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Spanner Definition

Main problem: small representation of metric space

Definition

Give a metric (V , d), a t-spanner H = (V ,E ) is a weighted graph
such that for all u, v ∈ V , d(u, v) ≤ dH(u, v) ≤ t · d(u, v)

t is the stretch or the distortion

|E | measures how sparse or small the spanner is. Really want
|E | = O(n)

Want to minimize |E | and t, i.e. create a low-stretch sparse
spanner
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Spanner example
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Research on Spanners

Classic research:

Awerbuch ’85: Inspired study of spanners
Peleg & Schaffer ’89
Althofer, Das, Dobkin, Joseph, & Soares: Sparse spanners for
weighted graphs
Euclidean spanners

New research

Baswana et al: Sparse additive spanners
Lower bounds for additive and Euclidean spanners
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Simple Algorithm

Theorem (Althofer et al.)

For any integer k, a (2k − 1)-spanner with O(n1+1/k) edges can
be constructed efficiently

Use a Kruskal-like algorithm:

Initialize H to be the empty graph

Let {u, v} be shortest edge we haven’t looked at yet

If dH(u, v) > (2k − 1)d(u, v), put {u, v} in H

Otherwise discard {u, v} and repeat
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Althofer Example (k = 2)
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Althofer Example (k = 2)
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Correctness

Need to prove that stretch is at most 2k − 1 and that
|E | = O(n1+1/k)

Stretch: by construction.

Sparse:

Suppose edge e = {u, v} creates a cycle C
Every other edge on C shorter than e
Without e, the distance between u and v was more than
(2k − 1)length(e)
So at least 2k − 1 other edges on C
Girth at least 2k − 1

Well-known graph theory theorem: Girth of 2k − 1 implies
|E | = O(n1+1/k)
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Althofer is optimal

Erdos girth conjecture: For every k, there is a graph with
Ω(n1+1/k) edges and girth 2k − 1

Implies that the Althofer spanner is tight (well, at least for
subgraph spanners...)

So if we want O(n) edges, we need stretch of Ω(log n)!
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What Now?

In practice:
1 log n stretch is too large
2 Don’t need low stretch for all pairs

Use 2 to fix 1

How well can we do? Ignore 5% of pairs and get O(
√

log n)
stretch on the rest? O(log log n)? O(1)?

Ignoring a constant fraction of pairs lets us prove constant
distortion on the rest!
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ε-Neighborhoods

Basic idea: ignoring small distances helps with large distances

Definition

Given ε, for any point v ∈ V , the ε-neighborhood Nε(v) consists of
the closest εn points to v

R(v , ε) = min{r : |B(v , r)| ≥ εn}
v is ε-far from u if d(u, v) ≥ R(u, ε)
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Slack definitions

Original work on slack was on slack embeddings into `p spaces

KSW ’04, ABCDGKNS ’05, ABN ’06

Basic definition:

Definition (Slack Spanner)

Given a metric (V , d), a t−spanner H = (V ,E ) has ε-slack if
d(u, v) ≤ dH(u, v) ≤ t · d(u, v) for all but εn2 pairs {u, v}

More restrictive definition:

Definition (Uniform Slack)

Given a metric (V , d), a t-spanner H = (V ,E ) has ε-uniform slack
if for all u, v ∈ V such that v is ε-far from u,
d(u, v) ≤ dH(u, v) ≤ t · d(u, v)



Introduction Slack Spanners Applications Conclusion

Slack definitions

Original work on slack was on slack embeddings into `p spaces

KSW ’04, ABCDGKNS ’05, ABN ’06

Basic definition:

Definition (Slack Spanner)

Given a metric (V , d), a t−spanner H = (V ,E ) has ε-slack if
d(u, v) ≤ dH(u, v) ≤ t · d(u, v) for all but εn2 pairs {u, v}

More restrictive definition:

Definition (Uniform Slack)

Given a metric (V , d), a t-spanner H = (V ,E ) has ε-uniform slack
if for all u, v ∈ V such that v is ε-far from u,
d(u, v) ≤ dH(u, v) ≤ t · d(u, v)



Introduction Slack Spanners Applications Conclusion

Slack definitions

Original work on slack was on slack embeddings into `p spaces

KSW ’04, ABCDGKNS ’05, ABN ’06

Basic definition:

Definition (Slack Spanner)

Given a metric (V , d), a t−spanner H = (V ,E ) has ε-slack if
d(u, v) ≤ dH(u, v) ≤ t · d(u, v) for all but εn2 pairs {u, v}

More restrictive definition:

Definition (Uniform Slack)

Given a metric (V , d), a t-spanner H = (V ,E ) has ε-uniform slack
if for all u, v ∈ V such that v is ε-far from u,
d(u, v) ≤ dH(u, v) ≤ t · d(u, v)



Introduction Slack Spanners Applications Conclusion

Conversion Theorem

Theorem

Suppose there exists an algorithm to construct a t(n)-stretch
spanner with h(n) edges for any metric. Then we can find an
ε-slack spanner with 5 + 6t(1

ε ) stretch and n + h(1
ε ) edges.

We can apply this to the Althofer spanner:

Corollary

For any metric, for any 0 < ε < 1, for any integer k > 0, there
exists a (12k − 1)-spanner with ε-slack of size n + O((1

ε )
1+1/k)
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Density Net

Intuition: Small set of points that approximates the metric

Recall that R(u, ε) = min{r : |B(u, r)| ≥ εn}

Definition

An ε-density net is a subset N of V such that

1 For all x ∈ V , there is some y ∈ N s.t. d(x , y) ≤ 2R(x , ε)

2 |N| ≤ 1
ε
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Constructing a Density Net

1 Put points in a list L by non-decreasing value of R(·, ε)
2 Initialize N := 0.
3 While L is non-empty:

1 Remove first point v from L
2 If there exists u ∈ N s.t. Nε(v) and Nε(u) intersect, then

discard v ; otherwise add v to N
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Density Net Example
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Density Net Proof

Need to prove:
1 For all x ∈ V there is some y ∈ N such that d(x , y) ≤ 2R(x , ε)
2 |N| ≤ 1

ε

Net property:

If x ∈ N then we’re good.
Else there is y ∈ N before x s.t. Nε(x) and Nε(y) intersect. So
d(x , y) ≤ R(x , ε) + R(y , ε) ≤ 2R(x , ε)

Size property:

For different u, v ∈ N, Nε(u) and Nε(v) are disjoint
Each |Nε(u)| ≥ εn, so |N| ≤ 1

ε
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Conversion Algorithm

1 Given metric (V , d),construct ε-density net N. Note that
|N| ≤ 1

ε

2 Construct t(1
ε )-spanner with h(1

ε ) edges on N

3 For all u ∈ V \ N, add an edge to the nearest point in N

Obviously sparse: O(n + h(1
ε )) edges
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Low Stretch

u’

u

v’

v

εR(u,  )

ε2R(u,  )

Let u, v ∈ V s.t. v 6∈ Nε(u)

Let u′, v ′ be the closest points in N to u and v respectively

d(u, u′) ≤ 2R(u, ε) ≤ 2d(u, v)

d(v , v ′) ≤ d(v , u′) ≤ d(v , u) + d(u, u′) ≤ 3d(u, v)

d(u′, v ′) ≤ d(u′, u) + d(u, v) + d(v , v ′) ≤ 6d(u, v)

By spanner on N, dH(u′, v ′) ≤ t(1
ε )d(u′, v ′) ≤ 6t(1

ε )d(u, v)

So
dH(u, v) ≤ d(u, u′)+dH(u′, v ′)+d(v ′, v) ≤ (5+6t(1

ε ))d(u, v)
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Subgraph Spanner

What if our input isn’t a metric but a graph?

Want our spanner to be a subgraph

Theorem

Given a weighted graph G = (V ,E ), for any integer k > 0 and any
0 < ε < 1, there exists a (12k − 1)-spanner with ε-slack and
O(n +

√
n(1

ε )
1+1/k) edges.

Uses pairwise distance preservers of Coppersmith and Elkin to
make a subgraph that emulates the spanner on the net
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Low Weight

Could also try to minimize the weight of the spanner.

Theorem

For any metric, there is an ε-slack spanner with O(log 1
ε ) stretch,

O(n + 1
ε ) edges, and weight O(log2(1

ε ))× wt(MST )

Main idea: use LASTs (Light Approximate Shortest-path Trees)
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Gracefully Degrading

Previous results of the form ”You give me an ε, I give you an
ε-slack spanner”

Could ask for something stronger

”I give you a spanner that works simultaneously for all ε”

Called a gracefully degrading spanner

Theorem

For any metric, there is a spanner H with O(n) edges s.t. for any
0 < ε < 1, H is a O(log 1

ε )-spanner with ε-slack.
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Gracefully Degrading Construction

Intuition: layers of slack spanners for various value of ε.

Actually much simpler – only 2 layers needed:

1 Let ε0 = n−1/2, and construct a ε0-density net N of V

2 Connect every vertex to the closest point in N

3 Create a 1-spanner H0 (e.g. a clique) on N (uses O(n) edges)

4 Use Althofer to make a log n-spanner H ′ on V

5 Set H to be the union of H0 and H ′, together with edges that
connect each point in V to its closest point in N

Each step creates O(n) edges, so there are only O(n) edges total
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Stretch

Two cases for the stretch:

1 ε < ε0: Use H ′ to get stretch
O(log n) = O(log n1/2) = O(log 1

ε0
) = O(log 1

ε ) between every
pair of points

Magic of logs in O(·) notation

2 ε ≥ ε0: Use H0. Same analysis as for slack spanner, except
that stretch in the net is 1, so total stretch is at most 11.
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2 ε ≥ ε0: Use H0. Same analysis as for slack spanner, except
that stretch in the net is 1, so total stretch is at most 11.
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Average Stretch

Gracefully degrading spanner automatically gives us a normal
O(log n)-spanner that has O(1) average distortion!

1(n
2

) ∑
{x ,y}∈(V

2)

dH(x , y)

d(x , y)
=

2

n

∑
x∈V

1

n − 1

∑
y 6=x

dH(x , y)

d(x , y)

≤ 2

n

∑
x∈V

(
1

n1/2
O(log n) + (1− 1

n1/2
) · 11

)
= O(1)
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Distance Oracles Overview

Intuition: all-pairs shortest path is rarely necessary.

Distance oracle: data structure/algorithm for computing
approximate distances in a metric

Want to minimize stretch, space, and query time

First studied by Thorup and Zwick (’01): for any integer
k ≥ 1, oracle with stretch 2k − 1, space O(kn1+1/k), query
time O(k)

Implicitly created a spanner, clever way of doing queries based
on special structure of spanner
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Oracles with Slack

Can create slack oracles using slack embeddings:

Theorem (ABN ’06)

For any integer k ≥ 1, there is an oracle with ε-slack, stretch
6k − 1, O(k) query time, and
O(n log n log 1

ε + k log n(1
ε log 1

ε )
1+1/k) space

But slack spanners are better:

Theorem

For every integer k ≥ 1, there is an oracle with ε-slack, stretch
10k − 1, O(k) query times, and O(n + k(1

ε )
1+1/k) space

Same method as used for slack spanners
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Gracefully Degrading Oracles

Can do the same thing for gracefully degrading oracles.

Theorem

For any integer k with 1 ≤ k ≤ O(log n), there is a distance oracle
with worst cast stretch of 2k − 1 and O(k) query time that uses
O(kn1+1/k) space such that the average distortion and distortion
of average are O(1)

Improvement over ABN ’06 if k = o(log n)
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Distance Labeling Overview

How can we assign each point a short label so that
approximate distances can be computed quickly by just
comparing labels?

Used in various networking applications

Embedding into `p very natural approach: size of a label is
the dimension

One of the original motivations for definition of slack in KSW
’04:

In general can’t have dimension less that Ω(log n)!
Seems to work better in practice

Can we do better with spanners than with embeddings?
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Slack Labelings

Using embeddings:

Theorem (ABCDGKNS ’05)

Any embedding ϕ : V → `p with ε-(uniform) slack must have
dimension that depends on log n

We get rid of all dependence on n by not using an embedding!

Theorem

For any integer k with 1 ≤ k ≤ log 1
ε , we can assign each point a

label that uses O((1
ε )

1/k log1−1/k 1
ε ) space so that if v is ε-far from

u, their distance can be computed up to stretch 12k − 1 in O(k)
time
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Review

Ignoring a constant fraction of distances gives us lots of power
(e.g. constant stretch, linear size spanners)!

Using ε-density nets to represent metrics gives us good slack
and gracefully degrading spanners, distance oracles, and
distance labelings
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Future Research

Slack version of (your favorite problem here)

Additive spanners????
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Thank You!
(and please sign up to give your very own theory lunch talk)
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