of the final maps.
This example illustrates that the ability to merge flat surfaces
with fine-grained polygons makes it possible to build complete
maps of building interiors while exploiting the building’s pla-
narity.

In an attempt to quantitatively evaluate our approach, we
mapped three different corridor environments in different
buildings. The complexity of those environments was compa-
rable to the maps shown here. The number of initial polygons
was between 3.5·104 and 6.5·104. The final maps contained on
average 0.60% as many polygons (0.69%, 0.80%, and 0.32%),
which corresponds to an average compression ratio of 1 : 192.

7 Discussion

We have presented an online algorithm for building compact
maps of building interiors. This approach utilizes the popu-
lar expectation maximization algorithm for finding rectangu-
lar surface patches in 3D data, acquired by a moving robot
equipped with laser range finders and a panoramic camera.
While EM is traditionally an offline algorithm, a modified ver-
sion of EM was presented, which is capable of generating such
maps online, while the robot is in motion. This approach re-
tains the key advantage of EM—namely the ability to revise
past assignments and map components based on future data—
while simultaneously restricting the computation in ways that
make it possible to run the algorithm in real-time, regardless
of the size of the map. Experimental results illustrate that this
approach enables mobile robots to acquire compact maps of
corridor-style environments.

Although stated here in the context of finding rectangular flat
surfaces, the EM algorithm is more general in that it can easily
handle a much richer variety of geometric shapes. The exten-
sion of our approach to richer classes of objects is subject to
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(a) raw data (b) planes, extracted from map (c) plane boundaries (d) full texture map (planes only)

(e) raw data (f) planes, extracted from map (g) plane boundaries (h) full texture map (planes only)

Figure 5: Maps generated in real-time, of office environment at Carnegie Mellon University (top row) and Stanford University (bottom row).

future research. Another topic of future research is to aug-
ment the EM algorithm to estimate the robot’s location during
mapping, as described in [13].
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