
Combining Multiple Heuristics in
an Adversarial Online Setting

Daniel Golovin Stephen F. Smith Matthew Streeter

CMU theory lunch 2/14/07

Why heuristics?

• Many interesting problems are NP-hard, sometimes
even to approximate

• Heuristics can be very effective in practice

• SAT solvers handle formulae with 106 variables, used for
hardware and software verification

• CPLEX used widely in industry to solve integer programs

• Much interest in improving performance of
heuristics (e.g., SAT conference holds annual
competitions)

2

Pitfalls

• Behavior of a heuristic on a particular instance is
hard to predict

• Might do better on average by running several
heuristics in parallel

3

Table 1: Blah.

Instance SatELiteGTI MiniSat
CPU (s) CPU (s)

liveness-unsat-2-01dlx c bp u f liveness 33 15
vliw-sat-2-0/9dlx vliw at b iq6 bug4 376 ≥ 120000
vliw-sat-2-0/9dlx vliw at b iq6 bug9 ≥ 120000 131

Table 2: Results for the SAT 2005 competition, top two solvers in each category
(cross-validation results are parenthesized).

Category (#Instances) Solver Avg. CPU (s) Num. solved
Industrial (268) Optimal schedule 793 268

Greedy schedule (x-val) 794 (824) 268 (267)
SatELiteGTI 958 267
Parallel schedule 1264 265
MiniSat 1.13 1759 250

Random (284) Optimal schedule 1173 261
Greedy schedule (x-val) 1173 (1259) 261 (260)
Parallel schedule 1325 257
ranov 2026 209
kcnfs-2004 2874 167

Hand-crafted (403) Optimal schedule 538 391
Greedy schedule (x-val) 539 (644) 391 (386)
Parallel schedule 643 388
Vallst 1095 343
SatELiteGTI 1214 350

1

Pitfalls

• Running time of a randomized heuristic can vary widely
across different random seeds

• Randomized SAT solvers can exhibit heavy-tailed run length
distributions (Gomes et al. 1998)

4

satz-rand running on logistics.d

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000

time (s)

P
r[

ru
n

 n
o
t

fi
n

is
h

e
d

]

Previous work

• Algorithm portfolios (Huberman et
al. 1997, Gomes et al. 2001, ...)

• Assign each heuristic a fixed
proportion of CPU time, plus a
fixed restart threshold

• Assumed each heuristic has a
known run length distribution that
does not vary across instances

5

ties perpendicular to the magnetic field. The frequen-
cy of the lower hybrid waves is between the gyro-
frequencies of the electrons (!ce) and the ions (!ci)
which means that these waves can be in simulta-
neous Cherenkov resonance with the relatively slow
but unmagnetized ions perpendicular to the magnet-
ic field and fast magnetized (hence magnetic field
aligned) electrons. Cherenkov resonance occurs
when the phase velocity of the wave and the particle
velocity are equal; under these conditions strong in-
teraction between the waves and particles is possi-
ble and results in energy transfer from the wave to
the particle or vice versa. The lower hybrid waves
provide the intermediary step in transferring energy
between the ions and electrons.

5. M. J. Mumma et al., Science 272, 1310 (1996).
6. D. Krankowsky et al., Nature 321, 326 (1986).
7. H. S. Hudson, W.-H. Ip, D. A. Mendis, Planet. Space

Sci. 29, 1373 (1981).
8. J. B. McBride, E. Ott, P. B. Jay, J. H. Orens, Phys.

Fluids 157, 2367 (1972). A two stream instability
results when two charged particle populations trav-
eling in opposite directions interact.

9. M. K. Wallis and R. S. B. Ong, Planet. Space Sci. 23,

713 (1975). A more accurate calculation based on
the analysis of the solar wind dynamics, mass-
loaded by the picked-up cometary ions lead to the
same formula for the ion density.

10. D. A. Mendis, H. L. F. Houpis, M. L. Marconi, Physics
of Comets Fundamentals of Cosmic Physics (1985),
vol. 10.

11. L. D. Landau, J. Phys. USSR 10, 25 (1946); F. F.
Chen, Introduction to Plasma Physics and Con-
trolled Fusion (Plenum, New York, 1984), vol. 1, p.
240.

12. V. D. Shapiro and V. I. Shevchenko, Sov. Sci. Rev. E,
Astrophys. Space Phys. 6, 425 (1988).

13. D. F. Post, R. V. Jensen, C. B. Tarter, W. H. Gras-
berger, W. A. Lokke, Princeton Plasma Physics Lab-
oratory Report PPPL-1352 (1977).

14. J. M. Dawson, in Fusion, E. Teller, Ed. (Academic
Press, New York, 1981), p. 465.

15. J. W. Chamberlain, Physics of the Aurora and Air-
glow (Academic Press, New York, 1961).

16. This work was supported in part by NSF grant PH-
9319198;003 and NASA NAGW-1502.

21 June 1996; accepted 17 October 1996

An Economics Approach to
Hard Computational Problems

Bernardo A. Huberman, Rajan M. Lukose, Tad Hogg

A general method for combining existing algorithms into new programs that are un-
equivocally preferable to any of the component algorithms is presented. This method,
based on notions of risk in economics, offers a computational portfolio design procedure
that can be used for a wide range of problems. Tested by solving a canonical NP-
complete problem, the method can be used for problems ranging from the combinatorics
of DNA sequencing to the completion of tasks in environments with resource contention,
such as the World Wide Web.

Extremely hard computational problems
are pervasive in fields ranging from molec-
ular biology to physics and operations re-
search. Examples include determining the
most probable arrangement of cloned frag-
ments of a DNA sequence (1), the global
minima of complicated energy functions in
physical and chemical systems (2), and the
shortest path visiting a given set of cities
(3), to name a few. Because of the combi-
natorics involved, their solution times grow
exponentially with the size of the problem
(a basic trait of the so-called NP-complete
problems), making it impossible to solve
very large instances in reasonable times (4).

In response to this difficulty, a number
of efficient heuristic algorithms have been
developed. These algorithms, although not
always guaranteed to produce a good solu-
tion or to finish in a reasonable time, often
provide satisfactory answers fairly quickly.
In practice, their performance varies greatly
from one problem instance to another. In
many cases, the heuristics involve random-
ized algorithms (5), giving rise to perfor-
mance variability even across repeated trials

on a single problem instance.
In addition to combinatorial search

problems, there are many other computa-
tional situations where performance varies
from one trial to another. For example,
programs operating in large distributed sys-
tems or interacting with the physical world
can have unpredictable performance be-
cause of changes in their environment. A
familiar example is the action of retrieving
a particular page on the World Wide Web.
In this case, the usual network congestion
leads to a variability in the time required to
retrieve the page, raising the dilemma of
whether to restart the process or wait.

In all of these cases, the unpredictable
variation in performance can be character-
ized by a distribution describing the proba-
bility of obtaining each possible perfor-
mance value. The mean or expected values
of these distributions are usually used as an
overall measure of quality (6–9). We point
out, however, that expected performance is
not the only relevant measure of the quality
of an algorithm. The variance of a perfor-
mance distribution also affects the quality
of an algorithm because it determines how
likely it is that a particular run’s perfor-
mance will deviate from the expected one.

This variance implies that there is an in-
herent risk associated with the use of such
an algorithm, a risk that, in analogy with
the economic literature, we will identify
with the standard deviation of its perfor-
mance distribution (10).

Risk is an important additional charac-
teristic of algorithms because one may be
willing to settle for a lower average perfor-
mance in exchange for increased certainty
in obtaining a reasonable answer. This situ-
ation is often encountered in economics
when trying to maximize a utility that has an
associated risk. It is usually dealt with by
constructing mixed strategies that have de-
sired risk and performance (11). In analogy
with this approach, we here present a widely
applicable method for constructing “portfo-
lios” that combine different programs in
such a way that a whole range of perfor-
mance and risk characteristics become avail-
able. Significantly, some of these portfolios
are unequivocally preferable to any of the
individual component algorithms running
alone. We verify these results experimental-
ly on graph-coloring, a canonical NP-com-
plete problem, and by constructing a restart
strategy for access to pages on the Web.

To illustrate this method, consider a sim-
ple portfolio of two Las Vegas algorithms,
which, by definition, always produce a cor-
rect solution to a problem but with a distri-
bution of solution times (5). Let t1 and t2
denote the random variables, which have
distributions of solution times p1(t) and
p2(t). For simplicity, we focus on the case of
discrete distributions, although our method
applies to continuous distributions as well.
The portfolio is constructed simply by let-
ting both algorithms run concurrently but
independently on a serial computer. Let f1
denote the fraction of clock cycles allocat-
ed to algorithm 1 and f2 " 1 # f1 be the
fraction allocated to the other. As soon as
one of the algorithms finds a solution, the
run terminates. Thus, the solution time t is
a random variable related to those of the
individual algorithms by

t " min !t1

f1
,

t2

f2
" (1)

The resulting portfolio algorithm is charac-
terized by the probability distribution p(t)
that it finishes in a particular time t. This
probability is given by the probability that
both constituent algorithms finish in
time ! t minus the probability that both
algorithms finish in time $ t

p%t& " # $
t'!f1t

p1%t'&%# $
t'!f2t

p2%t'&%
" # $

t'#f1t

p1%t'&%# $
t'#f2t

p2%t'&% (2)
Dynamics of Computation Group, Xerox Palo Alto Re-
search Center, Palo Alto, CA 94304, USA.

REPORTS

SCIENCE ! VOL. 275 ! 3 JANUARY 1997 51

Previous work

• “Combining Multiple Heuristics” (Sayag, Fine &
Mansour, STACS 2006)

• considered resource-sharing schedules and task-switching
schedules

• gave offline algorithms + sample complexity bounds

• algorithms are exponential in #heuristics

6

This talk: formal setup

• Given set H={h1,h2,..., hk} of heuristics (for now
assume deterministic)

• Fed sequence of n decision problems to solve

• On ith instance, hj takes time τij ∈ {1, 2, ..., B} ∪ {∞}

• Assume for each i, minj τij < ∞

• Solve each problem by interleaving execution of
heuristics, stopping as soon as one of them returns
an answer

7

Task-switching schedules

h1

h2

time

h3

. . .

8

• Mapping S:ℤ↦H from time slices to heuristics; S(t)
= heuristic to run from time t to time t+1

• Example:

Task-switching schedules

h1

h2

time

h3

. . .

8

• Mapping S:ℤ↦H from time slices to heuristics; S(t)
= heuristic to run from time t to time t+1

• Example:

Task-switching schedules

h1

h2

time

h3

. . .

8

h1 h2 h3

I1 2 7 7

Completion times

• Mapping S:ℤ↦H from time slices to heuristics; S(t)
= heuristic to run from time t to time t+1

• Example:

• Note: this assumes we can keep multiple heuristics
in memory and switch between them at zero cost
(will come back to this later)

Task-switching schedules

h1

h2

time

h3

. . .

8

h1 h2 h3

I1 2 7 7

Completion times

Outline

• Offline algorithms:

• Exact algorithm based on shortest paths (Theorem 12
of Sayag et al. 2006)

• Hardness of approximation

• Greedy approximation algorithm

• Online algorithms

• Generalization to restart schedules

• Experiments

9

The offline problem

• Offline problem: given table τ of completion
times, compute task-switching schedule that
minimizes sum of CPU time over all
instances

10

Solving the offline problem

0 1 2 3 4

0

1

2

3

4

h1

h2

11

• Can think of a task-
switching schedule as
a path in a k-
dimensional grid with
sides of length B+1
(here B=4)

Solving the offline problem

0 1 2 3 4

0

1

2

3

4

h1

h2

11

• Can think of a task-
switching schedule as
a path in a k-
dimensional grid with
sides of length B+1
(here B=4)

• E.g. “run h1 for 2
seconds, then run h2
for 3 seconds...”

Solving the offline problem

0 1 2 3 4

0

1

2

3

4

h1

h2

h1 h2

I1

I2

I3

I4

Completion times Shortest path problem

12

Solving the offline problem

0 1 2 3 4

0

1

2

3

4

h1

h2

h1 h2

I1

I2

I3

I4

Completion times Shortest path problem

12

Solving the offline problem

0 0 0 0 0

1 1 1 0 0

1 1 1 0 0

1 1 1 0 0

1 1 1 0 0

0 1 2 3 4

0

1

2

3

4

h1

h2

3 4

h1 h2

I1

I2

I3

I4

Completion times Shortest path problem

12

Solving the offline problem

0 1 2 3 4

0

1

2

3

4

h1

h2

3 4

2 1

0 0 0 0 0

1 1 1 0 0

1 1 1 0 0

1 1 1 0 0

2 2 1 0 0

h1 h2

I1

I2

I3

I4

Completion times Shortest path problem

12

Solving the offline problem

0 1 2 3 4

0

1

2

3

4

h1

h2

3 4

2 1

2 4

0 0 0 0 0

2 2 1 0 0

2 2 1 0 0

2 2 1 0 0

3 3 1 0 0

h1 h2

I1

I2

I3

I4

Completion times Shortest path problem

12

Solving the offline problem

0 1 2 3 4

0

1

2

3

4

h1

h2

3 4

2 1

2 4

3 1

0 0 0 0 0

2 2 1 0 0

2 2 1 0 0

2 2 1 0 0

4 4 2 0 0

h1 h2

I1

I2

I3

I4

Completion times Shortest path problem

12

Solving the offline problem

0 1 2 3 4

0

1

2

3

4

h1

h2

3 4

2 1

2 4

3 1

0 0 0 0 0

2 2 1 0 0

2 2 1 0 0

2 2 1 0 0

4 4 2 0 0

0 0 0 0 0

2 2 1 0 0

2 2 1 0 0

2 2 1 0 0

4 4 2 0 0

h1 h2

I1

I2

I3

I4

Completion times Shortest path problem

12

Solving the offline problem

0 1 2 3 4

0

1

2

3

4

h1

h2

0 0 0 0 0

2 2 1 0 0

2 2 1 0 0

2 2 1 0 0

4 4 2 0 0

0 0 0 0 0

2 2 1 0 0

2 2 1 0 0

2 2 1 0 0

4 4 2 0 0

Shortest path problem

12

• Time complexity is
O(nk(B+1)k)

Solving the offline problem

0 1 2 3 4

0

1

2

3

4

h1

h2

0 0 0 0 0

2 2 1 0 0

2 2 1 0 0

2 2 1 0 0

4 4 2 0 0

0 0 0 0 0

2 2 1 0 0

2 2 1 0 0

2 2 1 0 0

4 4 2 0 0

Shortest path problem

12

• Time complexity is
O(nk(B+1)k)

• Can get α-
approximation in time
O(nk(1+logα B)k)

Solving the offline problem

0 1 2 3 4

0

1

2

3

4

h1

h2

0 0 0 0 0

2 2 1 0 0

2 2 1 0 0

2 2 1 0 0

4 4 2 0 0

0 0 0 0 0

2 2 1 0 0

2 2 1 0 0

2 2 1 0 0

4 4 2 0 0

Shortest path problem

12

• Time complexity is
O(nk(B+1)k)

• Can get α-
approximation in time
O(nk(1+logα B)k)

• Can also replace B
with n (Theorem 12
of Sayag et al. 2006)

Hardness of approximation

• Offline problem of computing an optimal
task-switching schedule generalizes min-sum
set cover; obtaining an α-approximation is
NP-hard for any α < 4 (Feige, Lovász, &
Tetali, APPROX 2002)

13

Min-sum set cover

14

(Feige, Lovász, & Tetali, 2002)

Min-sum set cover

• Input: k sets, n elements

• Output: ordering of the sets that minimizes
Σelements x coverage-time(x)
where coverage-time(x) = position of first set containing x

• Example: in ordering {a,b},{a,c},{d},
coverage-time(a)=1 and coverage-time(c)=2

14

(Feige, Lovász, & Tetali, 2002)

Min-sum set cover

• Input: k sets, n elements

• Output: ordering of the sets that minimizes
Σelements x coverage-time(x)
where coverage-time(x) = position of first set containing x

• Example: in ordering {a,b},{a,c},{d},
coverage-time(a)=1 and coverage-time(c)=2

• Our problem is equivalent when B=1, so τij ∈ {1,∞}

(sets = heuristics, elements = instances)

14

(Feige, Lovász, & Tetali, 2002)

Min-sum set cover

• Can get a 4-approximation by greedily choosing the
set that covers the max #elements to go next in the
ordering

• Will generalize to get 4-approximation for task-
switching schedules

15

(Feige, Lovász, & Tetali, 2002)

• Let Ci = #(elements with coverage time i under
greedy ordering); let Ri = Ci + Ci+1 + ... + Ck

• Key fact: under any ordering, at least Ri - t*Ci
elements have coverage time > t (for all i,t)

Greedy min-sum set cover

16

(Feige, Lovász, & Tetali, 2002)

C1 C2 C3 C4 C5

R2

Greedy min-sum set cover

17

(Feige, Lovász, & Tetali, 2002)

Greedy min-sum set cover

• Let h(t) = #(elements with coverage time > t under optimal
ordering), so OPT = Σt h(t)

17

OPT = area under curve

(Feige, Lovász, & Tetali, 2002)

t

h(t)

Greedy min-sum set cover

• Let h(t) = #(elements with coverage time > t under optimal
ordering), so OPT = Σt h(t)

• Key fact: h(t) ≥ Ri - t*Ci. In particular, h(½Ri/Ci) ≥ ½Ri

17

OPT = area under curve

(Feige, Lovász, & Tetali, 2002)

½R1
½R1/C1

½R2
½R2/C2

½R3
½R3/C3

½R4
½R4/C4

½R5
½R5/C5

t

h(t)

Greedy min-sum set cover

• Let h(t) = #(elements with coverage time > t under optimal
ordering), so OPT = Σt h(t)

• Key fact: h(t) ≥ Ri - t*Ci. In particular, h(½Ri/Ci) ≥ ½Ri

17

OPT = area under curve
≥ shaded area

(Feige, Lovász, & Tetali, 2002)

½R1
½R1/C1

½R2
½R2/C2

½R3
½R3/C3

½R4
½R4/C4

½R5
½R5/C5

t

h(t)

Greedy min-sum set cover

• Let h(t) = #(elements with coverage time > t under optimal
ordering), so OPT = Σt h(t)

• Key fact: h(t) ≥ Ri - t*Ci. In particular, h(½Ri/Ci) ≥ ½Ri

17

OPT = area under curve
≥ shaded area
= Σi (½Ri/Ci)*(½Ri-½Ri+1)
= Σi Ri/4
= GREEDY/4

(Feige, Lovász, & Tetali, 2002)

½R1
½R1/C1

½R2
½R2/C2

½R3
½R3/C3

½R4
½R4/C4

½R5
½R5/C5

t

h(t)

Greedy task-switching schedules
• Algorithm: greedily choose pair (h,t) such that running h for

t (additional) time steps maximizes #(new instances solved)/t

18

Greedy task-switching schedules
• Algorithm: greedily choose pair (h,t) such that running h for

t (additional) time steps maximizes #(new instances solved)/t

18

solved
 by h1

time

solved
by h2

time

Schedule

Greedy task-switching schedules
• Algorithm: greedily choose pair (h,t) such that running h for

t (additional) time steps maximizes #(new instances solved)/t

18

solved
 by h1

time

solved
by h2

time

Schedule

Greedy task-switching schedules
• Algorithm: greedily choose pair (h,t) such that running h for

t (additional) time steps maximizes #(new instances solved)/t

18

solved
 by h1

time

solved
by h2

time

Schedule
run h1 for 1 time step

Greedy task-switching schedules
• Algorithm: greedily choose pair (h,t) such that running h for

t (additional) time steps maximizes #(new instances solved)/t

18

solved
 by h1

time

solved
by h2

time

Schedule
run h1 for 1 time step

Greedy task-switching schedules
• Algorithm: greedily choose pair (h,t) such that running h for

t (additional) time steps maximizes #(new instances solved)/t

18

solved
 by h1

time

solved
by h2

time

Schedule
run h1 for 1 time step

Greedy task-switching schedules
• Algorithm: greedily choose pair (h,t) such that running h for

t (additional) time steps maximizes #(new instances solved)/t

18

solved
 by h1

time

solved
by h2

time

Schedule
run h1 for 1 time step
run h2 for 4 time steps

Greedy task-switching schedules
• Algorithm: greedily choose pair (h,t) such that running h for

t (additional) time steps maximizes #(new instances solved)/t

18

solved
 by h1

time

solved
by h2

time

Schedule
run h1 for 1 time step
run h2 for 4 time steps

Can show any schedule has at
least Ri - t*Ci instances
unsolved at time t, where Ci =
ith slope and Ri = #(instances
unsolved before ith phase)

Then use similar proof by
picture

Greedy task-switching schedules
• Algorithm: greedily choose pair (h,t) such that running h for

t (additional) time steps maximizes #(new instances solved)/t

18

solved
 by h1

time

solved
by h2

time

Schedule
run h1 for 1 time step
run h2 for 4 time steps

Can show any schedule has at
least Ri - t*Ci instances
unsolved at time t, where Ci =
ith slope and Ri = #(instances
unsolved before ith phase)

Then use similar proof by
picture

In fact, we obtain a 4-
approximation even if we keep

just one heuristic in memory at a
time, and restart from scratch

whenever we switch

The online problem

• Nature (or an adversary) fills in table τ of completion times.
Then:

• For j from 1 to n

• You select task-switching schedule Sj

• You incur cost cj(Sj) = time it takes to jth instance using Sj

• Your feedback is cj(Sj)

• Regret = E[∑j cj(Sj) - minS ∑j cj(S)]

• Want worst-case regret that is o(n)

19

Background: experts algorithms

20

Background: experts algorithms

• General framework: have M experts that make predictions
every day; following expert e’s advice on day j costs cj(e)

• Every day you pick expert ej and incur costs cj(ej)

• You then learn cj(e) for all experts

• regret = E[∑j cj(ej) - mine ∑j cj(e)]

• Randomized weighted majority (RWM) gives worst-case
regret O((n log M)1/2)

20

Background: experts algorithms

• General framework: have M experts that make predictions
every day; following expert e’s advice on day j costs cj(e)

• Every day you pick expert ej and incur costs cj(ej)

• You then learn cj(e) for all experts

• regret = E[∑j cj(ej) - mine ∑j cj(e)]

• Randomized weighted majority (RWM) gives worst-case
regret O((n log M)1/2)

• Suppose that to learn cj you must pay an “exploration cost”
C that is added to regret. Running RWM using data from a
random subset of the days gives regret O(n2/3(C log M)1/3)
(Cesa-Bianchi et al., 2005)

20

Online shortest path algorithm

• Using existing no-regret strategies for online shortest paths
in “bandit” feedback setting would give regret poly(#edges)

• By paying Bk, can reveal weights of all edges. Using Cesa-
Bianchi et al. (2005) gives regret O(Bkn2/3(Lk log k)1/3),
where L = length of sides of grid

• Using dynamic programming, can implement RWM so
decision-making time is O(#edges) (György et al., 2006)

21

Online greedy algorithm

22

(ongoing work)

Online greedy algorithm

• Consider running RWM on a sequence of n
instances, using the following pool of experts:

• For each heuristic h and each time t, have an expert that
behaves as follows: w/prob. 1/t it runs h for t time
steps; and w/prob. 1-1/t it does nothing

• Expert’s payoff is 1 if it solves the problem, 0 otherwise

22

(ongoing work)

Online greedy algorithm

• Consider running RWM on a sequence of n
instances, using the following pool of experts:

• For each heuristic h and each time t, have an expert that
behaves as follows: w/prob. 1/t it runs h for t time
steps; and w/prob. 1-1/t it does nothing

• Expert’s payoff is 1 if it solves the problem, 0 otherwise

• Will consume n time steps in expectation

22

(ongoing work)

Online greedy algorithm

• Consider running RWM on a sequence of n
instances, using the following pool of experts:

• For each heuristic h and each time t, have an expert that
behaves as follows: w/prob. 1/t it runs h for t time
steps; and w/prob. 1-1/t it does nothing

• Expert’s payoff is 1 if it solves the problem, 0 otherwise

• Will consume n time steps in expectation

• To get regret/n→0, must solve as many instances
as possible per unit time (like offline greedy)

22

(ongoing work)

Online greedy algorithm

23

R
W
M
1

R
W
M
2

R
W
M
3

. . .

(ongoing work)

Online greedy algorithm

• Idea: define task-switching schedule using a series of such
RWM algorithms, operating independently

• Can show 4-regret is O(poly(B,k)*n2/3)

23

R
W
M
1

R
W
M
2

R
W
M
3

. . .

(ongoing work)

Online greedy algorithm

• Idea: define task-switching schedule using a series of such
RWM algorithms, operating independently

• Can show 4-regret is O(poly(B,k)*n2/3)

• Using result of Kakade, Kalai & Ligett also gives 4-regret
that is o(1), but exponential in #heuristics

23

R
W
M
1

R
W
M
2

R
W
M
3

. . .

(ongoing work)

Previous work

• Special case: deterministic heuristics with
fixed known running time

• Munagala et al., “The pipelined set cover
problem” (ICDT 2005) — asymptotic O(log n)
competitive ratio in adversarial online setting

• Kaplan et al. “Learning with attribute costs” (STOC
2005) — asymptotically 4-competitive with better
bounds than ours, but only in distributional online setting

24

Generalization: restart schedules

• Restart schedule = task-switching schedule
augmented with flag that says whether to restart at
each time slice (i.e., mapping S:ℤ↦H×{0,1})

• If |H|=1, this is just a sequence of restart
thresholds t1, t2, ...

h1

h2

time

h3

. . .

25

r r

Generalization: restart schedules

• Offline greedy algorithm maximizes expected
number of instances solved per unit time

• For online version, need to interpret B as a
bound on total time devoted to a single
heuristic (across multiple runs)

26

Experiments

Solver competitions

• Each year, various conferences hold solver
competitions with the following format:

• each submitted heuristic is run on a sequence of
instances (subject to time limit)

• awards for heuristics that solve the most instances in
various instance categories

• Downloaded tables of completion times, computed
(approximately) optimal task-switching schedules,
and compared them to best individual solver

28

Results for ICAPS 2006 Planning
Competition

• A.I. planning involves finding a minimum-
length sequence of actions that lead from a
start state to a goal state

• Six “optimal” planners were submitted to
2006 A.I. planning competition

• each run on 240 instances with 30 minute time
limit per instance

• 110 instances were solved by at least one of the
six

29

Results for 2006 A.I. Planning
Competition

30

Table 1: Results for the ICAPS 2006 optimal planning competition (cross-
validation results are parenthesized).

Solver Avg. CPU (s) Num. solved
Greedy schedule (x-val) 358 (407) 98 (97)
Single-run greedy (x-val) 476 (586) 96 (95)
SATPLAN 507 83
Maxplan 641 88
MIPS-BDD 946 54
CPT2 969 53
FDP 1079 46
Parallel schedule 1244 89
IPPLAN-1SC 1437 23

Table 2: Results for PB 2006 optimization experiments (cross-validation results
are parenthesized).

Solver Avg. CPU Avg. CPU Avg. CPU
to Prove Opt. to Find Opt. to Find Feas.

Greedy schedule 116 85 29
MiniSat 1.14 277 257 86
bsolo 279 211 94
SAT4J 433 323 56
SAT4J Heur. 408 302 44

Table 3: Blah.

Instance SatELiteGTI MiniSat
CPU (s) CPU (s)

liveness-unsat-2-01dlx c bp u f liveness 33 15
vliw-sat-2-0/9dlx vliw at b iq6 bug4 376 ≥ 120000
vliw-sat-2-0/9dlx vliw at b iq6 bug9 ≥ 120000 131
vliw-unsat-2-0/9dlx vliw at b iq9 ≥ 120000 ≥ 120000

1

Results for 2006 A.I. Planning
Competition

30

Table 1: Results for the ICAPS 2006 optimal planning competition (cross-
validation results are parenthesized).

Solver Avg. CPU (s) Num. solved
Greedy schedule (x-val) 358 (407) 98 (97)
Single-run greedy (x-val) 476 (586) 96 (95)
SATPLAN 507 83
Maxplan 641 88
MIPS-BDD 946 54
CPT2 969 53
FDP 1079 46
Parallel schedule 1244 89
IPPLAN-1SC 1437 23

Table 2: Results for PB 2006 optimization experiments (cross-validation results
are parenthesized).

Solver Avg. CPU Avg. CPU Avg. CPU
to Prove Opt. to Find Opt. to Find Feas.

Greedy schedule 116 85 29
MiniSat 1.14 277 257 86
bsolo 279 211 94
SAT4J 433 323 56
SAT4J Heur. 408 302 44

Table 3: Blah.

Instance SatELiteGTI MiniSat
CPU (s) CPU (s)

liveness-unsat-2-01dlx c bp u f liveness 33 15
vliw-sat-2-0/9dlx vliw at b iq6 bug4 376 ≥ 120000
vliw-sat-2-0/9dlx vliw at b iq6 bug9 ≥ 120000 131
vliw-unsat-2-0/9dlx vliw at b iq9 ≥ 120000 ≥ 120000

1

Greedy
schedule:

SATPLAN

Maxplan

MIPS-BDD

CPT2

FDP

time

1 10 100 10000.1

Summary

31

Table 1: Summary of results for four solver competitions.

Solver competition Domain Speedup factor
(range across categories)

SAT 2005 satisfiability 1.2–2.0
ICAPS 2006 planning 1.4
CP 2006 constraint satisfaction 1.0–1.5
IJCAR 2006 theorem proving 1.0–7.7

1

Optimization heuristics

• For optimization heuristics, cost of a task-
switching schedule should reflect how
solution quality changes as a function of time

• Our results generalize to cost functions of
the form ∑q wq*(time to get solution of
quality at least q)

32

Results for PB 2006 evaluation

• “Pseudo-Boolean optimization” means using a SAT solver
for 0/1 integer programming

33

(time to find feasible solution)
+ (time to find optimal solution)
+ (time to prove optimality)

0

1000

2000

3000

4000

5000

6000

0.1 1 10 100 1000 10000

Time

B
e
s
t
 s

o
lu

t
io

n

bsolo

MiniSat 1.14

SAT4J

SAT4J Heur.

P = proof of optimality

P P

• Several possible objectives.
Used greedy algorithm to
minimize

Results for PB 2006 evaluation

• Greedy schedule outperforms each individual
solver with respect to all three criteria

34

Table 1: Results for PB 2006 optimization experiments (cross-validation results
are parenthesized).

Solver Avg. CPU Avg. CPU Avg. CPU
to Prove Opt. to Find Opt. to Find Feas.

Greedy schedule 116 85 29
MiniSat 1.14 277 257 86
bsolo 279 211 94
SAT4J 433 323 56
SAT4J Heur. 408 302 44

Table 2: Blah.

Instance SatELiteGTI MiniSat
CPU (s) CPU (s)

liveness-unsat-2-01dlx c bp u f liveness 33 15
vliw-sat-2-0/9dlx vliw at b iq6 bug4 376 ≥ 120000
vliw-sat-2-0/9dlx vliw at b iq6 bug9 ≥ 120000 131
vliw-unsat-2-0/9dlx vliw at b iq9 ≥ 120000 ≥ 120000

1

Conclusions & Future Work

• We presented no-regret algorithms for
selecting task-switching/restart schedules
online

• Open problems:

• matching upper & lower bounds on regret

• better results for restart schedules when |H|=1?

35

