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Why heuristics?

• Many interesting problems are NP-hard, sometimes 
even to approximate 

• Heuristics can be very effective in practice

• SAT solvers handle formulae with 106 variables, used for 
hardware and software verification

• CPLEX used widely in industry to solve integer programs

• Much interest in improving performance of 
heuristics (e.g., SAT conference holds annual 
competitions)
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Pitfalls

• Behavior of a heuristic on a particular instance is 
hard to predict

• Might do better on average by running several 
heuristics in parallel
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Table 1: Blah.

Instance SatELiteGTI MiniSat
CPU (s) CPU (s)

liveness-unsat-2-01dlx c bp u f liveness 33 15
vliw-sat-2-0/9dlx vliw at b iq6 bug4 376 ≥ 120000
vliw-sat-2-0/9dlx vliw at b iq6 bug9 ≥ 120000 131

Table 2: Results for the SAT 2005 competition, top two solvers in each category
(cross-validation results are parenthesized).

Category (#Instances) Solver Avg. CPU (s) Num. solved
Industrial (268) Optimal schedule 793 268

Greedy schedule (x-val) 794 (824) 268 (267)
SatELiteGTI 958 267
Parallel schedule 1264 265
MiniSat 1.13 1759 250

Random (284) Optimal schedule 1173 261
Greedy schedule (x-val) 1173 (1259) 261 (260)
Parallel schedule 1325 257
ranov 2026 209
kcnfs-2004 2874 167

Hand-crafted (403) Optimal schedule 538 391
Greedy schedule (x-val) 539 (644) 391 (386)
Parallel schedule 643 388
Vallst 1095 343
SatELiteGTI 1214 350
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Pitfalls

• Running time of a randomized heuristic can vary widely 
across different random seeds

• Randomized SAT solvers can exhibit heavy-tailed run length 
distributions (Gomes et al. 1998)
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Previous work

• Algorithm portfolios (Huberman et 
al. 1997,  Gomes et al. 2001, ...)

• Assign each heuristic a fixed 
proportion of CPU time, plus a 
fixed restart threshold 

• Assumed each heuristic has a 
known run length distribution that 
does not vary across instances
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An Economics Approach to
Hard Computational Problems

Bernardo A. Huberman, Rajan M. Lukose, Tad Hogg

A general method for combining existing algorithms into new programs that are un-
equivocally preferable to any of the component algorithms is presented. This method,
based on notions of risk in economics, offers a computational portfolio design procedure
that can be used for a wide range of problems. Tested by solving a canonical NP-
complete problem, the method can be used for problems ranging from the combinatorics
of DNA sequencing to the completion of tasks in environments with resource contention,
such as the World Wide Web.

Extremely hard computational problems
are pervasive in fields ranging from molec-
ular biology to physics and operations re-
search. Examples include determining the
most probable arrangement of cloned frag-
ments of a DNA sequence (1), the global
minima of complicated energy functions in
physical and chemical systems (2), and the
shortest path visiting a given set of cities
(3), to name a few. Because of the combi-
natorics involved, their solution times grow
exponentially with the size of the problem
(a basic trait of the so-called NP-complete
problems), making it impossible to solve
very large instances in reasonable times (4).

In response to this difficulty, a number
of efficient heuristic algorithms have been
developed. These algorithms, although not
always guaranteed to produce a good solu-
tion or to finish in a reasonable time, often
provide satisfactory answers fairly quickly.
In practice, their performance varies greatly
from one problem instance to another. In
many cases, the heuristics involve random-
ized algorithms (5), giving rise to perfor-
mance variability even across repeated trials

on a single problem instance.
In addition to combinatorial search

problems, there are many other computa-
tional situations where performance varies
from one trial to another. For example,
programs operating in large distributed sys-
tems or interacting with the physical world
can have unpredictable performance be-
cause of changes in their environment. A
familiar example is the action of retrieving
a particular page on the World Wide Web.
In this case, the usual network congestion
leads to a variability in the time required to
retrieve the page, raising the dilemma of
whether to restart the process or wait.

In all of these cases, the unpredictable
variation in performance can be character-
ized by a distribution describing the proba-
bility of obtaining each possible perfor-
mance value. The mean or expected values
of these distributions are usually used as an
overall measure of quality (6–9). We point
out, however, that expected performance is
not the only relevant measure of the quality
of an algorithm. The variance of a perfor-
mance distribution also affects the quality
of an algorithm because it determines how
likely it is that a particular run’s perfor-
mance will deviate from the expected one.

This variance implies that there is an in-
herent risk associated with the use of such
an algorithm, a risk that, in analogy with
the economic literature, we will identify
with the standard deviation of its perfor-
mance distribution (10).

Risk is an important additional charac-
teristic of algorithms because one may be
willing to settle for a lower average perfor-
mance in exchange for increased certainty
in obtaining a reasonable answer. This situ-
ation is often encountered in economics
when trying to maximize a utility that has an
associated risk. It is usually dealt with by
constructing mixed strategies that have de-
sired risk and performance (11). In analogy
with this approach, we here present a widely
applicable method for constructing “portfo-
lios” that combine different programs in
such a way that a whole range of perfor-
mance and risk characteristics become avail-
able. Significantly, some of these portfolios
are unequivocally preferable to any of the
individual component algorithms running
alone. We verify these results experimental-
ly on graph-coloring, a canonical NP-com-
plete problem, and by constructing a restart
strategy for access to pages on the Web.

To illustrate this method, consider a sim-
ple portfolio of two Las Vegas algorithms,
which, by definition, always produce a cor-
rect solution to a problem but with a distri-
bution of solution times (5). Let t1 and t2
denote the random variables, which have
distributions of solution times p1(t) and
p2(t). For simplicity, we focus on the case of
discrete distributions, although our method
applies to continuous distributions as well.
The portfolio is constructed simply by let-
ting both algorithms run concurrently but
independently on a serial computer. Let f1
denote the fraction of clock cycles allocat-
ed to algorithm 1 and f2 " 1 # f1 be the
fraction allocated to the other. As soon as
one of the algorithms finds a solution, the
run terminates. Thus, the solution time t is
a random variable related to those of the
individual algorithms by

t " min !t1

f1
,

t2

f2
" (1)

The resulting portfolio algorithm is charac-
terized by the probability distribution p(t)
that it finishes in a particular time t. This
probability is given by the probability that
both constituent algorithms finish in
time ! t minus the probability that both
algorithms finish in time $ t

p%t& " # $
t'!f1t

p1%t'&%# $
t'!f2t

p2%t'&%
" # $

t'#f1t

p1%t'&%# $
t'#f2t

p2%t'&% (2)
Dynamics of Computation Group, Xerox Palo Alto Re-
search Center, Palo Alto, CA 94304, USA.
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Previous work 

• “Combining Multiple Heuristics” (Sayag, Fine & 
Mansour, STACS 2006)

• considered resource-sharing schedules and task-switching 
schedules

• gave offline algorithms + sample complexity bounds

• algorithms are exponential in #heuristics
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This talk: formal setup

• Given set H={h1,h2,..., hk} of heuristics (for now 
assume deterministic)

• Fed sequence of n decision problems to solve

• On ith instance, hj takes time τij ∈ {1, 2, ..., B} ∪ {∞}

• Assume for each i, minj τij < ∞

• Solve each problem by interleaving execution of 
heuristics, stopping as soon as one of them returns 
an answer
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Task-switching schedules
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• Mapping S:ℤ↦H from time slices to heuristics; S(t) 
= heuristic to run from time t to time t+1

• Example:

Task-switching schedules
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• Mapping S:ℤ↦H from time slices to heuristics; S(t) 
= heuristic to run from time t to time t+1

• Example:
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• Mapping S:ℤ↦H from time slices to heuristics; S(t) 
= heuristic to run from time t to time t+1

• Example:

• Note: this assumes we can keep multiple heuristics 
in memory and switch between them at zero cost
(will come back to this later)

Task-switching schedules
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Outline

• Offline algorithms:

• Exact algorithm based on shortest paths (Theorem 12 
of Sayag et al. 2006)

• Hardness of approximation

• Greedy approximation algorithm

• Online algorithms

• Generalization to restart schedules

• Experiments

9



The offline problem

• Offline problem: given table τ of completion 
times, compute task-switching schedule that 
minimizes sum of CPU time over all 
instances

10



Solving the offline problem
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• Can think of a task-
switching schedule as 
a path in a k-
dimensional grid with 
sides of length B+1 
(here B=4)
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• Can think of a task-
switching schedule as 
a path in a k-
dimensional grid with 
sides of length B+1 
(here B=4)

• E.g. “run h1 for 2 
seconds, then run h2 
for 3 seconds...”
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Solving the offline problem

0 0 0 0 0

1 1 1 0 0

1 1 1 0 0

1 1 1 0 0

1 1 1 0 0

0 1 2 3 4

0

1

2

3

4

h1

h2

3 4

h1 h2

I1

I2

I3

I4

Completion times Shortest path problem

12



Solving the offline problem

0 1 2 3 4

0

1

2

3

4

h1

h2

3 4

2 1

0 0 0 0 0

1 1 1 0 0

1 1 1 0 0

1 1 1 0 0

2 2 1 0 0

h1 h2

I1

I2

I3

I4

Completion times Shortest path problem

12



Solving the offline problem

0 1 2 3 4

0

1

2

3

4

h1

h2

3 4

2 1

2 4

0 0 0 0 0

2 2 1 0 0

2 2 1 0 0

2 2 1 0 0

3 3 1 0 0

h1 h2

I1

I2

I3

I4

Completion times Shortest path problem

12



Solving the offline problem

0 1 2 3 4

0

1

2

3

4

h1

h2

3 4

2 1

2 4

3 1

0 0 0 0 0

2 2 1 0 0

2 2 1 0 0

2 2 1 0 0

4 4 2 0 0

h1 h2

I1

I2

I3

I4

Completion times Shortest path problem

12



Solving the offline problem

0 1 2 3 4

0

1

2

3

4

h1

h2

3 4

2 1

2 4

3 1

0 0 0 0 0

2 2 1 0 0

2 2 1 0 0

2 2 1 0 0

4 4 2 0 0

0 0 0 0 0

2 2 1 0 0

2 2 1 0 0

2 2 1 0 0

4 4 2 0 0

h1 h2

I1

I2

I3

I4

Completion times Shortest path problem

12



Solving the offline problem

0 1 2 3 4

0

1

2

3

4

h1

h2

0 0 0 0 0

2 2 1 0 0

2 2 1 0 0

2 2 1 0 0

4 4 2 0 0

0 0 0 0 0

2 2 1 0 0

2 2 1 0 0

2 2 1 0 0

4 4 2 0 0

Shortest path problem

12

• Time complexity is   
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• Time complexity is   
O(nk(B+1)k)

• Can get α- 
approximation in  time 
O(nk(1+logα B)k)

• Can also replace B 
with n (Theorem 12 
of Sayag et al. 2006)



Hardness of approximation

• Offline problem of computing an optimal 
task-switching schedule generalizes min-sum 
set cover; obtaining an α-approximation is 
NP-hard for any α < 4 (Feige, Lovász, & 
Tetali, APPROX 2002)
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Min-sum set cover
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(Feige, Lovász, & Tetali, 2002)



Min-sum set cover

• Input: k sets, n elements

• Output: ordering of the sets that minimizes     
Σelements x coverage-time(x)                                        
where coverage-time(x) = position of first set containing x

• Example: in ordering {a,b},{a,c},{d},                 
coverage-time(a)=1 and coverage-time(c)=2

14

(Feige, Lovász, & Tetali, 2002)



Min-sum set cover

• Input: k sets, n elements

• Output: ordering of the sets that minimizes     
Σelements x coverage-time(x)                                        
where coverage-time(x) = position of first set containing x

• Example: in ordering {a,b},{a,c},{d},                 
coverage-time(a)=1 and coverage-time(c)=2

• Our problem is equivalent when B=1, so τij ∈ {1,∞} 

(sets = heuristics, elements = instances)
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Min-sum set cover

• Can get a 4-approximation by greedily choosing the 
set that covers the max #elements to go next in the 
ordering

• Will generalize to get 4-approximation for task-
switching schedules

15

(Feige, Lovász, & Tetali, 2002)



• Let Ci = #(elements with coverage time i under 
greedy ordering); let Ri = Ci + Ci+1 + ... + Ck

• Key fact: under any ordering, at least Ri - t*Ci 
elements have coverage time > t  (for all i,t)

Greedy min-sum set cover

16

(Feige, Lovász, & Tetali, 2002)
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Greedy min-sum set cover

17

(Feige, Lovász, & Tetali, 2002)



Greedy min-sum set cover

• Let h(t) = #(elements with coverage time > t under optimal 
ordering), so OPT = Σt h(t)

17

OPT  = area under curve

(Feige, Lovász, & Tetali, 2002)

t

h(t)



Greedy min-sum set cover

• Let h(t) = #(elements with coverage time > t under optimal 
ordering), so OPT = Σt h(t)

• Key fact: h(t) ≥ Ri - t*Ci.  In particular, h(½Ri/Ci) ≥ ½Ri

17

OPT  = area under curve

(Feige, Lovász, & Tetali, 2002)
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Greedy min-sum set cover

• Let h(t) = #(elements with coverage time > t under optimal 
ordering), so OPT = Σt h(t)

• Key fact: h(t) ≥ Ri - t*Ci.  In particular, h(½Ri/Ci) ≥ ½Ri

17

OPT  = area under curve
≥ shaded area

(Feige, Lovász, & Tetali, 2002)
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Greedy min-sum set cover

• Let h(t) = #(elements with coverage time > t under optimal 
ordering), so OPT = Σt h(t)

• Key fact: h(t) ≥ Ri - t*Ci.  In particular, h(½Ri/Ci) ≥ ½Ri

17

OPT  = area under curve
≥ shaded area
= Σi (½Ri/Ci)*(½Ri-½Ri+1)
= Σi Ri/4
= GREEDY/4

(Feige, Lovász, & Tetali, 2002)
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Greedy task-switching schedules
• Algorithm: greedily choose pair (h,t) such that running h for 

t (additional) time steps maximizes #(new instances solved)/t

18
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Greedy task-switching schedules
• Algorithm: greedily choose pair (h,t) such that running h for 

t (additional) time steps maximizes #(new instances solved)/t
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least Ri - t*Ci instances 
unsolved at time t, where Ci = 
ith slope and Ri = #(instances 
unsolved before ith phase)

Then use similar proof by 
picture



Greedy task-switching schedules
• Algorithm: greedily choose pair (h,t) such that running h for 

t (additional) time steps maximizes #(new instances solved)/t
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# solved
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time

# solved
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time

Schedule
run h1 for 1 time step
run h2 for 4 time steps

Can show any schedule has at 
least Ri - t*Ci instances 
unsolved at time t, where Ci = 
ith slope and Ri = #(instances 
unsolved before ith phase)

Then use similar proof by 
picture

In fact, we obtain a 4-
approximation even if we keep 

just one heuristic in memory at a 
time, and restart from scratch 

whenever we switch 



The online problem

• Nature (or an adversary) fills in table τ of completion times.  
Then:

• For j from 1 to n

• You select task-switching schedule Sj

• You incur cost cj(Sj) = time it takes to jth instance using Sj

• Your feedback is cj(Sj)

• Regret = E[∑j cj(Sj) - minS ∑j cj(S)]

• Want worst-case regret that is o(n)

19



Background: experts algorithms
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Background: experts algorithms

• General framework: have M experts that make predictions 
every day; following expert e’s advice on day j costs cj(e)

• Every day you pick expert ej and incur costs cj(ej)

• You then learn cj(e) for all experts

• regret = E[∑j cj(ej) - mine ∑j cj(e)]

• Randomized weighted majority (RWM) gives worst-case 
regret O((n log M)1/2)

20



Background: experts algorithms

• General framework: have M experts that make predictions 
every day; following expert e’s advice on day j costs cj(e)

• Every day you pick expert ej and incur costs cj(ej)

• You then learn cj(e) for all experts

• regret = E[∑j cj(ej) - mine ∑j cj(e)]

• Randomized weighted majority (RWM) gives worst-case 
regret O((n log M)1/2)

• Suppose that to learn cj you must pay an “exploration cost” 
C that is added to regret.  Running RWM using data from a 
random subset of the days gives regret O(n2/3(C log M)1/3) 
(Cesa-Bianchi et al., 2005)
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Online shortest path algorithm

• Using existing no-regret strategies for online shortest paths 
in “bandit” feedback setting would give regret poly(#edges)

• By paying Bk, can reveal weights of all edges.  Using Cesa-
Bianchi et al. (2005) gives regret O(Bkn2/3(Lk log k)1/3), 
where L = length of sides of grid

• Using dynamic programming, can implement RWM so 
decision-making time is O(#edges) (György et al., 2006)

21



Online greedy algorithm

22

(ongoing work)



Online greedy algorithm

• Consider running RWM on a sequence of n 
instances, using the following pool of experts:

• For each heuristic h and each time t, have an expert that 
behaves as follows: w/prob. 1/t it runs h for t time 
steps; and w/prob. 1-1/t it does nothing

• Expert’s payoff is 1 if it solves the problem, 0 otherwise

22
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Online greedy algorithm

• Consider running RWM on a sequence of n 
instances, using the following pool of experts:

• For each heuristic h and each time t, have an expert that 
behaves as follows: w/prob. 1/t it runs h for t time 
steps; and w/prob. 1-1/t it does nothing

• Expert’s payoff is 1 if it solves the problem, 0 otherwise

• Will consume n time steps in expectation

• To get regret/n→0, must solve as many instances 
as possible per unit time (like offline greedy)

22

(ongoing work)



Online greedy algorithm
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Online greedy algorithm

• Idea: define task-switching schedule using a series of such 
RWM algorithms, operating independently

• Can show 4-regret is O(poly(B,k)*n2/3)
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Online greedy algorithm

• Idea: define task-switching schedule using a series of such 
RWM algorithms, operating independently

• Can show 4-regret is O(poly(B,k)*n2/3)

• Using result of Kakade, Kalai & Ligett also gives 4-regret 
that is o(1), but exponential in #heuristics
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Previous work

• Special case: deterministic heuristics with 
fixed known running time

• Munagala et al., “The pipelined set cover 
problem” (ICDT 2005) — asymptotic O(log n) 
competitive ratio in adversarial online setting

• Kaplan et al. “Learning with attribute costs” (STOC 
2005) — asymptotically 4-competitive with better 
bounds than ours, but only in distributional online setting
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Generalization: restart schedules

• Restart schedule = task-switching schedule 
augmented with flag that says whether to restart at 
each time slice (i.e., mapping S:ℤ↦H×{0,1})

• If |H|=1, this is just a sequence of restart 
thresholds t1, t2, ...

h1

h2

time

h3

. . .
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Generalization: restart schedules

• Offline greedy algorithm maximizes expected 
number of instances solved per unit time

• For online version, need to interpret B as a 
bound on total time devoted to a single 
heuristic (across multiple runs)

26



Experiments



Solver competitions

• Each year, various conferences hold solver 
competitions with the following format:

• each submitted heuristic is run on a sequence of 
instances (subject to time limit)

• awards for heuristics that solve the most instances in 
various instance categories

• Downloaded tables of completion times, computed 
(approximately) optimal task-switching schedules, 
and compared them to best individual solver

28



Results for ICAPS 2006 Planning 
Competition

• A.I. planning involves finding a minimum-
length sequence of actions that lead from a 
start state to a goal state

• Six “optimal” planners were submitted to 
2006 A.I. planning competition

• each run on 240 instances with 30 minute time 
limit per instance

• 110 instances were solved by at least one of the 
six

29



Results for 2006 A.I. Planning 
Competition

30

Table 1: Results for the ICAPS 2006 optimal planning competition (cross-
validation results are parenthesized).

Solver Avg. CPU (s) Num. solved
Greedy schedule (x-val) 358 (407) 98 (97)
Single-run greedy (x-val) 476 (586) 96 (95)
SATPLAN 507 83
Maxplan 641 88
MIPS-BDD 946 54
CPT2 969 53
FDP 1079 46
Parallel schedule 1244 89
IPPLAN-1SC 1437 23

Table 2: Results for PB 2006 optimization experiments (cross-validation results
are parenthesized).

Solver Avg. CPU Avg. CPU Avg. CPU
to Prove Opt. to Find Opt. to Find Feas.

Greedy schedule 116 85 29
MiniSat 1.14 277 257 86
bsolo 279 211 94
SAT4J 433 323 56
SAT4J Heur. 408 302 44

Table 3: Blah.

Instance SatELiteGTI MiniSat
CPU (s) CPU (s)

liveness-unsat-2-01dlx c bp u f liveness 33 15
vliw-sat-2-0/9dlx vliw at b iq6 bug4 376 ≥ 120000
vliw-sat-2-0/9dlx vliw at b iq6 bug9 ≥ 120000 131
vliw-unsat-2-0/9dlx vliw at b iq9 ≥ 120000 ≥ 120000

1



Results for 2006 A.I. Planning 
Competition

30

Table 1: Results for the ICAPS 2006 optimal planning competition (cross-
validation results are parenthesized).

Solver Avg. CPU (s) Num. solved
Greedy schedule (x-val) 358 (407) 98 (97)
Single-run greedy (x-val) 476 (586) 96 (95)
SATPLAN 507 83
Maxplan 641 88
MIPS-BDD 946 54
CPT2 969 53
FDP 1079 46
Parallel schedule 1244 89
IPPLAN-1SC 1437 23

Table 2: Results for PB 2006 optimization experiments (cross-validation results
are parenthesized).

Solver Avg. CPU Avg. CPU Avg. CPU
to Prove Opt. to Find Opt. to Find Feas.

Greedy schedule 116 85 29
MiniSat 1.14 277 257 86
bsolo 279 211 94
SAT4J 433 323 56
SAT4J Heur. 408 302 44

Table 3: Blah.

Instance SatELiteGTI MiniSat
CPU (s) CPU (s)

liveness-unsat-2-01dlx c bp u f liveness 33 15
vliw-sat-2-0/9dlx vliw at b iq6 bug4 376 ≥ 120000
vliw-sat-2-0/9dlx vliw at b iq6 bug9 ≥ 120000 131
vliw-unsat-2-0/9dlx vliw at b iq9 ≥ 120000 ≥ 120000

1

Greedy
schedule:

SATPLAN

Maxplan

MIPS-BDD

CPT2

FDP

time

1 10 100 10000.1



Summary
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Table 1: Summary of results for four solver competitions.

Solver competition Domain Speedup factor
(range across categories)

SAT 2005 satisfiability 1.2–2.0
ICAPS 2006 planning 1.4
CP 2006 constraint satisfaction 1.0–1.5
IJCAR 2006 theorem proving 1.0–7.7

1



Optimization heuristics

• For optimization heuristics, cost of a task-
switching schedule should reflect how 
solution quality changes as a function of time

• Our results generalize to cost functions of 
the form ∑q wq*(time to get solution of 
quality at least q)
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Results for PB 2006 evaluation

• “Pseudo-Boolean optimization” means using a SAT solver 
for 0/1 integer programming
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(time to find feasible solution) 
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Results for PB 2006 evaluation

• Greedy schedule outperforms each individual 
solver with respect to all three criteria
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Table 1: Results for PB 2006 optimization experiments (cross-validation results
are parenthesized).

Solver Avg. CPU Avg. CPU Avg. CPU
to Prove Opt. to Find Opt. to Find Feas.
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Conclusions & Future Work

• We presented no-regret algorithms for 
selecting task-switching/restart schedules 
online

• Open problems:

• matching upper & lower bounds on regret

• better results for restart schedules when |H|=1?

35


