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Abstract

Visual feedback is an important precondition for suc-
cessful tele-operation of instruct-able mobile robots. Es-
pecially connections with varying and limited bandwidth,
such as the Internet, prohibit the continuous transmission
of video signals. In this paper we propose a predictive sim-
ulation technique which is designed to permit the reliable
visualization of the robot’s actions in tele-operation sys-
tems communicating with the user over the Internet. It dif-
fers from previous approaches, in that it includes a global
path planner, a reactive collision avoidance in addition to a
odometry and sensor simulation to predict the actions of the
robot. The advantage of this approach is that the simulation
of the robot’s actions improves the accuracy of the visual-
ization especially when large transmission delays of several
seconds occur. We present experiments carried out with a
real robot in a structured office environment illustrating the
improvements in the visualization.

1. Introduction

Due to the increased costs of laboratory equipment such
as mobile robots and due to the increased specialization of
research on the other hand, there is a growing need for co-
operation between research groups. The Internet can be re-
garded as one of the most important media for cooperation
over large distances, today. Tele-robotics over the Internet
can become an important means for the collaboration of re-
search groups, for example during the development and the
testing of control systems or for the demonstration of new
systems.

Unfortunately the Internet does only provide a restricted
bandwidth and arbitrary large transmission delays can oc-
cur, so that video streams cannot be used for the visualiza-
tion of the robot’s actions. Obviously,accurate visualiza-
tions are important for the observation of experiments and
during demonstrations. Furthermore, with the development
of web-operated robots, for example tele-operated museum

tour-guide robots, there is a growing need for tele-operation
interfaces which can be used even by untrained people. In
this context, accurate visualizations of the robot’s actions
becomes more and more important.

In this paper we describe a technique which provides the
basis for smooth and reliable real-time 3D visualizations of
the movements of an autonomous mobile robot. It uses a
predictive simulation scheme (PSS) to ensure that the vi-
sualization remains synchronized with the true state of the
world even during larger transmission delays of several sec-
onds. This simulation scheme includes the robot’s collision
avoidance and path planning components in addition to the
odometry and sensor simulation of the robot. We compare
the PSS to a variant that uses the last motion vector obtained
from the robot to predict its future behavior. In extensive
experiments we show that PSS provides significantly better
results when transmission delays of more than three seconds
occur.

The remainder of this paper is organized as follows. Af-
ter discussing related work in the next section, Section 3
introduces the components of PSS in detail and finally Sec-
tion 4 gives experimental results illustrating the strength of
the approach.

2. Related Work

A variety of web based tele-operation interfaces for au-
tonomous robots has been developed over the last few years.
Three of the earlier systems are the Mercury Project, the
“Telerobot on the Web” and the Tele-Garden [6, 7, 15].
These systems allow people to perform simple tasks with
a robot arm via the web. They provide still images from a
camera mounted on the robot arm after a requested move-
ment task has been completed, no feedback is given while
the robot arm is moving.

XAVIER [14] is a web-operated autonomous mobile
robot. It can be adviced by web users to move to an office
and to tell a joke. The web interface relies on client-pull
and server-push techniques to provide images taken by the
robot and a map indicating the robot’s current position.
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The autonomous mobile robots RHINO and Minerva,
which were deployed as autonomous museum tour-guides
in the “Deutsches Museum Bonn” in 1997 [3] respec-
tively in the Smithsonian Museum of American History in
1998 [16], additionally offer Java applets for instant updates
of information. For example, the interfaces provide applets
displaying information about what the robot is currently do-
ing and offering a smooth 2D animation of the robot’s tra-
jectory in a map of the environment.

Hirukawa et al. [8] describe web-operation interfaces,
where web users can perform manipulation tasks using a 3D
graphics simulation contained in the web browser. These
interfaces follow the tele-programming approach. Tasks are
first tested on a simulator and the tested sequence of actions
can afterwards be transmitted to the real robot.

Simulation based delay compensation techniques and
virtual environment interfaces are in use for space and
undersea tele-robotics for several years now [4, 12, 18,
1]. Here comparable large transmission delays occur, but
in contrast to Internet based systems, these systems are
mostly operated via communication links with a guaran-
teed bandwidth and known transmission delays. Our sim-
ulation scheme is conceptually similar to the one used
during the ROTEX experiment on board the space-shuttle
COLUMBIA in 1993 [9]. During this experiment a 6
DOF robot arm was controlled from ground employing tele-
sensor programming. This robot carried out a sequence of
actions autonomously relying on it’s sensors but the auton-
omy did not include planning, which was carried out by a
human operator from ground. Autonomous robots, how-
ever, make their own decisions, for example, which path
to take. Our mobile robot RHINO uses a reactive collision
avoidance and a path planning component to make such de-
cisions. Therefore, we integrate these components into the
predictive simulation and this way achieve a reliable visual-
ization even in case of large transmission delays of several
seconds.

3. The Predictive Simulation Scheme PSS

The task of PSS is to achieve a better visualization ac-
curacy over the Internet when long transmission delays and
high packet loss rates occur. The current implementation
of PSS is integrated into the RHINO system. RHINO is an
RWI B21 robot equipped with 2 laser range finders, a ring
of 24 ultrasonic sensors as well as with several tactile and IR
sensors (see Figure 1). RHINO is a research platform used
for the development of different service robot applications
such as office delivery [13, 2] or giving tours to visitors of
the “Deutsches Museum Bonn”, Germany [3]. The RHINO
system is a distributed software package assembled from
over 25 modules. The PSS uses a simulator of the robot
and it replicates the RHINO system’s collision avoidance

Figure 1.The RWI B21 robot RHINO.

module and the path planning module to predict the robot’s
actions.

3.1. Extrapolation of robot motion

A B21 robot is controlled by setting the translational and
rotational accelerations( _v; _!) of it’s synchro-drive at dis-
crete points in time [5]. During a time interval[t0; tn] only a
finite number of acceleration commands can be issued. Let
us assume, that acceleration commands are given at times
ft0; : : : ; tn�1g and that they remain constant during the in-
tervals[ti; ti + 1[ for the duration�i = ti+1 � ti. Under
these assumptions, the dynamic of the synchro-drive is ex-
pressed by the functions

x(tn) = x(t0) +

n�1X
i=0

Z �i

0

tv(i; t) � cos(hd(i; t)) dt

y(tn) = y(t0)�

n�1X
i=0

Z �i

0

tv(i; t) � sin(hd(i; t)) dt

�(tn) = hd(n� 1; tn � tn�1):

Here the functionstv andhddenote the translational veloc-
ity and the heading of the robot at some point in timex,

tv(k; x) = (v(tk) + _vk � x)

hd(k; x) = �(tk) + !(tk) � x+
1

2
_!k � x

2

However, if we extrapolate the robot’s motion, we have to
compute the position many times per second. Therefore, we
approximate the motion assuming that the velocities of the
robot remain constant from one simulation step to the next.
Thus the integral above can be simplified to

F
i
x =

Z �i

0

vi � cos(�(ti) + !i � t) dt
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for thex-coordinate.F i
y is defined analogously. Herevi and

wi denote the constant velocities during the time interval
[ti; ti+1[. Solving the integral yields

F
i
x =

�
vi
wi
(sin(�(ti) + !i ��i)� sin(�(ti))) !i 6= 0

vi � cos(�(ti)) ��i !i = 0

for thex-coordinate and

F
i
y =

�
� vi

wi
(cos(�(ti) + !i ��i)� cos(�(ti))) !i 6= 0

vi � sin(�(ti)) ��i !i = 0

for the y-coordinate. Thus, the extrapolation inductively
computes the robot’s position given the position at timet0
according to the following equations

x(ti+1) = x(ti) + F
i
x

y(ti+1) = y(ti) + F
i
y

�(ti+1) = �(ti) + !i ��i

vi+1 = vi + _vi ��i

!i+1 = !i + _!i ��i

Notice that the robot will move on a straight line if!i = 0
and on a circular arc if!i 6= 0.

3.2. Integration of the DWA Collision Avoidance

RHINO’s collision avoidance protects the robot from
colliding with obstacles. It is replicated in the PSS for two
reasons, (1) the collision avoidance module is the compo-
nent of the RHINO system, which generates the accelera-
tion commands for the robot, and (2) it prevents the sim-
ulated robot from driving into obstacles, which guarantees
that the simulation remains at least consistent with the laws
of physics in case of transmission delays.

The collision avoidance is based on the dynamic win-
dow algorithm (DWA) [5] which uses several hard and soft
constraints to control the velocities of the robot based on
sensor input and a “target location” prescribed by the path
planner. In the current implementation DWA decides on
new velocities 4 times per second. The decision process
is carried out in two phases, in the first phase the space of
velocities is restricted to velocities satisfying the hard con-
straints, e. g. velocities which are admissible with respect
to the robot’s inertia and torque limits – this subspace forms
the dynamic window –, and velocities which are save with
respect to the obstacles detected by the proximity sensors.

In the second phase the reduced search space is searched
for the best velocity vector(vi; !i). This is accomplished
by maximizing the objective function

G(v; !) = �(��heading(v; !)+� �dist(v; !)+
 �vel(v; !))

which computes the weighted sum of the three soft con-
straints,

(a) heading, measuring the progress towards the goal loca-
tion. It is maximal if the robot moves straight towards
the target.

(b) dist, denoting the distance of the closest obstacle on
the curvature(v; !), and

(c) vel, the forward velocity of the robot, supporting fast
movements.

The function� smoothes the weighted sum of the three
components and results in more side-clearance from obsta-
cles.

3.3. Integration of Path Planning

Figure 2. The path planner computes the optimal path
to goal position (marked by 0) and the next intermedi-
ate goal position which is sent to the collision avoid-
ance.

The task of RHINO’s path planner [17] is to determine
shortest paths from one point in the environment to another
(see Figure 2). It generates a sequence of intermediate “tar-
get locations” thereby taking visibility considerations and
increasing the side-clearance into account. Target locations
are then passed on to the collision avoidance in advance.

The path planner is based on value iteration, a popu-
lar dynamic programming algorithm. It uses a grid map
representation of the environment for planning, which is
computed from the 3D model through a simple projection.
Value iteration iteratively computes valuesVx;y for each
grid cell hx; yi. Initially, the grid cell containing the goal
position is set to 0, and all others are set to1. During
iteration the values of all unoccupied grid cells are set to
the value of their best unoccupied neighbor plus the costs
of moving there. After convergence, each valueVx;y cor-
responds to the distance betweenhx; yi and the goal posi-
tion and steepest decent in the value function leads to the
shortest path to the goal. Figure 2 shows an example value
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function after convergence. Higher costs are represented by
darker grey levels, the goal position is at the white spot. The
minimal cost path to the goal is marked as a grey line.

After convergence, the value iteration algorithm has de-
termined the optimal moving direction towards the goal po-
sition for every grid cell, independent from the robot’s po-
sition. In PSS this gets important after prediction errors
have occurred; the resynchronization will force the simu-
lated robot to “jump” to the correct position. In such situa-
tions, the path planner is able to compute a new intermediate
target point for the collision avoidance immediately. Conse-
quently, the simulation can quickly be synchronized if new
information is obtained from the robot.

3.4. The B21 Simulator

The core part of the PSS is the B21 robot simulator. The
simulator we developed provides a simulation of the robot’s
odometry and of its proximity sensors. The odometry simu-
lation employs the iterative scheme described in section 3.1
.

The simulation of the proximity sensors is achieved us-
ing ray tracing to calculate the distance between the sensor
and the next obstacle in the sensing direction. Ray tracing is
performed within the same 3D world model of the environ-
ment, which is also used for the visualization. The simula-
tion takes sensor specific measuring errors into account. For
example, the simulation includes the possibility of specular
reflections of ultrasound beams. According to experiments
carried out with RHINO the probability of such reflections
increases with the angle� between the surface normal and
the acoustic axis of the beam and also depends on the dis-
tanced to the obstacle. In case of a reflection the sensor
does not perceive an echo and thus erroneously indicates
free space. The probability P (r j �; d) of a specular reflec-
tion is defined as

P (r j �; d) =

8<
:

0 � < �(d)
(�� �(d))=� �(d) � � < �(d) + �
1 � � �(d) + �

Here� denotes the angle range in which the failure prob-
ability increases linearly from 0 to certainty and�(d) is a
linearly decreasing function. The values of� and�(d) de-
pend on the material the obstacle is made of. Examples for
a typical generated scan in an office environment is shown
in Figure 3.

For the more reliable laser-range finder we use the dis-
tance to the next obstacle in the sensing direction directly
and add an appropriate Gaussian noise to model the small
measuring errors.

The 3D model of the environment uses a boundary rep-
resentation of the objects. Realistic scene descriptions for
3D visualizations usually contain a large number of objects,

Figure 3. The RHINO simulator; The 2D visualiza-
tion displays the length of the simulated sonar mea-
surements.

such that for the distance calculations a large number of
line-surface intersections have to be performed. In order
to achieve the sensor simulation in real-time, the number of
necessary line-surface intersections has to be reduced. We
use a spatial indexing technique based on the rectangular
tiling of the scene [11] for this purpose.

3.5. Synchronization

The current version of PSS has been integrated into the
RHINO software. This prototype is a client-server system.
The server provides the data for the synchronization of the
visualization with the robot. As a module of the RHINO
system it collects all the information required and transmits
it to the clients. In addition, the server has to maintain the
robot’s position in the environment. Due to dead reckon-
ing errors of the robot, it can not rely on the robot’s odom-
etry information directly for this purpose. It employs the
RHINO systems localization facility, instead, to correct the
odometry information before synchronization.

One synchronization message contains the current posi-
tion of the robot, the velocities, theaccelerations, the next
goal position of the planner and a time stamp. This informa-
tion is sufficient to resynchronize the PSS. The time stamp
is used by the clients to compensate for the transmission
time of a synchronization message. For this reason it is im-
portant, that the clients and the server have synchronized
clocks. We rely on the “Network Time Protocol” [10] for
this purpose. The synchronization is state-less, i. e. it only
requires the latest synchronization message, a fact which is
important because the system uses a fast but unreliable UDP
socket connection for the Internet communication.
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4. Experimental Results

To demonstrate the prediction accuracy of the PSS we
performed a typical office delivery experiment and com-
pared the quality of the visualization of PSS with a visu-
alization obtained by using the extrapolation scheme de-
scribed in section 3.1 alone. Here, RHINO started in the
corridor of our department and visited five different offices
in the order which is depicted in Figure 4. The length of
the trajectory is80:8m and the robot needed 320 seconds to
complete this task. The numbers in the offices correspond
to the target-points sent to the path planning module.

1

2

3

45

Figure 4. Trajectory of the robot during the office de-
livery task.

Figure 5. Trajectory estimated by extrapolation.

In the experiment, we manually decreased the packet
transmission rate to approximately 10 packets per minute.
We used a constant transmission interval, so that the time
delay between subsequent packets was approximately 6 sec-
onds. Since packets sometimes get lost, the effective time-
delay between subsequent packets in several cases wasn�6

Figure 6. Trajectory predicted by PSS.

seconds. Figures 5 and 6 show typical trajectories which are
obtained if the robot’s trajectory is extrapolated based on the
most recent packet received (Figure 5) or if the behavior of
the robot is simulated using PSS (Figure 6). The trajectories
already demonstrate that PSS provides a better estimation of
the robot’s position than the extrapolation approach.

Figure 7. Trajectory of the robot taken after leav-
ing room 1 (left), circular trajectory obtained by ex-
trapolation (center), and trajectory predicted by PSS
(right).

To illustrate the improvements in the visualization we
now consider one subset of these trajectories corresponding
to the packet, received by the client after the robot leaves
room 1.

Figure 7 shows fractions of all three trajectories after the
robot left room 1. In this particular case, the next packet was
lost so that the system had to predict the robot’s trajectory
for a period of 12.5 seconds. Since the extrapolation does
not change the velocities of the robot during a transmission
gap, the robot moves on a circular trajectory. In contrast,
PSS uses the path planner and the collision avoidance mod-
ules to compute intermediate velocities, which results in a
trajectory which is close to that of the real robot.

The corresponding sequences of computed images for
the 3D visualization are shown in Figure 8. The time de-
lay between subsequent images is 2 seconds. The first row
shows the images obtained using the correct position of the
robot, the second row the images computed by an extrap-
olation, and the third row the images obtained using PSS.
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(a) Trajectory of the robot.

(c) Trajectory computed by extrapolation.

(b) Trajectory predicted by PSS.

Figure 8. A sequence of computed images showing RHINO moving through the corridor of our department. The time-
difference between consecutive images is approximately 2 seconds. The camera position is illustrated in the left image
of Figure 7.

Obviously PSS significantly improves the quality of the vi-
sualization.

We repeated this experiment several times for the whole
trajectory using recorded data and varying the points in time
when packets were transmitted. Figure 9 shows the average
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Figure 9. Average displacement depending on trans-
mission gap.

positioning error – the distance between the predicted po-
sition and the position of the real robot – as a function of
the time passed since the last packet was received. This
shows, that PSS is able to significantly reduce the average
positioning error compared to the extrapolation technique
after transmission gaps of at least 2.5 seconds. Since these
differences depend on the speed of the robot, which was

34:5 cm=s on average in this experiment, we additionally
computed the average displacement depending on the dis-
tance traveled after the latest synchronization packet. The
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Figure 10. Average displacement depending on the
distance traveled after the last synchronization.

resulting plots are shown in Figure 10. Thus, at least after
1m of travel, PSS provides a significantly better prediction
than extrapolation. In both figures, the error bars indicate
the 95% confidence interval of the average mean.

5. Summary and Conclusions

In this paper we presented PSS, a predictive simulation
system for the accurate visualization of tele-operated au-
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tonomous robots. In addition to odometry and sensor sys-
tem simulators this system includes a global path planner
and a reactive collision avoidance system to predict the
robot’s trajectory in the case of transmission gaps.

The PSS has been implemented using the RHINO sys-
tem, the distributed control software for our mobile robot
RHINO. The task of the PSS is to predict the robot’s behav-
ior in order to achieve accurate visualizations while watch-
ing the robot operate over the Internet. In this paper we
demonstrated that PSS provides accurate predictions even
in situations in which no packet has been received for a pe-
riod of over 12 seconds. In experiments with an office de-
livery task, the predictions of PSS were significantly better
than those obtained by extrapolating the robot’s trajectory
based on the velocities given with the last synchronization
message, provided that the robot traveled at least1m during
the transmission gap.

Despite these encouraging results there are several war-
rants for future research. The most important topic concerns
the extension to dynamic environments and the visualiza-
tion of manipulation tasks. This requires a reliable model
update mechanism based on the sensor interpretation capa-
bilities provided by the robot system.
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