Spanners with Slack

Michael Dinitz

Joint work with Hubert Chan and Anupam Gupta

Computer Science Department Carnegie Mellon University

Theory Lunch September 27, 2006

- Introduction
 - Spanners
 - Slack
- Slack Spanners
 - Main Result
 - Other slack spanner results
 - Gracefully Degrading Spanners
- 3 Applications
 - Distance Oracles
 - Distance Labelings
- Conclusion

Spanner Definition

• Main problem: small representation of metric space

Definition

Give a metric (V, d), a t-spanner H = (V, E) is a weighted graph such that for all $u, v \in V$, $d(u, v) \le d_H(u, v) \le t \cdot d(u, v)$

- t is the stretch or the distortion
- |E| measures how sparse or small the spanner is. Really want |E| = O(n)
- Want to minimize |E| and t, i.e. create a low-stretch sparse spanner

Introduction 000000000

Introduction 000000000

Spanner example

Introduction 000000000

Spanner example

Stretch =
$$d_H(x, y)/d(x, y) = 3/1 = 3$$

Research on Spanners

- Classic research:
 - Awerbuch '85: Inspired study of spanners
 - Peleg & Schaffer '89
 - Althofer, Das, Dobkin, Joseph, & Soares: Sparse spanners for weighted graphs
 - Euclidean spanners

Research on Spanners

- Classic research:
 - Awerbuch '85: Inspired study of spanners
 - Peleg & Schaffer '89
 - Althofer, Das, Dobkin, Joseph, & Soares: Sparse spanners for weighted graphs
 - Euclidean spanners
- New research
 - Baswana et al: Sparse additive spanners
 - Lower bounds for additive and Euclidean spanners

Simple Algorithm

Theorem (Althofer et al.)

For any integer k, a (2k-1)-spanner with $O(n^{1+1/k})$ edges can be constructed efficiently

Simple Algorithm

Theorem (Althofer et al.)

For any integer k, a (2k-1)-spanner with $O(n^{1+1/k})$ edges can be constructed efficiently

Use a Kruskal-like algorithm:

- Initialize H to be the empty graph
- Let $\{u, v\}$ be shortest edge we haven't looked at yet
- If $d_H(u, v) > (2k 1)d(u, v)$, put $\{u, v\}$ in H
- Otherwise discard $\{u, v\}$ and repeat

 $|E| = O(n^{1+1/k})$

Need to prove that stretch is at most 2k-1 and that

Need to prove that stretch is at most 2k-1 and that $|E|=O(n^{1+1/k})$

• Stretch: by construction.

Need to prove that stretch is at most 2k-1 and that $|E|=O(n^{1+1/k})$

- Stretch: by construction.
- Sparse:
 - Suppose edge $e = \{u, v\}$ creates a cycle C
 - ullet Every other edge on C shorter than e
 - Without e, the distance between u and v was more than (2k-1)length(e)
 - So at least 2k-1 other edges on C
 - Girth at least 2k-1
- Well-known graph theory theorem: Girth of 2k-1 implies $|E|=O(n^{1+1/k})$

Althofer is optimal

- Erdos girth conjecture: For every k, there is a graph with $\Omega(n^{1+1/k})$ edges and girth 2k-1
- Implies that the Althofer spanner is tight (well, at least for subgraph spanners...)
- So if we want O(n) edges, we need stretch of $\Omega(\log n)!$

Introduction

- In practice:
 - log n stretch is too large
 - On't need low stretch for all pairs
- Use 2 to fix 1
- How well can we do? Ignore 5% of pairs and get $O(\sqrt{\log n})$ stretch on the rest? $O(\log \log n)$? O(1)?

What Now?

- In practice:
 - log n stretch is too large
 - On't need low stretch for all pairs
- Use 2 to fix 1
- How well can we do? Ignore 5% of pairs and get $O(\sqrt{\log n})$ stretch on the rest? $O(\log \log n)$? O(1)?
- Ignoring a constant fraction of pairs lets us prove constant distortion on the rest!

ϵ -Neighborhoods

Basic idea: ignoring small distances helps with large distances

Definition

Given ϵ , for any point $v \in V$, the ϵ -neighborhood $N_{\epsilon}(v)$ consists of the closest ϵn points to v

- $R(v, \epsilon) = \min\{r : |B(v, r)| \ge \epsilon n\}$
- v is ϵ -far from u if $d(u, v) \ge R(u, \epsilon)$

Slack definitions

- \bullet Original work on slack was on slack embeddings into $\ell_{\it p}$ spaces
- KSW '04, ABCDGKNS '05, ABN '06

Slack definitions

- ullet Original work on slack was on slack embeddings into ℓ_p spaces
- KSW '04, ABCDGKNS '05, ABN '06
- Basic definition:

Definition (Slack Spanner)

Given a metric (V, d), a t-spanner H = (V, E) has ϵ -slack if $d(u, v) \le d_H(u, v) \le t \cdot d(u, v)$ for all but ϵn^2 pairs $\{u, v\}$

Slack definitions

Introduction

- ullet Original work on slack was on slack embeddings into ℓ_p spaces
- KSW '04, ABCDGKNS '05, ABN '06
- Basic definition:

Definition (Slack Spanner)

Given a metric (V, d), a t-spanner H = (V, E) has ϵ -slack if $d(u, v) \le d_H(u, v) \le t \cdot d(u, v)$ for all but ϵn^2 pairs $\{u, v\}$

• More restrictive definition:

Definition (Uniform Slack)

Given a metric (V, d), a t-spanner H = (V, E) has ϵ -uniform slack if for all $u, v \in V$ such that v is ϵ -far from u, $d(u, v) \leq d_H(u, v) \leq t \cdot d(u, v)$

Conclusion

Conversion Theorem

Theorem

Suppose there exists an algorithm to construct a t(n)-stretch spanner with h(n) edges for any metric. Then we can find an ϵ -slack spanner with $5+6t(\frac{1}{\epsilon})$ stretch and $n+h(\frac{1}{\epsilon})$ edges.

Conversion Theorem

Theorem

Suppose there exists an algorithm to construct a t(n)-stretch spanner with h(n) edges for any metric. Then we can find an ϵ -slack spanner with $5+6t(\frac{1}{\epsilon})$ stretch and $n+h(\frac{1}{\epsilon})$ edges.

We can apply this to the Althofer spanner:

Corollary

For any metric, for any $0 < \epsilon < 1$, for any integer k > 0, there exists a (12k-1)-spanner with ϵ -slack of size $n + O((\frac{1}{\epsilon})^{1+1/k})$

Density Net

Introduction

- Intuition: Small set of points that approximates the metric
- Recall that $R(u, \epsilon) = \min\{r : |B(u, r)| \ge \epsilon n\}$

Definition

An ϵ -density net is a subset N of V such that

- **1** For all $x \in V$, there is some $y \in N$ s.t. $d(x,y) \le 2R(x,\epsilon)$
- $|N| \leq \frac{1}{\epsilon}$

Constructing a Density Net

- **1** Put points in a list L by non-decreasing value of $R(\cdot, \epsilon)$
- ② Initialize N := 0.
- While L is non-empty:
 - Remove first point *v* from *L*
 - ② If there exists $u \in N$ s.t. $N_{\epsilon}(v)$ and $N_{\epsilon}(u)$ intersect, then discard v; otherwise add v to N

Applications

Density Net Proof

Introduction

- Need to prove:
 - **1** For all $x \in V$ there is some $y \in N$ such that $d(x, y) \leq 2R(x, \epsilon)$
 - $|N| \leq \frac{1}{\epsilon}$

- Need to prove:
 - For all $x \in V$ there is some $y \in N$ such that $d(x,y) \le 2R(x,\epsilon)$
 - $|N| \leq \frac{1}{\epsilon}$
- Net property:
 - If $x \in N$ then we're good.
 - Else there is $y \in N$ before x s.t. $N_{\epsilon}(x)$ and $N_{\epsilon}(y)$ intersect. So $d(x,y) \leq R(x,\epsilon) + R(y,\epsilon) \leq 2R(x,\epsilon)$

• Need to prove:

- For all $x \in V$ there is some $y \in N$ such that $d(x, y) \leq 2R(x, \epsilon)$
- $|N| \leq \frac{1}{\epsilon}$
- Net property:
 - If $x \in N$ then we're good.
 - Else there is $y \in N$ before x s.t. $N_{\epsilon}(x)$ and $N_{\epsilon}(y)$ intersect. So $d(x,y) \leq R(x,\epsilon) + R(y,\epsilon) \leq 2R(x,\epsilon)$
- Size property:
 - For different $u, v \in N$, $N_{\epsilon}(u)$ and $N_{\epsilon}(v)$ are disjoint
 - Each $|N_{\epsilon}(u)| \ge \epsilon n$, so $|N| \le \frac{1}{\epsilon}$

Conversion Algorithm

- Given metric (V, d), construct ϵ -density net N. Note that $|N| \leq \frac{1}{\epsilon}$
- **2** Construct $t(\frac{1}{\epsilon})$ -spanner with $h(\frac{1}{\epsilon})$ edges on N
- **3** For all $u \in V \setminus N$, add an edge to the nearest point in N

- Given metric (V,d),construct ϵ -density net N. Note that $|N| \leq \frac{1}{\epsilon}$
- **2** Construct $t(\frac{1}{\epsilon})$ -spanner with $h(\frac{1}{\epsilon})$ edges on N
- **3** For all $u \in V \setminus N$, add an edge to the nearest point in N

Obviously sparse: $O(n + h(\frac{1}{\epsilon}))$ edges

Conversion Example

Conversion Example

Conversion Example

$\leq 2R(u, \varepsilon)$

- Let $u, v \in V$ s.t. $v \notin N_{\epsilon}(u)$
- Let u', v' be the closest points in N to u and v respectively

Introduction

$\leq 2R(u, \varepsilon)$ $\leq R(u, \varepsilon)$

- Let $u, v \in V$ s.t. $v \notin N_{\epsilon}(u)$
- Let u', v' be the closest points in N to u and v respectively
- $d(u, u') \leq 2R(u, \epsilon) \leq 2d(u, v)$
- $d(v, v') \le d(v, u') \le d(v, u) + d(u, u') \le 3d(u, v)$
- $d(u', v') \le d(u', u) + d(u, v) + d(v, v') \le 6d(u, v)$

Low Stretch

- Let $u, v \in V$ s.t. $v \notin N_{\epsilon}(u)$
- Let u', v' be the closest points in N to u and v respectively
- $d(u, u') \leq 2R(u, \epsilon) \leq 2d(u, v)$
- d(v, v') < d(v, u') < d(v, u) + d(u, u') < 3d(u, v)
- $d(u', v') \le d(u', u) + d(u, v) + d(v, v') \le 6d(u, v)$
- By spanner on N, $d_H(u', v') \leq t(\frac{1}{\epsilon})d(u', v') \leq 6t(\frac{1}{\epsilon})d(u, v)$
- So $d_H(u, v) \le d(u, u') + d_H(u', v') + d(v', v) \le (5 + 6t(\frac{1}{\epsilon}))d(u, v)$

- What if our input isn't a metric but a graph?
- Want our spanner to be a subgraph

Subgraph Spanner

- What if our input isn't a metric but a graph?
- Want our spanner to be a subgraph

Theorem

Given a weighted graph G=(V,E), for any integer k>0 and any $0<\epsilon<1$, there exists a (12k-1)-spanner with ϵ -slack and $O(n+\sqrt{n}(\frac{1}{\epsilon})^{1+1/k})$ edges.

• Uses pairwise distance preservers of Coppersmith and Elkin to make a subgraph that emulates the spanner on the net

Low Weight

Could also try to minimize the weight of the spanner.

Theorem

For any metric, there is an ϵ -slack spanner with $O(\log \frac{1}{\epsilon})$ stretch, $O(n + \frac{1}{\epsilon})$ edges, and weight $O(\log^2(\frac{1}{\epsilon})) \times wt(MST)$

Main idea: use LASTs (Light Approximate Shortest-path Trees)

Gracefully Degrading

- Previous results of the form "You give me an ϵ , I give you an ϵ -slack spanner"
- Could ask for something stronger

Gracefully Degrading

- Previous results of the form "You give me an ϵ , I give you an ϵ -slack spanner"
- Could ask for something stronger
- ullet "I give you a spanner that works simultaneously for all ϵ "
- Called a gracefully degrading spanner

Gracefully Degrading

- Previous results of the form "You give me an ϵ , I give you an ϵ -slack spanner"
- Could ask for something stronger
- ullet "I give you a spanner that works simultaneously for all ϵ "
- Called a gracefully degrading spanner

Theorem

For any metric, there is a spanner H with O(n) edges s.t. for any $0 < \epsilon < 1$, H is a $O(\log \frac{1}{\epsilon})$ -spanner with ϵ -slack.

Intuition: layers of slack spanners for various value of ϵ .

Intuition: layers of slack spanners for various value of ϵ . Actually much simpler – only 2 layers needed:

Intuition: layers of slack spanners for various value of ϵ . Actually much simpler – only 2 layers needed:

- Let $\epsilon_0 = n^{-1/2}$, and construct a ϵ_0 -density net N of V
- Connect every vertex to the closest point in N
- **3** Create a 1-spanner H_0 (e.g. a clique) on N (uses O(n) edges)
- Use Althofer to make a $\log n$ -spanner H' on V
- **5** Set H to be the union of H_0 and H', together with edges that connect each point in V to its closest point in N

Intuition: layers of slack spanners for various value of ϵ . Actually much simpler – only 2 layers needed:

- **1** Let $\epsilon_0 = n^{-1/2}$, and construct a ϵ_0 -density net N of V
- Connect every vertex to the closest point in N
- **3** Create a 1-spanner H_0 (e.g. a clique) on N (uses O(n) edges)
- Use Althofer to make a $\log n$ -spanner H' on V
- **3** Set H to be the union of H_0 and H', together with edges that connect each point in V to its closest point in N

Each step creates O(n) edges, so there are only O(n) edges total

Applications 00000

Stretch

Two cases for the stretch:

Stretch

Introduction

Two cases for the stretch:

1 $\epsilon < \epsilon_0$: Use H' to get stretch $O(\log n) = O(\log n^{1/2}) = O(\log \frac{1}{\epsilon_0}) = O(\log \frac{1}{\epsilon})$ between every pair of points

Stretch

Two cases for the stretch:

- $\epsilon < \epsilon_0$: Use H' to get stretch $O(\log n) = O(\log n^{1/2}) = O(\log \frac{1}{\epsilon_0}) = O(\log \frac{1}{\epsilon})$ between every pair of points
 - Magic of logs in $O(\cdot)$ notation

Two cases for the stretch:

- $\epsilon < \epsilon_0$: Use H' to get stretch $O(\log n) = O(\log n^{1/2}) = O(\log \frac{1}{\epsilon_0}) = O(\log \frac{1}{\epsilon})$ between every pair of points
 - Magic of logs in $O(\cdot)$ notation
- ② $\epsilon \geq \epsilon_0$: Use H_0 . Same analysis as for slack spanner, except that stretch in the net is 1, so total stretch is at most 11.

Introduction

Gracefully degrading spanner automatically gives us a normal $O(\log n)$ -spanner that has O(1) average distortion!

$$\frac{1}{\binom{n}{2}} \sum_{\{x,y\} \in \binom{V}{2}} \frac{d_H(x,y)}{d(x,y)} = \frac{2}{n} \sum_{x \in V} \frac{1}{n-1} \sum_{y \neq x} \frac{d_H(x,y)}{d(x,y)}$$

$$\leq \frac{2}{n} \sum_{x \in V} \left(\frac{1}{n^{1/2}} O(\log n) + (1 - \frac{1}{n^{1/2}}) \cdot 11 \right)$$

$$= O(1)$$

Distance Oracles Overview

- Intuition: all-pairs shortest path is rarely necessary.
- Distance oracle: data structure/algorithm for computing approximate distances in a metric
- Want to minimize stretch, space, and query time
- First studied by Thorup and Zwick ('01): for any integer $k \ge 1$, oracle with stretch 2k-1, space $O(kn^{1+1/k})$, query time O(k)
- Implicitly created a spanner, clever way of doing queries based on special structure of spanner

Can create slack oracles using slack embeddings:

Theorem (ABN '06)

For any integer $k \geq 1$, there is an oracle with ϵ -slack, stretch 6k-1, O(k) query time, and $O(n\log n\log \frac{1}{\epsilon} + k\log n(\frac{1}{\epsilon}\log \frac{1}{\epsilon})^{1+1/k})$ space

Can create slack oracles using slack embeddings:

Theorem (ABN '06)

For any integer $k \geq 1$, there is an oracle with ϵ -slack, stretch 6k-1, O(k) query time, and $O(n\log n\log \frac{1}{\epsilon} + k\log n(\frac{1}{\epsilon}\log \frac{1}{\epsilon})^{1+1/k})$ space

But slack spanners are better:

Theorem

For every integer $k \ge 1$, there is an oracle with ϵ -slack, stretch 10k-1, O(k) query times, and $O(n+k(\frac{1}{\epsilon})^{1+1/k})$ space

Same method as used for slack spanners

Gracefully Degrading Oracles

Can do the same thing for gracefully degrading oracles.

Theorem

For any integer k with $1 \le k \le O(\log n)$, there is a distance oracle with worst cast stretch of 2k-1 and O(k) query time that uses $O(kn^{1+1/k})$ space such that the average distortion and distortion of average are O(1)

Improvement over ABN '06 if $k = o(\log n)$

Distance Labeling Overview

- How can we assign each point a short label so that approximate distances can be computed quickly by just comparing labels?
- Used in various networking applications
- Embedding into ℓ_p very natural approach: size of a label is the dimension

Distance Labeling Overview

- How can we assign each point a short label so that approximate distances can be computed quickly by just comparing labels?
- Used in various networking applications
- Embedding into ℓ_p very natural approach: size of a label is the dimension
- One of the original motivations for definition of slack in KSW '04:
 - In general can't have dimension less that $\Omega(\log n)!$
 - Seems to work better in practice

Distance Labeling Overview

- How can we assign each point a short label so that approximate distances can be computed quickly by just comparing labels?
- Used in various networking applications
- Embedding into ℓ_p very natural approach: size of a label is the dimension
- One of the original motivations for definition of slack in KSW '04:
 - In general can't have dimension less that $\Omega(\log n)!$
 - Seems to work better in practice
- Can we do better with spanners than with embeddings?

Slack Labelings

Using embeddings:

Theorem (ABCDGKNS '05)

Any embedding $\varphi: V \to \ell_p$ with ϵ -(uniform) slack must have dimension that depends on log n

Slack Labelings

Using embeddings:

Theorem (ABCDGKNS '05)

Any embedding $\varphi: V \to \ell_p$ with ϵ -(uniform) slack must have dimension that depends on log n

We get rid of all dependence on n by not using an embedding!

Theorem

For any integer k with $1 \le k \le \log \frac{1}{\epsilon}$, we can assign each point a label that uses $O((\frac{1}{\epsilon})^{1/k} \log^{1-1/k} \frac{1}{\epsilon})$ space so that if v is ϵ -far from u, their distance can be computed up to stretch 12k-1 in O(k) time

Review

- Ignoring a constant fraction of distances gives us lots of power (e.g. constant stretch, linear size spanners)!
- Using ϵ -density nets to represent metrics gives us good slack and gracefully degrading spanners, distance oracles, and distance labelings

Future Research

- Slack version of (your favorite problem here)
- Additive spanners????

Conclusion

Thank You!

(and please sign up to give your very own theory lunch talk)