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Introduction

Matrix-Vector Multiplication: Fundamental Operation in Scientific Computing

How fast can n × n matrix-vector multiplication be?

Θ(n2) steps just to read the matrix!

Main Result: If we allow O(n2+ε) preprocessing, then matrix-vector

multiplication over any finite semiring can be done in O(n2/(ε log n)2).
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• Coppersmith and Winograd (1990): O(n2.376) operations

Not yet practical
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Focus: Combinatorial Matrix Multiplication Algorithms

• Also called non-algebraic; let’s call them non-subtractive

E.g. Four-Russians is combinatorial, Strassen isn’t

More Non-Subtractive Boolean Matrix Mult. Algorithms:

• Atkinson and Santoro: O(n3/ log3/2 n) on a (log n)-word RAM

• Rytter and Basch-Khanna-Motwani: O(n3/ log2 n) on a RAM

• Chan: Four Russians can be implemented on O(n3/ log2 n) on a pointer

machine
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Main Result

The O(n3/ log2 n) matrix multiplication algorithm can be “de-amortized”

More precisely, we can:

Preprocess an n × n matrix A over a finite semiring in O(n2+ε)

Such that vector multiplications with A can be done in O(n2/(ε log n)2)

Allows for “non-subtractive” matrix multiplication to be done on-line

Can be implemented on a pointer machine

This Talk: The Boolean case
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Preprocessing Phase: The Boolean Case

Partition the input matrix A into blocks of ⌈ε log n⌉ × ⌈ε log n⌉ size:

A1,1

A2,1

A n

ε log n
,1

A1,2 A1, n

ε log n

A n

ε log n
,

n

ε log n

· · ·

...

· · · · · ·

...

...

Ai,j

ε log n

ε log n

A =
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Preprocessing Phase: The Boolean Case

Build a graph G with parts P1, . . . , Pn/(ε log n), Q1, . . . , Qn/(ε log n)

2ε log n

P2

...

...

...

...

P n
ε log n

P1 2ε log n

2ε log n2ε log n

2ε log n 2ε log n

Q1

Q2

Q n
ε log n

Each part has 2ε log n

vertices, one for each

possible ε log n vector
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Preprocessing Phase: The Boolean Case

Edges of G: Each vertex v in each Pi has exactly one edge into each Qj

2
ε log nPi 2

ε log n Qj

v

Aj,iv

7



Preprocessing Phase: The Boolean Case

Edges of G: Each vertex v in each Pi has exactly one edge into each Qj

2
ε log nPi 2

ε log n Qj

v

Aj,iv

Time to build the graph:

n

ε log n
·

n

ε log n
· 2ε log n

· (ε log n)2 = O(n2+ε)

number

of Qj

number

of Pi

number

of nodes

in Pi

matrix-vector mult

of Aj,i and v
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How to Do Fast Vector Multiplications

Let v be a column vector. Want: A · v.
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How to Do Fast Vector Multiplications

Let v be a column vector. Want: A · v.

(1) Break up v into ε log n sized chunks:

v =















v1

v2

...

v n

ε log n
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How to Do Fast Vector Multiplications

(2) For each i = 1, . . . , n/(ε log n), look up vi in Pi.
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2ε log n

P2

...

...

...

...

P n
ε log n

P1 2ε log n

2ε log n2ε log n

2ε log n 2ε log n

Q1

Q2

Q n
ε log n

v1

v2

vn/(ε log n)

Takes Õ(n) time.
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2ε log n

P2

...

...

...

...

P n
ε log n

P1 2ε log n

2ε log n2ε log n

2ε log n 2ε log n

Q1

Q2

Q n
ε log n
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v2
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How to Do Fast Vector Multiplications

(3) Look up the neighbors of vi, mark each neighbor found.
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How to Do Fast Vector Multiplications

(3) Look up the neighbors of vi, mark each neighbor found.

2ε log n

P2

...

...

...

...

P n
ε log n

P1 2ε log n

2ε log n2ε log n

2ε log n 2ε log n

Q1

Q2

Q n
ε log n

v1

v2

vn/(ε log n)

A1,1 · v1

A2,1 · v1

A n
ε log n ,1 · v1
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How to Do Fast Vector Multiplications

(3) Look up the neighbors of vi, mark each neighbor found.

2ε log n

P2

...

...

...

...

P n
ε log n

P1 2ε log n

2ε log n2ε log n

2ε log n 2ε log n

Q1

Q2

Q n
ε log n

v1

v2

vn/(ε log n)

A1,2 · v2

A2,2 · v2

A n
ε log n ,2 · v2
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How to Do Fast Vector Multiplications

(3) Look up the neighbors of vi, mark each neighbor found.

2ε log n

P2

...

...

...

...

P n
ε log n

P1 2ε log n

2ε log n2ε log n

2ε log n 2ε log n

Q1

Q2

Q n
ε log n

v1

v2

vn/(ε log n)

A1, n
ε log n

· vn/(ε log n)

A2, n
ε log n

· vn/(ε log n)

A n
ε log n , n

ε log n
· vn/(ε log n)

Takes O

(

(

n
ε log n

)2
)
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How to Do Fast Vector Multiplications

(4) For each Qj , define v′

j as the OR of all marked vectors in Qj

2ε log n

P2

...

...

...

...

P n
ε log n

P1 2ε log n

2ε log n2ε log n

2ε log n 2ε log n

Q1

Q2

Q n
ε log n

v1

v2

vn/(ε log n)

⇒

⇒

⇒

v′1

v′2

v′n/(ε log n)

∨

∨

∨

Takes Õ(n1+ε) time
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(4) For each Qj , define v′

j as the OR of all marked vectors in Qj

2ε log n

P2

...

...

...

...
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P1 2ε log n

2ε log n2ε log n
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ε log n
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How to Do Fast Vector Multiplications

(5) Output v′ :=















v′

1

v′

2

...

v′
n

ε log n















. Claim: v′ = A · v.
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(5) Output v′ :=















v′

1

v′

2

...

v′
n

ε log n















. Claim: v′ = A · v.

Proof: By definition, v′

j =
∨n/(ε log n)
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How to Do Fast Vector Multiplications

(5) Output v′ :=















v′

1

v′

2

...

v′
n

ε log n















. Claim: v′ = A · v.

Proof: By definition, v′

j =
∨n/(ε log n)

i=1 Aj,i · vi.

Av =









A1,1 · · · A1,n/(ε log n)

...
. . .

...

An/(ε log n),1 · · · An/(ε log n),n/(ε log n)

















v1

...

v n

ε log n
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How to Do Fast Vector Multiplications

(5) Output v′ :=















v′

1

v′

2

...

v′
n

ε log n















. Claim: v′ = A · v.

Proof: By definition, v′

j =
∨n/(ε log n)

i=1 Aj,i · vi.

Av =









A1,1 · · · A1,n/(ε log n)

...
. . .

...

An/(ε log n),1 · · · An/(ε log n),n/(ε log n)

















v1

...

v n

ε log n









= (
∨n/(ε log n)

i=1 A1,i · vi, . . . ,
∨n/(ε log n)

i=1 A1,n/(ε log n) · vi) = v′.
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Some Applications

Can quickly compute the neighbors of arbitrary vertex subsets

Let A be the adjacency matrix of G = (V,E).

Let vS be the indicator vector for a S ⊆ V .
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Some Applications

Can quickly compute the neighbors of arbitrary vertex subsets

Let A be the adjacency matrix of G = (V,E).

Let vS be the indicator vector for a S ⊆ V .

Proposition: A · vS is the indicator vector for N(S), the neighborhood of S.

Corollary: After O(n2+ε) preprocessing, can determine the neighborhood of

any vertex subset in O(n2/(ε log n)2) time.

(One level of BFS in o(n2) time)
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Graph Queries

Corollary: After O(n2+ε) preprocessing, can determine if a given vertex

subset is an independent set, a vertex cover, or a dominating set, all in

O(n2/(ε log n)2) time.
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Graph Queries

Corollary: After O(n2+ε) preprocessing, can determine if a given vertex

subset is an independent set, a vertex cover, or a dominating set, all in

O(n2/(ε log n)2) time.

Proof: Let S ⊆ V .

S is dominating ⇐⇒ S ∪ N(S) = V .

S is independent ⇐⇒ S ∩ N(S) = ∅.

S is a vertex cover ⇐⇒ V − S is independent.

Each can be quickly determined from knowing S and N(S).
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Triangle Detection

Problem: Triangle Detection

Given: Graph G and vertex i.

Question: Does i participate in a 3-cycle, a.k.a. triangle?

Worst Case: Can take Θ(n2) time to check all pairs of neighbors of i

Corollary: After O(n2+ε) preprocessing on G, can solve triangle detection

for arbitrary vertices in O(n2/(ε log n)2) time.

Proof: Given vertex i, let S be its set of neighbors (gotten in O(n) time).

S is not independent ⇐⇒ i participates in a triangle.

19-d
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builds on lookup table techniques

20



Conclusion

A preprocessing/multiplication algorithm for matrix-vector multiplication that

builds on lookup table techniques

• Is there a preprocessing/multiplication algorithm for sparse matrices? Can

we do multiplication in e.g. O(m/poly(log n) + n),

where m = number of nonzeroes?

20-a



Conclusion

A preprocessing/multiplication algorithm for matrix-vector multiplication that

builds on lookup table techniques

• Is there a preprocessing/multiplication algorithm for sparse matrices? Can

we do multiplication in e.g. O(m/poly(log n) + n),

where m = number of nonzeroes?

• Can the algebraic matrix multiplication algorithms (Strassen, etc.) be

applied to this problem?

20-b



Conclusion

A preprocessing/multiplication algorithm for matrix-vector multiplication that

builds on lookup table techniques

• Is there a preprocessing/multiplication algorithm for sparse matrices? Can

we do multiplication in e.g. O(m/poly(log n) + n),

where m = number of nonzeroes?

• Can the algebraic matrix multiplication algorithms (Strassen, etc.) be

applied to this problem?

• Can our ideas be extended to achieve non-subtractive Boolean matrix

multiplication in o(n3/ log2 n)?

20-c



Thank you!
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