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Abstract
As the volume of data on the Internet increases the need for better tools to handle this
flood of data is also growing. Interface agents are tools which are designed to aid the
user in using various applications. This project describes the development of an agent
which employs machine learning techniques to discover rules for filtering email. It
explains how the agent observes the user in handling mail and how these observations are
used to help automate this task. The agent is then evaluated, through testing, to examine
whether such a tool can be useful geesonal assistantA description of existing work
is given, along with the design rationale, and a number of future extensions are suggested.
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Chapter 1
Introduction

This report explains the need for a personalised filtering agent for Email, and describes
the process of building such an agent. This introductory chapter outlines the reasons for
the work and presents the main objectives of the project.

1.1 The Problem

Over recent years there has been a dramatic increase in the use of networks and
networked information retrieval systems. Not only has this happened in the business
sector and throughout academia, but due to the increasing number of Internet
intermediary services such as Compuserve or Demon Internet Services, an increasing
number of hosts have been appearing in the private sector. At this present time, the
internet consists of over 31 000 networks, with over two million computers connected to
it. Over 20 million people can be reached by electronic mail and have access to the
resources on the internet [Leiner 1994].

This increase has led to an explosion of information resources available over these
networks. As more information becomes available, searching or retrieving interesting or
relevant information is becoming increasingly difficult [Sheth 1994]. Whilst there is a
large amount of data available as files on different machines, much of it exists in the form
of Email, USENET news, World Wide Web servers and Gopher servers etc, and tools
have been developed to access these resources.

With access to these information sources becoming easier, and the number of users
becoming greater, the need for easier to use software is becoming critical. However with
the increase of easy to use tools for generating and distributing information, the amount
of information flowing across the networks is growing [Denning 1982]. Business and
research organisations can generate huge amounts of information, such as memoranda,
announcements of meetings and conferences etc, yet at any one time this information will
be of interest to only a fraction of the recipients [Foltz & Dumais 1992].

Information Filtering is not a new concept. It already exists in the paper world; people
buy only certain magazines that contain articles on a particular subject, and then skim
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articles to find ones of intertest. With the use of electronic media, some of this filtering
can be automated by the retrieval system. Over ten yearsaggguswere seen as
anthropomorphic entities which could assist the user by tracking down information it
knew its user was interested in [Kay 1984]. This description still holds true and agent
technology is growing. Agents are now emergingpasonal assistantghich can assist

in automating information filtering as well as information retrieval.

An agent, however, must be able to fulfill certain criteria if it is to perform successfully as
an information filter.

« As information requirements vary greatly from user to user, the filtering system
should be highly personalised to satisfy the users needsmbllslit has of the user
should be learned from instruction (eg defined rules or a knowledge base) or from
example (by observing the user). This model may be used over a long period of time,
yet it cannot be assumed that the requirements of the user will remain static, so the
agent must be able to notice when these requirements change and revise its model
accordingly.

« The agent should attempt to filter out as little information as possible that would
validly fit the user model, whilst removing as much information as it can that is not of
interest to the user. If the agent fails this criteria more than 50%, then its performance
is no better than random guessing and becomes a hindrance rather than an help to the
user. The main aim of the agent is desistthe user in filtering out unwanted
information, not to attempt to classify all information as relevant or irrelevant.

« The user should have some means of accepting or rejecting the decisions of the agent.
The agent is not the user interface! It is an entity which collaborates with the user to
aid them, and hence they should be able to choose when to allow the agent to perform
a task and when to perform the task themselves.

1.2 Issues the Project Addresses

The work presented within this report makes use of techniques taken from the fields of
information filtering and of interface agents. These techniques were used to build an
agent which observes and aids a user in classifying mail messages into different folders.
The following issues are addressed:
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« Making and logging observations of the user in order to build a user model. The
learning algorithm CN2 [Clark 1989; Clark & Niblett 1989; Boswell 1990] is used to
induce rules based on these observations which can then be used to model the user. A
method of applying these observations as training examples is investigated and the
problems of selecting features from a mail message is examined.

« The use of an interface agent which attempts to classify incoming mail according to
the user model. The agent is unobtrusive in the general use of the mail tool, and using
its advice is optional. The use of basic positive feedback to reinforce successful
classifications is also addressed. More advanced feedback is also examined from a
viewpoint of making the agent easy to co-operate with so that it acts as an assistant
rather than an interface to the system.

« The use of a genetic based word filter is investigated as a more advanced method of
feature extraction. The use of user feedback based on the success of the agent is used
to refine features of a message which contribute towards successful classifications.
This can be compared to the more naive use of word frequencies to determine high
entropy words.

« The use of separate, communicating units, each with a specialised role within the
system. These roles include rule generation, feature extraction, message
classification, and user observation. Not only do they aid in the maintenance of the
system but also impwe usability by performing processor intensive calculations at
off-peak times.

Experimental results are used to compare different configurations of the system in order
to improve performance. These also give some indication as to the properties of the
classifications that the agent can confidently advise.

1.3 Overview of Dissertation

The remaining dissertation is organised as follows:

« Chapter 2- This presents the problem more thoroughly and examines how previous
solutions have tackled the problem. It looks at the developing work with respect to
interface agents and information filtering, and assesses the current research in the use
of learning techniques to model the user.
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+ Chapter 3- CN2 is used as the core algorithm for learning rules for malil
classification. This chapter describes this algorithm and explains the reasons for its
use within this specific application.

« Chapter 4- Learning Email Filter Rules. This chapter explains how the different
parts of the system are built up and how they work together to act as an agent in
observing and modeling the users requirements.

« Chapter 5 - Implementation. This discusses problems encountered with the
implementation of the system and how they were solved.

« Chapter 6- Results. Due to the nature of the implementation, there are many
parameters which can be varied to immperformance of the system. Much of the
testing was concentrated on varying these parameters and observing how they
affected the performance of the system.

« Chapter 7- Conclusion. This draws together the results and presents concluding
remarks.

« Chapter 8- Future Work. The work presented within this dissertation throws up
many possibilities of future work in the area of interface agents and personalised
filters. This chapter examines some of these possible routes.



Chapter 2
Mail Filtering and Interface Agents

The advances in networking over recent years have provided a rich environment for
sharing and exchange of information. Research is continually investigating faster means
of transferring data across the internet, such as the SuperJanet project in the UK, or better
methods of storing data, such as advanced optical storage systems [Bains 1994]. Beacuse
of this improving media, the rate and complexity of information traffic is continually
growing, along with the need to handle this now overwhelming flood of data.

Visionaries, such as Denning and Kay, foresaw the need for mechanisms to aid the user in
filtering out unwanted information delivered to the user [Denning 1982] or in searching
out information of interest [Kay 1984]. These two distinct research areas of Information
Retrieval/Filtering and Software Agents are now beginning to recombine in the
development of interface agents. An interface agent can agieasanal assistanwhich

can collaborate with the user to assist in filtering out unwanted information and acquiring
new potentially interesting information [Maes 1994].

2.1 The problem of too much information - an introduction

Tools have been emerging to handle this information in different ways. On the Internet, a
number of different tools have been developed to access some of this wealth of data
scattered across the network. These tools access servers such as the World Wide Web
(WWW), Gopher and the Wide Area Information Servers (WAIS) [Sheth 1994], as well

as more familiar services such as Usenet NEWS and Email. The World Wide Web
[Berners-Lee et al. 1994] provides a platform for building and browsing hypertext
documents, with internet links to other documents scattered on the internet. Gopher is
used for browsing hierarchically organised documents, but both this and the WWW can
contain indices to aid the user in searching for documents. WAIS responds to queries for
keyword searches and allows the user to refine searches for network based documents.

These servers rely on the information retrieval paradigm of the user requesting
information and the server responding to the query. Another paradigm, information
filtering, corresponds more to services such as Email and the News Network. Email is a
means of sending information from one user to one or more users in the form of a
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message. Usenet NEWS consists of messages organised into different topics, or
newsgroupswhich can be read by any user interested in that topic. Both these services
deliver information to the user. This can leave the user swamped with a plethora of
messages, many of which the individual is not interested in. Whilst there exist basic
mechanisms to receive messages of interest, such as the newsgroup organisation
hierarchy and mailing lists, it is still possible to be overwhelmed by the high traffic of
messages found on some of the lists or newsgroups. In addition to this, there can exist a
high volume of organisational mail distributed to users within business or research
organisations, much of which is of no interest to the recipient.

2.2 Information Filtering
Information Filtering vs. Information Retrieval

There are many similarities at the abstract level between Information Filtering and
Information Retrieval [Belkin & Croft 1992]. Both are concerned with users only
receiving information that they are interested in, and so many issues in information
retrieval are also relevant to information filtering. Two issues however are of special
interest to the information filtering community; they are the issues of text representation
and of refinement:

« Unlike retrieval systems which are mostly designed with structured data in mind, such
as employee records, filtering systems normally have to deal with unstructured or
semi-structured data. Email messages are a good example of this type of data, in that
they have well defined header fields but an unstructured text body.

« Filtering normally involves a stream of incoming data over a long period of time.
However, as the requirements of the user may change over timgrdfie or
description of user interests should evolve to reflect these changes.

Issues such as the comparison of profiles with message features, or profile refinement
through such mechanismsratevance feedbadiSalton & McGill 1983] are still as valid
within filtering as in retrieval.

Many of the issues of text representation are also valid. Two possible approaches to
representation have been widely explorestatistical approaches andsemantic
approaches. Statistical approaches operate on the words themselves, such as keyword or
probabilistic representations, or vector space representations [Salton & McGill 1983] and
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Latent Semantic Indexing [Foltz & Dumais 1992]. The semantic approaches lie within
the use of natural language [Ram 1991; Ram 1992; Riloff & Lehnert 1992]. One
Information Retrieval systen§CISORJacobs & Rau 1990] makes use of a combination

of top-down and bottom-up processing techniques in natural language analysis to process
on-line news feeds.

Information Filters

In the preliminary stages of th@val project [Malone et al. 1987], Malone identified
three approaches to information filtering by surveying different people on what criteria
they use to filter information from various systems;

+ Cognitive Filtering- this characterises a message by the contents and meaning of the
message. Participants in thewayrlooked for certain keywords or phrases to classify
messages.

« Social Filtering- this complements the cognitive approach by concentrating on the
personal and organisational interrelationships between sender and receiver. For
example, more attention may be given to messages from a superior such as a
supervisor.

« Economic Filtering- this is based on a cost-benefit assessment of a message, such as
the length of a message.

It was from these studies that the Information Lens, or Oval System was developed. A
rich set of hierarchically organised templates were used to structure mail messages. An
example of this organisation could ben@tice template. This would have certain fixed
fields added to the mail message. A specialised form of this template, e.g. for meetings,
would not only inherit the structure of theotice template but would contain extra
structured fields. User defined rules could then be defined to not only match keywords
within the text body, but to match template types and make use of the extra structured
information held within the template fields.

Another study by Stadnyk & Kass [Stadnyk & Kass 1992] examines the possibility of
building a knowledge base of description categories that users employ when deciding
whether or not to read a message. They also noticed that the type of rules employed by
users could be generated automatically using machine learning algorithms.
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Email filters have become popular in recent years and there are many which are now
freely available.EIm [Weinstein 1992] is one such filter built into a mail tool. Similar to

Oval, it allows rules to be defined by matching certain keywords within the header field

or message body. The rules can then filter out unwanted messages, sort message types
into mail boxes, or perform more complex commands.

Ram approaches the subject of filters from an Atrtificial Intelligence approach by applying
natural language understanding mechanisms to filtering. The PIES system (Personal
Interest Engine for Stories) [Ram 1991; Ram 1992] makes use of a model representing
the interest and relevance of different concepts. This model is used to prune away
concepts unlikely to be of interest from the story or message. An alternative approach
was used by Riloff and Lehnert with thé&elevancy Signatures Algorithim classifying
articles about terrorism [Riloff & Lehnert 1992]. Other systems have been written to
skim and summarise news articles, such asRigMP system [DeJong 1982].

2.2.1 Interface Agents

Interface Agents are programs that provide assistance to a user for different tasks.
Information filters can be seen as agents as they aid the user in handling large quantities
of incoming information. So far the approach to developing personalised information
filters relies on having a model of the users interest. One of three approaches could be
adopted to generate this model:

« The user may customise their own rules. This approach is used in many filters, such
as theOval project. The inherent problems with this is that it requires too much
insight by the user not only into their requirements, but into how the filter will
perform with regard to these rules. The user also has to be responsible for
maintaining the rules over time, as interests often change.

« Knowledge Acquisition techniques could be used [Boose & Gaines 1989]. This is
found more in interface agents that aid a user in certain environments. For example,
UCEgo [Chin 1991] has a large knowledge base about how to use the Unix Operating
System. It uses this knowledge base to help users solve problems when using Unix.

Making use of knowledge acquisition techniques can help capture regularities in the
types of classifications users make [Stadnyk & Kass 1992]. The knowledge base no
longer requires the user to program complex rules. However this approach fails to
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customise the rules to the users specific requirements.

« Observations of the users actions can generate training examples. When applied to
machine learning techniques, rules can be induced. This will result in a personalised
rulebase with no additional work from the user.

This final approach is being used in a number of interface agents to help the user in
performing organisational tasks, such as calendar management [Dent et al. 1992; Maes &
Kozierok 1993], exploring newsgroups for interesting articles [Sheth 1994] and Email
filters [Metral 1993].

CAP (Calendar APprentice) is a personal learning apprentice which assists in managing a
meeting calendar [Dent et al. 1992]. The calendar manager is used by filling in
parameters for a given meeting. This forms training examples which are logged and
subsequently used by the learning component. The rules generated are then used to
automatically fill in parameters for subsequent meetings. In the early stages of this
project, two learning algorithms were compar@f#tEO which is a variant of Quinlan’s

ID3 algorithm [Quinlan 1986] producing decision trees; and Backpropagation [Rumelhart
et al. 1986], an artificial neural network (ANN) algorithm. Whilst empirical studies
showed that both learning methods produced comparable results when trained with the
same data, subsequent work concentrated on decision trees [Mitchell et al. 1994].

An interesting issue that arose from the workG#P was that of coverageCoverageis

used to represent the number of classes the ruleset can cover. It was noted that as the
coverage of the rules increased, the overall accuracy decreased. This could indicate that
by making rules cover more possible classes, they can become over-generalised and
hence less accurate.

The work at MIT by Kozierok [Kozierok & Maes 1993; Maes & Kozierok 1993] used the
machine learning methddemory-Based Reasonif§tanfill & Waltz 1986]. An unusual

aspect of this work was the use of caricatures to provide feedback to the user of the
current state of the agent. They addressed the problem of trusting the agent by generating
a confidence value for each agent prediction. Two thresholds were used; the lower being
a "tell-me" threshold, where the agent needed user confirmation before performing the
action. The higher was a "do-it" threshold. Predictions with a confidence rating higher
than this could be performed automatically.
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This work was the basis for a mail filter. Metral [Metral 1993] examined the design of a
generic learning interface agent. The agent used Memory-Based Reasoning to store and
compare past situations to new ones, and made use of graphical caricatures to represent
the current state of the agent. An off the shelf mail applicakodprawas modified to

interact with the agent.

An alternative approach to learning within agents at MIT was explored by Sheth [Sheth
1994]. A news reader was developed, NEWT (News Taylor) which made use of user
feedback to identify articles of interest. The system maintained a set of agents, each
responsible for exploring a different interest. New agents can be created by the user, and
given a profile of the users interests. The representation used for profiles and incoming
articles is based on the vector-space representation [Salton & McGill 198@énefic
algorithm approach is used to explore different profil€rossoveris used to combine

parts of two profiles to create a new one, whemasationis used to modify a user
profile. A fitness score is calculated for each profile and is modified according to a users
response to articles found by the agent.

The ideas of Genetic Algorithms were also adopted by Baclace in his Personal
Information Intake Filter [Baclace 1991; Baclace 1992]. This filter is also based on ideas
from Agoric SystemgMiller & Drexler 1988], whereby agents compete via market
trading. Each agent is sensitive to features in an article, and possesses a fitness value or
"store of money". When these features are found within a new article, the agents
sensitive to the features rate the article. Agents rating the article get charged for the
privilege of contributing towards the rating. Once the user has read the article, feedback
is returned as to how accurate the rating is; accurate agents are rewarded, whereas
incorrect agents are penalised. Crossover is used to create new agents by creating a
conjunction of two existing features.

2.3 The Proposed Approach

The Mail AGent InterfaceMAGI) detailed in this dissertation draws inspiration from

both the abve mentioned fields of research and utilises them in a mail agent. It makes
use of a machine learning approach to build up a user model or profile of the users
interests. User actions are observed for use in creating rules, and these rules are used to
filter incoming mail messages. The CN2 induction algorithm (described in the next
chapter) is used to induce rules based on these observations.
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The issue of confidence is addressed by use of multiple rules for any action. A single
message can fire more than one rule. For each action or classification, there will be many
rules created. A confidence threshold is set so that a minimum number of rules must fire
with the same action or classification for the action to be accepted. Once an action is
accepted by the agent, it will then be proposed to the user, who can accept or reject it.
Basic feedback is provided in the form of new training examples if the action proposed

by the agent is then executed.

The work will initially concentrate on extracting features from the message body, as well
as later using the semi-structured mail header fields. A more advanced approach is
proposed to feature extraction based on the work of Miller & Drexler, and of Baclace.
This involves a community of agents which extract features of interest from the message
body. Agents are then rewarded or penalised depending on how well they describe the
message. User feedback is used to determine the quality of the rules and the features
extracted.



Chapter 3
Inductive Learning Algorithms

This chapter describes the CN2 algorithm used in Magi, and discusses the problems
encountered in applying it in the agent.

3.1 CN2

The use of learning algorithms for inducing concept descriptions from examples has
eased the bottleneck of knowledge acquisition. Algorithms such as ID3 [Quinlan 1986]
or those from the AQ family have been especially successful. However, both families are
susceptible to domains with noisy data. Some members of the AQ family have been
developed to preprocess noisy data (eg AQ15 [Michalski et al. 1986]), but these leave the
AQ algorithm intact.

CN2 [Clark & Niblett 1989; Clark 1989] was designed to modify the AQ algorithm to
solve these problems. The algorithm works in an iterative fashion, with each iteration
searching for a complex which covers many examples of €lamsd few of any other
class. Acomplexis a conjunction of attribute tests. This complex forms the conditional
part of a production rule, where the cl&ss the result of the production rule. Once a
complex is found, the examples it covers are removed from the training set, and the rule

if complexthen Class C

is added to the end of the decision list. The algorithm repeats itself until there are no
more examples in the training set.

A complex is found by using a beam search to specialise rules. A complex is specialised
by either adding a new conjunctive term, or removing a disjunctive element in one of its
selectors. A size limited set, called te&ar stores all the complexes that are being
considered. These are the ‘best complexes found so far’. Initially an empty complex
which covers all the training examples is used. Specialisation has been implemented by
repeatedlyintersectingthe set of all possible selectors with the current complex. All
unchanged elements or null complexes are removed (a null complex is one that contains a
pair of incompatible selectors, for examplg=y O big=n).

12
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The star is then trimmed. This is done by evaluating each of the new complexes, and
discarding its lowest ranking elements. This is done by using two evaluation functions.
The first evaluation uses the information-theoretic entropy measure (1.1)

Entropy= - Z p; log,(pi) (1.1)

where the lower the entropy the better the complex. First tH€ set examples is found
which a complex covers. Then the probability distributi®os (p4, ..., p,) of examples
in E' amongn classes is also found. Theose measure is then applied to the complex.

An alternative search heuristic can be used to trim the starLdpiacianerror estimate
is shown below (1.2):

(n-n.+k-1)

Accuracyn, ng, k) = (n+K)

(1.2)

where:

n = total number of examples covered by the rule
n. = number of positive examples covered by the rule
k = number of classes in the problem

The second evaluation determines whether the complsigisficant A complex is
significant if it contains a regularity unlikely to occur by chance, and thus reflects a
genuine correlation between attribute values and classes. CN2 measures this by
comparing theobserveddistribution among classes of examples satisfying the complex
with the expectedistribution resulting from the complex selecting examples randomly.

If the difference is greater than that which can be accounted for though pure chance, the
complex is considered to be significant.

The significance is calculated by using the likelihood ratio statistic [Clark & Niblett
1989], given below (1.3):

ofi O

ZZf loQDaD

(1.3)

where the distributionF = (f,,...,f,) is the observed frequency distribution, and
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E =(e,...,e,) is the expected frequency distribution. This statistic provides a theoretic
measure of distance between the two distributions. Under suitable assumptions, this
statistic is distributed approximately g&with n — 1 degrees of freedom.

CN2 provides an ordered list of production (or if-then) rules. Ordered rules have the

disadvantage in that they sacrifice comprehensibility. This is due to any single rule being

dependent on its preceding rules. However, their advantage is that, unlike unordered
rules, there is no need to provide an additional mechanism to resolve rule conflicts due to
two or more rules firing. Unordered rules can be produced by CN2, by changing the

evaluation function to the AQR function used by the AQ family.

3.2 lIssues regarding the Application of CN2 to Malil Filtering

The approach of using CN2 to induce rules, as opposed to other approaches such as using
Memory Based Reasoning [Metral 1993] or a genetic approach [Sheth 1994] was to
generate a set of rules which could be read and modified by the user. Approaches such as
those mentioned albe maintain a state of learning which is inaccessible to the user,
except through the application or other related tools. The rules generated by Magi are in
the form of production rules in a standard text file.

In order to induce rules from mail messages, one needs to select features from the

message. A message can be split into attributes, one for each fields and one for the
message body. However the problem of multiple attribute values soon becomes apparent.
A filtering heuristic can be used to find features in the message body which characterise

the message (a heuristic based on frequency is described in this dissertation). A message
with similar characteristic may not generate exactly the same features, although there

may be some overlap.

This raises the issue of whether a single training example for a mail message is sufficient,
or whether a disjunct of simpler training examples should be used. Magi makes use of
multiple training examples to overcome this problem. A disjunct of examples is created
comprising of combinations of the different attribute values generated from a single mail
message.

This raises the second issue of multiple rules. If more than one example is generated and
then applied to the rules, each example may fire a rule. This introduces a need for some
form of conflict resolution; although at most one rule will fire with any given example if
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an ordered ruleset is used, many examples may fire many rules. Chapter 4 describes a
solution to this problem.



Chapter 4
MAGI - Mail AGent Interface

This chapter describes the mail agbfagi and details each of the components used in
building the system. Each component is described in turn; why it is needed, its
constraints, and its function within the system.

4.1 System Requirements - An Introduction

The requirement is to develop a mail agent which aids its user in handling mail. The
agent sits atve the mail tool observing the users interactions with the tool. It can
interact with the mail tool in order to perform actions automatically for the user.

The following is a list of the types of actions the agent will attempt to learn from
observing the user:

+ Messages which are filed away in different mailboxes for later browsing.
« Junk mail which the user is never interested in reading.
+ Messages which are forwarded to other users.

These actions all fall under Malones criteria of Cognitive filtering [Malone et al. 1987],
whereby filtering is based on the contents of the mail message. Other behaviour could be
observed, such as the order in which mail is read and if this varies on the author or
recipients (Social Filtering), or the time spent reading mail or the size of the mail
messages themselves (Economic Filtering).

The agent comprises of a number of modules, each of which are responsible for certain
tasks. The main reason for this is one of performance. Each time the rulebase is
generated, the existing rules are discarded and new ones are created. This process can be
processor intensive, so it occurs as a regular batch process. Classification of new mail
messages is performed each time a new message is delivered; again to reduce processing
time when the mail tool is invoked.

An aim of the project is to make the agent as transparent as possible. Mail agents such as
that which communicates with the mail tool Eudora [Metral 1993] rely on the user
interacting with the agent in addition to the mail tool, with caricatures used to reflect the

16
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agents current state. With Magi, the agent is invisible to the user and does not effect the
users handling of mail. The only time the user is aware of the agent is when the user
requests help. Because of this the agent has to interact with an existing mail tool. The
standard Berkelelail tool is used.

The Mail Interface
execution

r-r-r—-—-—--—-—---------------""--"-"-""="-""="-""-"-""=""=""="-""="-""=""=""=""="=""="=""=""=""=""="~="“"=""“~"="=""~”"=”"=”"=”""”"=”"=~”"~="~”""”"”"”"~= "
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Figure 1 - The Agent Overview

An overview of the agent can be seen in figure 1. This overview highlights the
modularity of the agent. The modules communicate by means of shared files. The three
modules can be summarised as follows:
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« The Mail Interface- This module is responsible for observing and negotiating with
the user. User actions on mail messages are recorded by the mail interface for later
rule generation. The interface also negotiates with the user which automated actions
to perform. These automated actions are generated by the classification engine and
are actions the agent is confident in performing.

« The Rule Generation ModuleA record of user actions on mail messages is kept by
the malil interface. This record is used to generate training examples which are used
to induce rules. Each action has a giliemtime, during which it contributes towards
rule generation. This is so that the user profile can reflect the user over a given time.
The rule generation module is responsible for handling this, and for pruning the
training set as training examples become old.

+ The Classification EngineThis module tests each new mail message against the rule
base, and analyses the results. As many rules may fire with a given message, this
module is responsible for assessing the confidence in the results of the rules. The
term classificationhere is used to represent any mail action the agent knows about
and can perform on behalf of the user.

An important component common to both the rule generation module and the
classification engine is that of feature extraction. This is responsible for breaking up mail
messages into features which are matched against the rule base. Similarly, messages
need to be broken up into features in the same way to generate a new rule base. This
component is described below.

4.2 The Mail Interface

This module sits transparently between the user and the mail tool. With conventional
mail tools, the user issues commands directly to the tool, by typing commands or using a
graphical user interface (GUI). It then responds to these commands by displaying mail
messages or managing the mailbox, depending on the command (Fig 2).

The mail interface sits between the user and the mail tool (Fig 3). Commands are
intercepted by the mail agent before being passed to the mail tool. This allows the agent
to observe the user handling mail. Likewise, any response from the mail tool can be
intercepted by the mail agent. This allows the mail agent to observe the result of user
commands.
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User

The user can interact
directly with the mail tool

Figure 2 - Using a mail tool

User
The user can negotia The Agent observes the
with the agent interaction between

the user and the mail tool
I‘________________________I _____________________________ "
: v f Mail Agent :
L e e e e e e e e e e ]

The Agent can communicate
directly with the mail tool

Figure 3 - Inserting the mail interface above the mail tool



Chapter 4. MAGI - Mail AGent Interface 20

As the agent lies between the user and the mail tool, the agent is able to negotiate directly
with either the user or the mail tool. In this way, the user is able to examine and select
actions proposed by the agent whilst using the mail tool. Once the user is happy with the
proposed actions, the agent is then able to interact with the mail tool directly without
affecting the user.

Whilst the agent is to be transparent to the user, the user may wish to negotiate with the
agent directly. Because of this and other considerations (see Chapteplementation
Details) a graphical user interface was modified. This interf@émail, sits above
BerkeleyMail providing a graphical interface but not acting as a mail tool itself. Extra
functionality has been added allowing the user to negotiate directly with the agent. This
is discussed below idser Feedback

4.2.1 Capturing user actions
The agent is only interested in a subset of mail commands. These commands are mainly
responsible for filing away mail in different mailboxes, or the deletion of unread mail.

The commands are intercepted by the agent before passing to the mail tool. At this point
all that is known is that there is a message that needs to be filed away or deleted. In filing
mail messages, the agent requests the mail message from the mail tool in order to extract
features from the message at a later date. This message and the user command are stored
in apre_featurelog file. Once thiobservationhas been made, the command has to be
executed. This is done by the agent issuing the command directly to the mail tool, and
passing the results back to the user (see fig 4).

Deletion is a different matter. Many mail tools offer the ability to undelete mail messages
during the mail reading session (BerkeMgil is one such tool that allows this). If a log

is made of a message being deleted, this needs to be compensated for if the message is
then undeleted. In this case, the agent keeps a note of all messages deleted without
logging this fact. If the message is undeleted, this is also registered by the agent. When
the mail tool session ends, the agent then logs all the deleted messages at that point.

There may be times when administering mail that commands need to be issued without
being logged by the agent. This may be because of an atypical command or commands
which might affect the rules generated. A mechanism is provided so the user can inform

the agent to ignore the user until told otherwise.
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User
The user saves the current
message in folder X
rT T ) B N pre_featur
| Mail Agent > .
L e , log file

The agent intercepts this command.

It obtains the current mail messag

from the mail tool, and appends this
to the pre_feature log file.

The command is then forwarded to
the mail tool, which replies to the user.

Figure 4 - Making observations on message filing

4.2.2 Automating User Actions

The classification engine examines incoming mail and determines if actions should be
proposed by the agent. These proposed actions are stored in a log file called the
execution log Each entry comprises of the action or command the agent proposes to
issue, and some means of identifying the mail message on which the action is to be
executed.

When the user has negotiated with the agent to decide which actions are to be performed,
the agent searches for each message in the mail box and performs the actions. The agent
makes a record of the actions performed which is displayed to the user.

An important consideration here is that there has to be some way of overriding the agents
proposed actions. It is possible that the agent may mis-classify a message, due to poor
training examples or as part of the user changing their requirements. Because of this, the
facility for the user to negotiate with the agent regarding proposed actions is included. In
the majority of cases it would be expected that the user would trust the agent to perform
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its proposed actions.

Confidencan the agents proposed actions is represented by the number of rules firing to
yield the same action (see belowGtassifying Messaggs A trust thresholds used to
determine whether or not the agent has high confidence in a proposed action. This
threshold is consistent across all actions and has been determined empirically.

Actions proposed by and performed by the agent are also considered for future training
examples. In this way messages, for which the agent correctly predicts the action, will
contribute towards the correct action when rules are later generated. This provides
positive feedback for the rule generation module.

Initiating agent proposed actions and negotiating with the agent as to which message-
action pairs are to be performed are two examples where the user communicates with the
agent as opposed to the mail tool.

4.2.3 User Feedback

An important function in negotiating with the agent is to be able to select which message-
action pairs proposed by the agent are to be performed. For this, the action browser was
designed. This lists all the message-action paieskingeach one to indicate that it will

be executed. As the messages are referenced by the message-action pairs using a unique
identification value (théMessage ID), this list can mean very little to the user. The user

can examine any message from this list. On doing so the message is displayed in the
window below. Any actions not to be performed can then be unselected. Once the user is
happy with the agent predictions, they can be performed.

Because this mechanism identifies correct and incorrect agent predictions it can be used
to provide additional feedback, both positive and negative, to the agent. This is of use to
the advanced filtering system described below fsbeanced Filterinyy Here, feedback

is used to reward or penalise features that are used in rule generation.

This list of message-action pairs could be modified so that actions not normally proposed
can be selected. Currently threst thresholds set within the classification engine. For
each message, @nfidencevalue is generated from the number of rules that fire for a
given action. The agent will propose a message-action pair if the confidence value is
greater than the trust value, ie. the agent has a high confidence in this action. This is
explained in greater detail below (Sekassifying Messaggs
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An alternative approach would be to add the confidence count to each message-action
pair forming a message-action triplet. The user could also define theirtragn
thresholddor every possible action. For each entry in the list, the confidence count could
then be compared to these user defitmast thresholdswithin the mail interface. If a
confidence count is greater than thest thresholdfor that action, then that entry could

be marked for execution.

The main advantage of this approach would be to onguser feedback. The current
action browser displays entries which the agent has high confidence in. The user can then
reject any entries not to be performed. This new approach would also list entries for
which the agent has low confidence, ie. the confidence value is less than or equal to the
trust thresholdfor the specific action. The user can then select entries which the agent
has low confidence in to be performed, or to reject entries which the agent has high
confidence in.

4.3 Feature Extraction

The rule generation module utilises message features to induce rules for the rulebase.
Similarly the classification module compares message features to the rulebase to detect
messages the agent may want to propose to the user. Both modules require these features
to be extracted from the message.

The feature extraction mechanism was designed so that it could be used from both the
classification module and the rule generation module. This ensures that the message will
generate the same features for both modules.

Each message is divided into two parts. The first, the message header, contains structure
information. The second part is the message body. Two approaches to extracting features
from the message body are discussed in the secBesi Filtering and Advanced
Filtering below.

The message header contains information about the routeing used by the message to
reach its deadline. It also contains information about who the sender was, the time and
date sent, recipients, status information etc. Magi is currently only interested in two of
these fields. These are themm and Subjecffields, which contain the sender and a brief
synopsis of the message respectively.
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The From field is preserved as a single string. The subject field is parsed into words.
Words found in the common stoplist are removed, and the remaining words used. See
Basic Filteringfor more details on this parsing.

In generating rules, attribute files are generated, containing attributes which may be found
in the rule-base. These files are used for additional filtering when classifying rules (see
Classifying Messaggs

4.3.1 Basic Filtering

This is the main filtering adopted by Magi. The message body is parsed into words.
Words are defined as sequences of characters delimited by whitespace, ie. space, tab, or
newline characters. These words are then sorted into descending order by frequency.
The topN words are then used to describe the message, where the Mimslaefined by

the agent. Punctuation and numerics are removed to reduce spurious words. See the
sectionimplementatiorfor details on how words are parsed out of the mail message. An
example of this is given in Chapter 5.

A high proportion of the most frequent words found will be common words used as part
of every day language, for exammed, is, theetc. A file containing these words, or
stoplist is used to filter them out. As words are parsed out of the message body, the
stoplist is checked. If the word exists in the stoplist, it is immediately discarded. This is
used to impove theentropy or information content of the high occurrence words in the
message body.

All the tests described in thResultschapter use this method of filtering.

There are many other possible approaches to this problem. The body of the message
contains a wide range of words, where verbs can exist in different tenses (eg is, was, will
be), nouns in different cases (eg tree, trees), and synonyms (eg freedom, liberty,
independence), not to mention the issues of multiple spellings (eg color, colour).
Approaches can be taken to take these considerations into account. Thesauri and word
hierarchies could also be used [Miller et al. 1990] to reduce the number of synonyms
found in messages.

4.3.2 Advanced Filtering
One problem with the basic filtering method describedvahs hat there is limited



Chapter 4. MAGI - Mail AGent Interface 25

feedback of the success of the rules generated. Successful agent proposals will generate
further training examples. However, some features may contribute to more than one
action, and so may cause mis-classifications. This has been partially investigated by
varying thetrustthreshold.

An alternative solution, is based on the work by Baclace [Baclace 1991; Baclace 1992].
The features themselves can be monitored rewarding features which contribute towards
correct classifications and penalising features which cause mis-classifications. This is
achieved by using an additional filter to the existing basic filter. It builds up over time a
knowledge base containing a number of different features. Each feature coffitaiessa

value which can vary, depending on whether the feature contributes toward correct
classifications or mis-classifications.

When a new feature is encountered, ie. it does not already exist in the knowledge base, a
new entry is made. A standard starting value fofiiteessis assigned. Once a feature
exists in the knowledge base, fisiessvalue determines whether the feature is passed
through the filter. Features with a Iditnessare considered as unhelpful and are filtered

out, whereas those with a hifitnessare allowed through the filter.

The fitness of a feature has to reflect how good the feature is in determining
classifications. This is achieved by rewarding the feature by increasifigpéissif the

feature contributes towards a correct classification, and penalising the feature by reducing
its fitnessif the feature contributes an incorrect classification. The amount by which the
fitnessis altered is determined by the frequency of the feature in the classified message.
Thus if the feature had a high frequency thenfiimessis adjusted more than a feature

with a lower frequency.

There is the danger that once a featufie'essfalls below the filtering threshold (ie. is

now filtered out), the feature can never be reused. The feature may at the time yield mis-
classification, but may be very useful to the agent at a later date, due to the user profile
changing. Once a feature is filtered out, it can never contribute towards a correct

classification and hence be rewarded.

This problem is overcome by only keeping these features in the knowledge base for a
limited period. Once a feature is considered unhelpful, ifith@ssfalls below a
threshold, itditnessis then decremented during each classification. Ondeniéssfalls

below zero it is then removed from the knowledge base.
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This is in the prototype stage. Due to a lack of time at the end of the project this filter
was not complete. Hence no test results exist to show if this filtering improves
performance. An example of this mechanism is shown in Appendix A.

4.4 Learning Rules

The machine learning algorithm CN2 is used to induce rules based on a series of training
examples. The training examples are generated from two sources. The first set is
generated from observations made of the user by the agent since rules were last
generated. The observations are stored inptiee featurelog file. Each observation
consists of the mail message and the action performed on it. It is at this point that
features are extracted from the message using the feature extraction component.

// \\ S~
Ve N Ss o
Attribute -
Rule Bas Files / ™~ All examples older that a

given time are removed
from the training log

Rule Generation
Pre-processor

Attribute files are created.

These are used for later filtering /:/’ A The remaining examples are
\ then combined to generate
Ve \ - .
s l training examples for CN2

Feature
Extraction

pre_feature
log

The Rule Generation Module

Figure 5 - The rule generation module

The second source of training examples comes from training examples used in past rule
generations. Once an example is used in the induction of rules, it is gslezifdife
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This shelf-life can be determined empirically. When rules are generated, the old ruleset is
discarded. Many of the old rules may still be valid, but may not be generated by the new
observations. This is overcome by preserving the most recent training examples over a
given time. Once a training example has been preserved for longer than this time it will
be discarded.

The advantage of this approach is that user behaviour is modelled over a recent given
time (for example, the last month). This allows for infrequent but predictable actions to
be learned, but also enables the agent to adapt to new interests. User behaviour will
change, so there is a needdayettraining examples which are no longer valid. This is
accomplished by discarding old examples once they have exceeded this shelf-life (see
figure 5).

A single mail message will generate multiple training examples. Uy fieatures are
extracted from the message body, which can be used to characterise the message. The
learning algorithm accepts a single value for each attribute. The attribute can hold a
conjunction of allN features, but the features themselves and any ordering of the features
will be meaningless. An alternative approach (used by Magi) is to generate multiple
examples, each with one of the features contained by the message body attribute.

The number of training examples increases with the use of other attributes which may
contain more than one feature. The number of examples generated is given in 1.4:

Num of Examples (a; +a, +,...,+a,,) (1.4)
where

a = number of possible features for a given attribute
m = number of attributes

An example of this is given in Chapter 5 ($&ature Extractioh

The rule generation module also produces attribute files. In order to generate rules, the
learning algorithm needs lists of valid attributes and actions. These are generated at this
stage before learning the rules. The attribute files are also used for filtering in classifying

messages.



Chapter 4. MAGI - Mail AGent Interface 28

4.5 Classifying Messages

Mail on a UNIX operating system is automatically delivered to a users mailbox. It is also
possible to send a copy to a process. This mechanism is useddigstbiéication engine
When mail arrives for the user, a copy is sent to the classification engine, which then
attempts to classify the message and propose an action in the execution log.

Attribute
Rule Bas .
Files
Classification N p
Trust Processoy _ . T ¥
«

When features are extracted
from the mail message, any
features not found in the
attribute files are then
replaced by the UNKNOWN

symbol - ?

Feature
Extraction

|

execution
log

The Classification Engine
Mail Message

Figure 6 - The classification engine

In order to classify an arriving mail message, it needs to be broken down into features

which are then applied to the rule-base. The features generated from the message
undergo a further filter stage than when generating the rules. Each of the top occurring
set of words is then checked to see if it occurs in the correct attribute file. If it cannot be

found it is replaced wittUNKNOWN (see figure 6). The reason for this is that the
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classification engine recognises this symbol and no lookup is performed. If a feature
cannot be found in the attribute files, then it will not exist in the rule-base.

Multiple testing examples are generated in a similar fashion to those generated for
learning (sed.earning Rulesabove). As in the training examples, every combination of
attributes are generated for testing. Any attributes not found in the appropriate attribute
file are replaced by NKNOWN Each combination is tested against the rulebase. All
rules that fire are then processed to count the number of rules firing for each different
action. For each action, if the number of firing rules is greater thamuistehreshold,

then the agent proposes the action for the appropriate message by adding it to the end of
theexecution log

Because the number of features generated by the subject line can vary, the number of
firing rules needs to be normalised. This is achieved by treatingusighreshold as a
percentage of test examples firing. For exampletris threshold may be set to 30%.

For the agent to have confidence in an action for a given message, more than 30% of the
test examples for that message must fire rules which give that action.



Chapter 5
Implementation Details

This chapter discusses considerations taken into account when implementing the mail
agent Magi. The agent was developed to run on a UNIX platform, and is implemented
using Bourne shell scripts and the language ‘C'.

5.1 Changes to Xmail

The main requirement in writing the agent was to allow it to observe the user whilst
allowing the user to work with the mail tool, and to allow it to interact directly with either
the mail tool or the user. This poses a problem as asynchronous communication has to
take place between the agent and both mail tool and user.

This problem has been nicely solved ayail, written by M.Wagnitz [Wagnitz 1992].
Xmail is an X11 window based visual interface to the standard Berkéddlyprogram

(see figure 7). It is written in ‘C’ and uses the X toolkit with the Athena Widget Set. Not
only does this set up and maintain a communication channel to BeMaigybut it
provides a modifiable graphical user interface. A single button and dropdown menu was
added to the main interface to provide the user access to the agent.

Two main modifications were made xmail. They were to observe user actions and to
handle agent actions. Due to the design of the interface, different buttons were used for
different actions. Each button causes a callback function to be executed. Calls were
added to the save buttons to call the roufisdonLog (actionlog.c) The design of this
routine is very simple:

I. Thepre_featurdog file is opened for appending.
ii. The action is written to the log file
iii.  Mail is queried for the appropriate mail message, which is then written to the file.
The code attached to the command button could then be executed.

The Deletion and Undeletion button created more of a problem. No log updates were
performed until the mailbox was to be updated. All deletions by the user were also

30
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performed byMail. BerkeleyMail allows deleted messages to be undeleted, provided the
mailbox has not been updated. Deletions were recorded internally in a buffer. This way
undeletions would then cancel the corresponding deletion. When the mailbox was to be
updated, the buffer was then traversed, and the remaining deleted messages were then
added to the log.

wnail 1.5 = "/usr/spool/mail/terry™;: 19 nessages

1 terry@csd,abdn.ac.uk Hed Aug 17 11:09 3171022 CH

2 richards@swi,.psy.uva.nl Fri Aug 19 13;06 237973 Fron Ansterdan

3 pedwardsPcsd,abdn.ac.uk Hon Aug 22 10:36 104/4434 Agent workshop ...

4 sleenancsd,abdn.ac.uk Thu Aug 25 01:19 24/988 Re: Denonstration of Ter
5% prurray@lingua,clbr,ug,oz,au Thu Aug 25 01:19 2271432 beer & waw
[
7
g

Jalshan@cs,strath,ac.uk Thu Aug 25 01319 63/2620 Intelligent Agents —- Req
pat2csd.abdn,ac,uk Thu Aug 25 01:19 22/931 deadline
wdavies@csd,abdn.ac.uk Fri Aug 26 00:;03 2971140 Re: Telescript

9 jalshan@cs,strath,ac,uk Tue Aug 30 22:32 4571683 Thesis

10 watsonBcsd.abdn.ac.uk Tue Aug 30 22:32 27/115%0 POHER CUT - REHINDER

11 nlowry@inet ,uni-c.dk Hed Aug 31 22:28 41/1092 Re: Hello

12 nirkBssl,.co,uk Hed Aug 31 22:28 4271928 List of lists

13 wellsB@csd,abdn,ac.uk Hed Aug 31 22:28 8653387 {(fud} EPFL job offer

14 richardsPswi,psy,uva,nl Hed Aug 31 22:28 4071503

15 nead-lovers-requestBeklektix.con Fri Sep 2 01:03 331/12907 Head Lover's Digest|

Press <Hiddle-House-Button> for help on any window

| next | | save | | Folder | | copy | |preserue| | delete | |Heunail || quit |

| action | | Send | | reply ||File: -

eszage 93
ron @pigeon.csd.abdn.ac,uk: jalshan®es.strath,ac,uk Tue Aug 30 22:32:01 1994
eceived: from post.demon.co.uk via puntmail for terry2holn.demon.co.uk:
Tue, 30 Aug 94 11:09:57 GHT
eceived: from pigeon.csd,abdn,ac.uk by post.denon.co,uk id aa05110;
30 Aug 94 12:09 GHT-60:00
eceived: from sinpson.cs.strath,ac,uk (nndf@sinpson.cs,strath,ac,uk [130,159,196.1251]
eceived: from hunter-01,cs,.strath.ac.uk by simpson,.cs,strath.ac.uk
via Internet with SHTP/TCP id aa02710;
Tue, 30 Aug 94 12:08:11 +1000
terry@csd, abdn, ac,uk
c: Jjalshan2es,strath,ac.uk
ub ject: Thesis
ate: Tue, 30 Aug 94 12:08:10 +0100
ron: Jalshan Sabir < jalshanBcs,strath,ac,uk?>
essape-Id: <9408301208,aa0271085inpson.cs, strath, ac.uk>
tatus: RO

Hullo again!

I’ve read through your material, and must confess that I found
it well=-presented and informative, Ho complaintsfcriticisms at
all, It does, as it should, denonstrate a waste anount of
background research. HAnyway, enough of that.

If you get tine, can you possibly think about possible disadvantages
of agents? TI'we gok a couple

1} Society will have to be educated bo accept agents

Figure 7 - The user interface

Handling agent actions involved more work. The classification engine appends proposed
actions to thexecution logvhich is then read by the action. Each entry comprises of the

Message-ld and an action. An example of an entry can be seen in Figure 8. The
Message-Id is used to identify the message within the mailbox, and is always sought from
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the most recent message to the oldest.

<9405131612.AA08991 @kite> s %d +msc
<9405131920.AA28801@eureka.gte.com> S %d +kdd
<9405140740.AA10270@raven.eklektix.com> S %d +mead

The message-id of a message The action to be performed on the message

Figure 8 - AnExecution Log Entry

This execution logis only loaded into the interface when the user selectsadtien

button. The interface is designed so that the buttons on the main window can also act as
dropdown menus. If the action button is clicked with the left mouse buttoax#uaition

log is loaded and executed. By clicking the button with the right mouse button a menu
appears with four options:

action - this performs the same action as clicking with the left mouse button. The
reason for this is consistency; all menus have the same action for their top entry as the
button itself.

Select Actions This invokes the action browser.

Log Actions- This turns on agent observations and logging.

NoLog Actions This turns off agent observations and logging.

The last two menu entries allow the user to determine when the agent observes actions.
This mechanism can be used to prevent atypical actions from being used as erroneous
training examples. By default the agent will observe and log user actions.

When agent actions are performed, the agent looks up the Message-ld of a message-
action pair in the current mailbox by requesting all the messagedMesnin turn, from
the most recent to the oldest. The agent is actually seeking the message number of the
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message with the matching Message-ld. Once this is found, it is used to complete the
command (or action) which is then seniail. The a summary of messages and actions
performed on them is then presented to the user (see Figure 9).

wnail 1.5 = "Ausr/spoolfmails/terry”: 15 nessages 10 saved

1 terry@csd,abdn.ac.uk Hed Aug 17 11:09 3171022 CH

2 richards@swi,.psy.uva.nl Fri Aug 19 13;06 237973 Fron Ansterdan

3 pedwardsPcsd,abdn.ac.uk Hon Aug 22 10:36 104/4434 Agent workshop ...

4 sleenancsd,abdn.ac.uk Thu Aug 25 01:19 24/988 Re: Denonstration of Ter
5% prurray@lingua,clbr,ug,oz,au Thu Aug 25 01:19 2271432 beer & waw
[
7
g

Jalshan@cs,strath,ac.uk Thu Aug 25 01319 63/2620 Intelligent Agents —- Req
pat2csd.abdn,ac,uk Thu Aug 25 01:19 22/931 deadline
wdavies@csd,abdn.ac.uk Fri Aug 26 00:;03 2971140 Re: Telescript
9 jalshan@cs,strath,ac,uk Tue Aug 30 22:32 4571683 Thesis
10 watsonBcsd.abdn.ac.uk Tue Aug 30 22:32 27/115%0 POHER CUT - REHINDER
11 nlowry@inet ,uni-c.dk Hed Aug 31 22:28 41/1092 Re: Hello
12 nirkBssl,.co,uk Hed Aug 31 22:28 4271928 List of lists
wells@csd, abdn,ac,uk Hed Aug 31 22:28 8653387 {(fud} EPFL job offer
14 richardsPswi,psy,uva,nl Hed Aug 31 22:28 4071503
5 15 nead-lovers-requestBeklektix.con Fri Sep 2 01:03 331/12907 Head Lover's Digest|

murnnw

[3r]
[y
35}

Press <Hiddle-House-Button> for help on any window

| next | | save | | Folder | | copy | |preserue| | delete | |Heunail || quit |

| action | | Send | | reply ||File: -

ction Execution Log

#ecut.ing command s 15 +nead
secuking connand s 13 + jobs
wecuting commnand = 8 +agents
wecuting connand s 7 +#nsc
#ecut.ing connand s 6 +agents
secuting connand = 5 +nead
xecuting connand s 4 #nsc
wecuting connand s 3 +agents
#ecuting connand = 2 +personal
wecuting connand s 1 #nsc

Figure 9 - Summary of agent actions

The action browser is a mechanism whereby the user can select message-action pairs and
instruct the agent to display the message. The user can also select or de-select messages
to be executed. This enables the user to provide both positive and negative feedback to
the agent about its predictions.
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Due to the lack of time at the end of the project, this browser was not completed.

5.2 Feature Extraction

This component lies at the heart of both the rule generation module and the classification
engine. Written in ‘C’, it is responsible for parsing mail messages and extracting features
from the message body. Both modules require similar behaviour, but subtle differences
exist in use:

+ Rule Generationr messages held in thgre featurelog are parsed. These also
include the actions that were performed on them. All features extracted are used,
coupled with the action.

« Action Classification newly arrived messages are parsed so features can be applied
to the rule-base. No action is provided, and hence none appears with the features.
Attribute files are used to determine which features may appear in the rule-base;
features not found in these files are replaced with the sydits§NOWN

The message is parsed a line at a time. Hnent', "Subject and 'Message-ID fields

are extracted from the header, along with action information if it exists. The subject line
is also broken up into features similar to the message body. The algorithm used in
parsing the subject line and message body is as follows:

i. Periods ‘. are converted to spaces.
ii. All uppercase characters are converted to lower case.
iii. Whitespace characters are recognised to delimit words. Whitespace is defined as a
tab character, a space or a newline character.
iv. All non alphabetics are stripped from words.
v. Words are then looked up in the stoplist. If found they are ignored.
vi. The words are then stored in a tree data-structure. A frequency count for each
word is maintained.

Step (iv) was chosen for simplicity. It filters out punctuation. However the decision to
strip numerics may cause a loss in potential features (such as the word "CN2").

The stoplist used was the one used in generating permuted indesedib/eignwhich
can be found on Sun UNIX platforms. This removes commonly occurring words such as
"the' or "and'. Appendix C contains the list of words found in this stoplist.



Chapter 5. Implementation Details 35

If features are being generated for the classification engine then an extra stage in the
filtering takes place. Features not found in the attribute files generated by the rule
generator are replaced by the symbtlKNOWN Test examples have two constraints
imposed by the classification engine:

+ atest example must contain a value for each attribute.
« only attribute values in the attribute files can be used.

The UNKNOWN symbol does not cause any rules to fire, but is special to the
classification engine and so can be used to complete the test examples.

There may be times when identical examples will be generated, because of more than one
UNKNOWN feature. These are preserved, as the number of times the rules fire is
significant in determining action classifications.

The following is an example of a message and the features generated.

From: terry
Subject: The Tao of Pooh

For a good read, this book
about Pooh is a very good book.

Read it.

The features generated are as follows:

From terry
Subject  tao pooh
Body read book pooh

All different combinations of the attributes will be generated as training or test examples
for the rule generator or classification engine respectively. The examples shown below
are for the classification engine. All the features, exdaptcan be found in the
respective attribute files for each attribute. Hence, tao is replaced withNikBIOWN
symbol "?".
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Attributes
From  Subject Body

terry ? read
terry ? book
terry  ? pooh
terry  pooh read

terry  pooh book
terry  pooh pooh

5.3 Rule Generation

Two sources of training examples are used to generate rules; the first contains dated
examples used to generate previous rules, the second contains examples from
observations made since the last rules were induced. Old training examples are kept for a
limited time, and this set of examples is pruned tooserthe oldest examples before new
rules are generated.

The training examples are then parsed to build the attribute files. An attribute file
contains all the values for a given attribute found in the training examples. These are
required not only by the classification engine, but also by CN2, in order to induce rules.

The algorithm used is shown below:

I. Features are extracted from recent agent observations held prettfeaturelog.
These features are used to generate training examples.

ii. Old training examples are pruned, so that examples used to generate the new rules
reflect usage over a given time period.

iii. The training examples are parsed to generate the attribute files.

iv. The new training examples are date-stamped and prepended to the old training
examples and saved for later use.

v. New rules are then induced from the training examples by CN2, which then writes
these rules in a rule-base for later classification.

5.4 Message Classification

As new messages arrive, a copy is passed to the classification engine. It is then used to
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attempt to predict how the user fill handle the message, such as deleting it or saving it.
This is performed by converting the message into a set of test examples. Features are
extracted from the message, and features not found in the attribute files are replaced with
UNKNOWN symbols. A copy of the Message-ld of the message is retained whilst
parsing the message, so the predicted action can be applied to the message by the user
interface.

The CN2 algorithm was modified to perform classifications, by reading in a rule-base and
then applying test examples to these rules. If a rule fires, then the test example with
attributes is logged, together with the action resulting from the rule. This log is then
processed to see how many and what actions fired. These actions are counted and
compared to thérust threshold. Actions which rules fire more times than the value of
this threshold are then stored in thescution logalong with the Message-Id.

Although CN2 generates ordered rules with a default action, this default not taken into
account when classifying rules. This partially addresses the problem of over-
generalisation, where the default attempts to catch any case not covered by the rules.

The algorithm used is shown below:

I. Features are extracted from the message. Those features which are not found in the
attribute files replaced by "?".

ii. The features are used to generate a set of test examples. The Message-Ild of the
message is identified.

iii. The modified CN2 is then used to apply the test examples to the rule-base. Rules
that fire generate the attributes of the examples that fire them and the resulting
actions.

iv. The results of CN2 are counted and applied twouat threshold. Those counts
which are greater than this threshold are then saved to be proposed to the user.

It is possible for the test example set to vary in size depending on the message. Because
of this, thetrust threshold varies depending on the size of the test set, so that equal
proportions of the sets are required to fire rules in order for the agent to propose actions
to the user.
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Experimental Results

This chapter describes the testing of the feature extraction, classification and learning
engines. It describes and evaluates the dataset used to test these modules. Each of the
experiments are described in detail, graphs of the results are presented and these results
are analysed. Detailed tables of results can be found in Appendix D.

Unlike many empirical case studies that compare different learning strategies within a
specific domain (for example within a calendar management agent [Dent et al.(1992),
Mitchell et al.(1994)] and in English Text to Speech Mapping [Diettrich et al.(1990)], this
study makes use of a single learning mechanism within its domain. The aim is to see if
the agent can correctly classiépmemail messages accurately more than 50% of the
time. Given this the following tests vary different operational parameters to explore the
system and to determine if it does provide a viable solution.

6.1 The Dataset

In order to test out the agent’s ability to learn from and classify mail actions, a large
number of mail messages was required. Six mail categories were identified and messages
were gathered over a four month period during the project (May 1994 - August 1994).
They were sorted into six files, one for each category. Two further mail files taken from
the authors archives were added to the dataset, providing eight different categories into
which mail message could be sorted.

The number of messages and size of each category file varied. Each message was
categorised purely on its contents. Factors regarding social or economic filtering [Malone
et al. 1987], such as the size of the message, its author, the recipients etc were not taken
into account. Because of this, the number of messages in each category varies.

Different types of mail message exist, such as special interest messages, organisational
mail etc. Table 6.1 identifies some of these message types, and illustrate which of the
categories in the dataset share these properties. The properties are defined as follows:
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Category digest méiling organisationg| .specific general
list interest interest

agents O

cure O O

jobs 0 O

kdd O O O

mead ] O O

msc 0 -

personal 5

phd O

Table 6.1 Properties shared by the message categories in the dataset.

« digest- This is a mailing list where messages are sent to an individual who is
responsible for collating and sometimes moderating messages about the given subject
area. Each digest message will contain one or more contributing messages. The
From field is consistent across each digest, and often there is little variation in the
Subjecffield.

« mailing list- Normally automated, this is a server which forwards messages sent to it
to recipients listed within a list. THerom andSubjectfields are those of the original
sender and so will vary with each message.

 organisational - these are messages grouped because of some organisational
structure, such as messages sent to a mail alias.

« specific interest messages related to a specific theme, such as a music mailing list or
special interest list.

+ general interest messages covering a broader range of interests.
The following is a description of each category:

+ agents- this category contains various articles, and announcements about a specific
topic; that of ‘agents’. This dataset is the smallest, having been collected for a short
period, and contains messages mostly forwarded from a single source. Hence this
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category is not expected to yield good resillsmessages

cure - this category contains selected messages collected over a four year period. All
the messages pertain to a music mailing bst.messages

jobs - this category contains various messages regarding posts available in academia.
24 messages

kdd- the messages in this category are in the form of digests from a mailing list. As
only a single digest was received every month, a number of archived digests were
added to the datasds messages

mead- again messages forming a digest from a mailing list. Messages were received
at a rate of two to three a we&@ messages

msc - these messages were sent to a departmental mailing list regarding various
organisational matter@6 messages

personal- messages in this category comprise of personal communications and cover
a wide range of topicgl3 messages

phd- these messages, regarding a specific topic, originated from a handful or senders
over the period of a year. This category also contains the largest number of mail
message$4 messages

6.2 Classifying different datasets

In order to evaluate the classification engine and the rule generation module, a test suite
was developed. The algorithm is listed below:

For each message category file a percentage of messages, selected at random, are
extracted for training the agent. These are processed to emulate the agent
observing the user’s actions, and are stored irmpthefeaturelog. The action is

that of saving the message in a mail folder with the same name as the category file.

Once messages from all the category files have been pre-processed and added to
thepre_featurdog, rules are then induced. Entries in ttaning log are removed,
so that only the@re_featurdraining examples are used.
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iii. For each message category file:

i. The remaining messages not used in training the agent are then passed to the
classification engine as incoming messages.

ii. The messages are then classified. Teheecutionlog is processed, to
investigate how many messages were classified correctly, and how many
were mis-classified.

iii. These results are appended to a test results file.

This test was repeated for training percentages from 20% to 80% in 10% steps. A lower
percentage would provide insufficient training examples to train the agent, and a higher
percentage would leave to few test examples to adequately test the rules.

Care should be taken when examining these limits for categories with low message
counts such aagentsandkdd as little as a single message from these categories may
have been used to train or test the agent at these boundaries.

A sample set of results is shown below. Coverage tables similar to those found in the
rules are used to identify the categories of mis-classified messages. This information
could be used in future work to discover categories which have a more than random
overlap in features. For now the results were analysed to calculate the proportion of
messages that are correctly classified by the agent, as opposed to the number of mis-
classifications made.

Training with 50%

Thu Sep 1 12:49:44 BST 1994
Jtestdir/kl_agents 4 agents 4[40000000]
Jtestdir/kl_jobs 10jobs2[12010000]
Jtestdir/kl_kdd 6 kdd6[ 00600000
Jtestdir/kl msc9msc1[40010000]
Jtestdir/kl_cure 28 cure 12[000012020]
Jtestdir/kl_mead 18 mead 18[ 000001800
Jtestdir/kl_personal 31 personal3[10011030]
Jtestdir/kl_phd 30 phd 21[000000021]
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Each entry contains the number of messages tested of that category, the category name,
the number of correct classifications made and a table listing the total number of
classifications made for that category file.

The CN algorithm was used with the evaluation algorithm sdaptacian, with a
significance threshold of 0.0 and a star size of 5. These parameters have remained
throughout all the testing described in this dissertation.

The original tests concentrated on features generated from the message body. No
attributes were provided by the subject or from fields. The number of fe@urek0

was arbitrarily chosen. Thieust threshold, T was set to 2, so that more than two rules
have to fire with the same action before the agent has confidence in the result.

The test was repeated 30 times, and from theses results averages were calculated. Two
results, proposed actionsand effective actionsare generated for each category. The
proposed actionsor PA (shown as a solid line) represents the percentage of successful
proposals made by the agent for a given category.effbetive actionsake into account
mis-classifications made whilst classifying a given category.

EA is calculated by the equation shown below (1.5)

EA. = 2PA, - 2 PA (1.5)

where EA. = the effective actionsvalue of categoryc, PA, = proposed actionsof
categoryc, and the accuracy distributioRA = (PA,...,PA,) is the proposed action

value PA for each category. Negatiefective actionsire replaced with a value of zero.
This measurement (shown as a dashed line) provides a better indication of the
performance of the agent.

6.2.1 Results

The following eight graphs show the percentage of correct classifications made by the
agent in determining each category. Each graph corresponds to each of the categories
tested. For each point the standard deviation has been calculated and is shown. Tables of
results are then given on the following page and discussed.
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% | agents cure jobs kdd mead msc personal phd

20 | 11.48(11.18) 19.51(11.73) 42.94(16.77) 56.29(26.34) 95.88 (9.02) 6.06 (6.33) 4.76 (3.58) 65.90(12.29)
30 | 12.41 (9.74) 32.60(10.95) 46.46(17.52) 61.51(24.25) 98.88 (2.74) 8.31 (7.45) 5.73 (4.92) 75.01 (9.07)
40 | 12.42(10.72) 40.94(10.28) 52.39(16.25) 69.04(21.51) 99.56 (1.48) 13.71 (9.22) 8.44 (5.52) 81.39 (6.08)
50 | 14.92(10.53) 46.84 (8.38) 54.79(14.57) 79.91(19.14) 99.75 (1.22) 19.94 (8.69) 10.03 (6.57) 84.06 (5.67)
60 | 15.48(18.17) 54.47(12.32) 63.27(16.12) 84.15(14.44) 99.45 (1.87) 24.63(11.44) 15.20 (7.19) 87.33 (4.17)
70 | 16.67(24.38) 58.55(16.65) 64.07(18.03) 84.42(23.52) 96.00(19.60) 25.95(22.07) 15.33(10.32) 85.13(18.36)
80 | 16.46(29.12) 65.82(15.76) 66.70(25.23) 88.53(16.70) 99.75 (1.22) 35.40(26.12) 15.20(12.60) 90.77 (8.50)

Percentage of Proposed or Predictive Actions, PA

% | agents cure jobs kdd mead msc personal phd

20| 0.00 (0.00) 16.39(10.58) 31.07(19.57) 52.86(27.59) 95.56 (9.42) 3.48 (6.33) 0.00 (0.00) 60.43(14.36)
30| 1.14 (560) 27.64(11.86) 31.00(22.68) 53.31(29.24) 98.53 (3.96) 2.95 (6.74)  0.00 (0.00) 69.25 (9.68)
40| 2.17 (595) 35.61(12.55) 38.13(22.75) 56.47(29.29) 99.34 (1.79) 5.91 (9.65) 0.00 (0.00) 74.96 (6.30)
50| 1.00 (4.90) 41.30(10.21) 38.64(20.72) 73.63(25.28) 99.50 (1.70) 10.03(10.79) 0.00 (0.00) 77.19 (6.39)
60| 2.13 (7.48) 47.77(14.44) 48.03(23.14) 77.24(20.59) 99.45 (1.87) 11.28(14.83) 0.00 (0.00) 78.37 (6.31)
70| 4.33(12.27) 53.98(17.62) 48.74(23.06) 79.29(26.64) 96.00(19.60) 13.88(23.38) 0.50 (2.45) 75.40(18.58)
80| 4.51(12.50) 60.70(17.46) 53.52(32.67) 88.03(17.28) 99.75 (1.22) 20.13(26.26) 0.67 (3.27) 77.73(12.96)

Percentage of Effective Actions, EA

6.2.2 Discussion

The results indicate that regularities are being discovered within the training examples.
For each of the categories, there is an increase in PA as the number of training examples
increases. There is some increase in standard deviation towards the higher testing
percentages; the increase becomes noticeable 806%. This is probably explained by

the smaller number of examples being tested per category, hence variation in results can
increase. Botlagents kdd and to some extembbs also had higher standard deviations
overall than the other categories, though this can be explained by these three categories
having the smallest number of examples for training and testing.

The results for the two general interest groupscandpersonalare poor. This could be

an early indication that the agent may have difficulty in inducing rules for these
categories. Of the remaining special interest categories, a#lgautsshow reasonable
performance. The categorgeadperformed really well, despite the anomalous result at
70% which was probably due to to a rogue result.

The EA results show a similar picture, except that these predictions were lower. Standard
deviations are also slightly higher overall in these results. This implies a number of mis-
classifications are being made, and thattthet threshold is set too low. The results
from agentsand personalindicate that classifications for these categories are mostly
random, as there are approximately equal numbers of misclassifications as correct
classifications.
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The following table and graph show an overall percentage of correct classifications for alll
the specific interest categories with the exceptioagents Whilst this does not show

the overall accuracy of the system, it does indicate that, for some categories the agent can
begin to be a help to the user.

100
% PA EA
20 || 56.10 (25.26)] 51.26 (27.10)
30 | 62.89 (22.94)] 55.95 (26.16)
% PA 40 || 68.66 (20.74)| 60.90 (23.89)
50 || 73.07 (19.50)] 66.05 (23.08)
60 || 77.73 (16.46)] 70.17 (19.88)
S SR 70 || 77.63 (14.06)] 70.68 (17.31)
Effective Specific Interest 80 82.31 (13 64) 75.95 (17 04)
0
0 % trained 100

Overall Percentage of predicting special interest messages

6.3 Varying thetrustthreshold - T

The results so far have indicated that whilst many correct classifications are made by the
classification engine, a number of bad classifications, or mis-classifications also occur.
This is suggested by the difference between the EA and the PA values. One way of
reducing mis-classifications is to increase thest threshold. This would result in
requiring more rules to fire for the correct classification, and less incorrect rules firing.

Three sets of experiments were performed. Each was identical to the test outlined in the
abovesection,Classifying different datasetexcept that thérust threshold varied. The
valuesT =3, 4 and 5 were tested, and compared to tbeetbsts wherd = 2.

Again, the evaluation algorithm setlaplacian, with a significance threshold of 0.0 and
a star size of 5. Only features from the message body were used, and the number of
featuresN was left at 10.

6.3.1 Results
The results of these experiments, complete with graphs can be found in Appendix D.
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6.3.2 Discussion
The results clearly indicate that by increasinghe following two effects occur:

- the number of inaccuracies or mis-classifications fall, and
« the number of correct classifications drops.

These two phenomena are illustrated in the graph below. An overall average (for PA and
EA) is calculated for each value ©f For each training percentage, an overall percentage

of correct predictions is calculated across all categories (see results in Appendix D).
These overall percentages are averaged out to give an average PA and average EA for
each value off. These values are plotted below. TPwposal Accuracys calculated

from these two values, and is an approximation of the percentage of correct
classifications.

100
Overall Average T Overall Overall Proposal
PA EA Accuracy (%)
2 || 50.01 (7.29)| 41.77 (5.97 83.52
% PA 3 || 39.56 (7.85)| 36.01 (6.71 91.03
4 || 29.33 (6.04)| 28.14 (5.93 95.94
5| 19.22 (5.20)| 18.72 (5.17 97.40
0

2 3 4 5 =T
Average PA and Average EA with respectto T

Results indicate that there is an initial decrease in mis-classifications, followed by smaller
decreases ab increases, but that the decrease in correct classifications falls consistently
by about 10% per increase in This indicates thal =3 may be a good value for
calculating agent confidence.

The EA value does not increase feersona) but a drop in percentage of proposed
actions occurs indicating that predictions are unlikely to be made for this category.
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6.4 Varying the number of message body features\

So far, the number of features extracted from the messageNbbdg been set to 10.
Tests on the decay of frequency in extracted features (see Appendix B) which were based
on N =10 indicated that there was little difference in frequency between the lowest
frequency words considered. Because of this, the next three tests were concerned with
varying this number of features. The test was performed with the valdeseatfto 7, 8,

then 9.

6.4.1 Results
The results of these experiments, complete with graphs can be found in Appendix D.

6.4.2 Discussion

A similar trend occurs in reducing as occurred in increasifigin the previous tests. As

N is reduced, the percentages of correct classifications and mis-classifications fall. This
is illustrated in the graph below. S&farying the trust threshold - Tor details on
calculating these values.

100
Overall Average N Overall Overall Proposal
Effective Overall Average PA EA Accuracy (%)
10 || 39.56 (7.85)| 36.01 (6.71 91.03
% PA 9 || 34.60 (6.41)| 32.50 (5.86 93.94
8 || 30.06 (7.26)| 28.16 (6.49 93.67
7 || 25.65 (5.94)| 24.74 (5.82 96.45
0

9 8 7 =N

Average PA and Average EA with respect to N

The alove trend is more apparent when observing separate categories with higher
proposal percentages (pgdor kdd). The trend is less obvious in theoab graph, due

to the averaging effects of using the very low proposal percentages, which are relatively
uneffected by varyingj.
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The trend is not as marked as that shown by varfinBoth trends indicate that there is
some correlation between these two factors, and more work is needed here to determine
ideal values for them.

6.5 Using the rest of the mail message

Once aspects of the message features had been explored, the use of header fields was
investigated. The two fields of interest were Erem and Subjectfields. Three further
tests were performed:

I. Incorporate théromfield with message features
ii. Incorporate theSubjecffield with message features
iii. Incorporate both th&romandSubjecffields with message features.

Testing was performed witN = 10 andT = 3. The number of training examples varied
with tests involving theSubjectfield. No investigation was made to see if this would
effect the accuracy of classifications, however the classification engine takes into account
the number of test examples when calculating confidence in a prediction framsie
thresholdT (seeChapter 5 - Message Classificatjon

Tests involving just theSubjector From field were not performed, due to the small
number of test examples that would be generated.

6.5.1 Results
The results of these experiments, complete with graphs can be found in Appendix D.
Due to time, only 16 iterations of tastincorporating th&ubjecfield were carried out.

6.5.2 Discussion
The results of these experiments were compared to those generated from using the
message body only.

Using theFrom field

Almost all the categories benefited from remfield. Though timings and rule size are
not discussed in this dissertation, these tests generated significantly smaller rule sets, and
consequently both rule generation and classification appeared much faster than with any
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other tests.

The only category adversely effected was jties category. An analysis of this dataset
showed few regularities in thierom fields, but this was also the case for categarises
andpersonaj both of which showed some improvement.

The performance of the two mailing list digestdd andmeadimproved radically when

the From field is used. This was not surprising as each message from the mailing list
came from the same source. Hence every training example will contain this same value
for the From attribute, and provided that a rule exists which tests for this attribute value,
rules will fire for each testing example.

The agentscategory also did surprisingly well. On analysing this small dataset it can be
seen that nearly all the messages were forward from the same source.

The handling of the&erom field was very naive; the whole field was used with little
parsing. More information could be extracted from this field if more advanced parsing
were used, for example to recognise internet addresses in different forms (for example
<everson@COM.BBN=and <everson@bbn.comy; extracting the senders full name, or

the name of any forwarding agent (Rgssel Winder <R.Winder@cs.ucl.ac.uk> (by way

of jhunter (Jim Hunter))

Using the Subjectfield

Although there was an overall increase in actions proposed by the classification engine,
the accuracy of these predictions fell dramatically when usin&titigectfield. Though

this is shown in the accuracy graph below, it is very apparent from the results of the
individual graphs for each category.

Again the digest categoriekdd and mead performed very well, due to having very
similar features in the subject line for each message of the digest.

The small categorgigentperformed better with the use ®fibjectfeatures.

The confidence value calculated from thest threshold varies linearly with the number

of features tested. Due to time, no tests were performed to investigate the effects of
increasingT or changing this confidence calculation with varying numbers of test
examples. This work, had it been completed, may have explained whether this factor is
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responsible for the drop in accuracy, or whether it is due tSubgecfield itself.

Using both From and Subjectfields

The graphs below show the percentage accuracies overall and percentage classifications
overall for the agent when using different attributes from the mail message.

100
B o || approximate % accuracy (AG)
e ° |l all  subject from body
20 || 91 81 93 93
all 30 || 90 79 92 92
% AC ~“subject - 40 || 89 76 91 91
50 || 89 76 91 91
from 60 || 88| 76 91 | 89
" “body” 70| 89| 77 91 | 89
80 || 92 79 92 90
0
0 % trained 100
100
o % of predictive actions (PA)
°|l all  subject from  body
20 || 49.71 41.49 47.93 25.69
30 || 54.41 46.00 53.92 32.63
% PA 40 57.79 49.08 57.60 36.84
50 60.06 51.82 60.04 40.61
60 || 62.36 53.17 62.93 44.03
70 64.17 56.27 62.50 48.18
80 || 66.19 58.78 64.78 48.95
0
0 % trained 100

The percentage accuracy is calculated from dividing the effective actions by the
predictive actions. As the predictive action value is the number of times a prediction is
made, and the effective action value takes into account mis-classifications, these values
can be used to approximate accuracy values. Note that these values are an indication only
and do not represent the actual accuracies.

Adding theFromfield or using both header fields appears to make little difference overall

to the accuracy of predictions. However, addifgbjectfield attributes only to the
message body attributes causes the accuracy to drop to values as low as 34% (calculated
average accuracy froourecategory).
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Likewise, examining the percentage predictions made by the classification engine show
that by applying theSubjectfield to message body features causes a reduction in the
number of classifications made can be seen, whereas making usé&intield causes

an overall increase in proposed actions.

6.6 Concluding remarks

The results show that a reasonable percentage of incoming mail messages can be
classified with a high degree of accuracy. Making use oftbm field improves both

the number of predictions and the accuracy of predictions, whereas including features
from theSubjecffield has no beneficial effect.

These results are promising as an agent need not classify every incoming message.
However, any classifications made must be accurate. Issues such as coverage of rules
[Mitchell et al. 1994], have not yet been investigated, but are strongly relevant to this aim.



Chapter 7
Conclusion

The work in developing Magi has demonstrated that it is possible to build an agent which
is capable of learning email filtering rules from observations. The results show that
features from the body of an email message can be utilised as well as more traditional
features such as the subject or sender fields. The use of a trust threshold provides a high
accuracy of classifications which can be made on some messages, thus providing the
service of gersonalised assistata the user.

This work examines some of the considerations in designing and developing an interface
agent. An agent which allows a user to access their mail through a widely used mail-tool
was developed, and some of these considerations implemented.

The results suggest that applying information found in $ubjectfield does not
necessarily immve performance as would be expected, whereas utilisingrtma field
can impove both accuracy and number of predictions for the majority of mail categories.
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Future Work

The results of testing this agent raise many questions. Much is still unknown about the
behaviour of this agent, such as the effects of varying the number of fedtaresthe

trust threshold when using header information. Other header information, such as the
recipients or the date sent could also be used.

Whilst the experimental results demonstrate that the agent is capable of learning from a
user and assisting the user in managing mail, little testing was performed on actual mail
users. Also, the tests reflect the applicability of the agent to a single user (the author)
who’s classifications were used. As criteria for sorting mail may vary with each
individual, more testing is required before any further claims can be made about the
agent.

An important issue that was not investigated within this work was the effects of
modifying the learning algorithm’s parameters. The evaluation functions used the
Laplacian error heuristic and the default significance threshold. Other heuristics and
significance thresholds could have been explored. This may provide a means of reducing
coverage. Coverage represents the proportion of training examples that aaretss

by the rules. Tests on varying coverage [Mitchell et al. 1994] show that accuracy can
increase as coverage is reduced.

The work on Magi proposed, but did not complete, a more advanced form of filtering
which itself can adapt to the users needs through user feedback (by using the action
browser). Other forms of filtering could also be explored, such as implementing thesauri
or better means of correlating similar words due to case, tense etc (such as car & cars or
catch & catching).

Organisational information could be used. This could owpperformance on categories

such asnscused in this report, where all the senders are members of an organisation. A
variant on this has been explored by Maes [Maes 1994] whereby agents can communicate
with each other to judge their model of the users. Mitchell [Mitchell et al. 1994]
proposes the idea of co-operative learning, whereby rules are learned by pooling training
examples from users. This could aid learning rules about organisational matters.
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The learning and classification engines could be applied to other domains, such as
USENET news readers or calendar managers (both have been explored to some degree,
see Chapter 2). Agents could be made to communicate with each other across domains,
thus gaining insights into the users requirements.
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Appendix A
Example of the Advanced Filter

This example demonstrates the advanced filter described in Chapter 4. Due to time this
was not implemented in the agent, but remains as future work to be applied to the agent.
Values given in this example are arbitary and are used to help explain the filter. In the
implemented version, they would be determined empirically.

Imagine that the knowledge base contains, among others, the following five entries:

Feature Fitness

yeast 67
honey 50
above 31
knowledge 45
fire 2

and that the threshold where features become unhelpful was 30. The keatwtedge

did not exist prior to building the most recent set of rules. Because of thignies

value is set to a standard starting value. In this example, this starting value is 45. The
featurefire has afitnessvalue less than the helpfull threshold. This feature will filtered
out for the classification module and rule generation module.

All four features abve the helpfull threshold exist within the rules. The following
example shows four rules which illustrate this. See the documentation of CN2 [Boswell
1990] for a description of the rules acdverage tableshown below. The rules below
have been simplified for brevity.

Each action defined in the attribute files has an index into the coverage table. Each entry
indicates how many training examples are covered by that rule. The first entry in the
table refers to the actios %d +mead whereas the second te %d +kdd.

The featureaboveis less specific than the other three features. Three training examples
were responsible for the action in that rule, but the feature was also found in other
training examples for different actions. Whilst this may mean that the rule may cause
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mis-classifications, it may still fire to generate correct classifications.

IF feature = yeast
THEN action = "s %d +mead” [5 0 0]
ELSE

IF feature = honey
THEN action = "s %d +mead” [3 0 0]
ELSE

IF feature = knowledge
THEN action = "s %d +kdd" [0 1 O]
ELSE

IF feature = above
THEN action = "s %d +kdd" [1 3 1]
ELSE

A sample of the rule-base

A message arrives and the action is classified&d +meadl. Three features found in

the message argeast honey and above A score is then calculated based on the

frequencies of these features in the message. Preliminary studies on frequency decay
indicate that this decay is logarithmic (See appendix B), so a simple equation is used to
calculate the score. The frequencies are normalised across all features used in
classification and the log of this percentage used. This equation is presented as part of

the example, and may not be the equation finally used in the implementation, but
illustrates the calculation of the score.
frequenc

> fr?aqueniclzy* 0)

The following table illustrates the frequencies for the individual features and their

calculated scores. The sum of all frequencies used here is 35.

Score= (int) In (
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frequency

Feature  Frequency > frequency Score
yeast 12 34 4
honey 20 57 4
above 3 12 2

As this message has been classified correctly, the three features are rewarded. This is
done by adding the score for each feature to the feafitreéss The knowledge base
now looks like this:

Feature Fitness

yeast 71
honey 54
above 33
knowledge 45
fire 1

Note that thditnessvalue for the featuréire has been decremented. This occurs with
every classification. Once tHignessfalls to zero the feature will be removed from the
knowledge base. This mechanism is used to allow features to be reused at a later date.
Whilst this feature may lead to incorrect classifications at the present time, this may not
be the case in the future.

Another message arrives. This time the action is classifies #&l"+kdd. The feature
abovewas the only feature responsible for this classifiction. However this is a mis-
classification. The table below shows the newly calculated score. The sum of all
frequencies was 18.

frequency
Feature  Frequency > frequency Score

above 18 100 5
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The featureabovewill now be penalised by subtracting this score fronfiiteess As the
knowledge base now shows, tHiessvalue has fallen below the helpfull threshold.
This feature will now be filtered out in subsequent filtering. As with the feéterats
fitnesswill be decremented at each classification.

Feature Fitness

yeast 71
honey 54
above 28
knowledge 45

It is interesting to note that the featune has now been removed from the rule-base.
This is due to itditnessvalue falling to zero at the last classification. This feature will
now be included for classification or rule generation if it appears in future messages.



Appendix B
Frequency Decay in Extracted Features

Feature Extraction used within Magi is based on word frequencies within a body of text.
The topN occuring features are used in classifying actions for incomming messages and
generating new rules. Because of this, the rate of frequency decay was investigated.

The results of this test were used as a basis for the calculations used in the advanced
filtering. The number of features used, was set to 10 for this test. Each action
classification file (see Chapter 6) was tested.

For each test, the told features are extracted complete with frequency counts. These
frequency counts are then normalised using equation (1) to give percentages for each
feature. These are averaged across all messages to give the graphs shown below.

frequency |

%FQ= =
°ra > frequency

(1)

It is expected that increasing will cause the curve to flatten, as extra features will
become less frequent. As the frequency falls, there is a greater chance the features will
occur in other action classifiaction messages.

These results indicate that there is little difference in frequency between the lowest
frequency words. Due this, tests were performed with the testbed, with the value of
varying from 7 to 10. The effects of varying this value is discussed in Chapter 6.

The graphs for each mail category used in the testsuite are shown below.
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Appendix C
usr/lib/eign

This Appendix contains the list of words in the file /usr/lib/eign which was used as a
stoplist to filter out common words from message bodies.

the of and to a in

that is was he for it

with as his on be at

by [ this had not are

but from or have an they
which  one you were her all

she there would  their we him
been has when who will more
no if out SO said what

up its about into than them
can only other new some could
time these two may then do

first any my now such like

our over man me even most
made after also did many before
must through  back years where  much
your way well down should because
each just those people mr how
too little state good very make
world  sitill own see men work
long get here between both life
being  under never  day same another
know  while last might us great
old year off come since against
go came right used take three
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Appendix D

Complete results

This appendix contains the full set of results generated and used within the report.

D.1 Results - Classifying different datasets

% | agents cure jobs kdd mead msc personal phd Overall

20 | 11.17(11.30) 20.60(11.37) 41.26(18.90) 60.35(26.14) 96.84 (7.63) 7.05 (7.31) 3.99 (3.34) 63.08(12.15) 38.04(31.10)
30 | 13.73(11.33) 32.44(12.01) 45.59(18.12) 65.07(24.77) 98.97 (2.51) 10.56 (9.97) 5.28 (4.59) 74.73 (9.49) 43.30(31.77)
40 | 13.08(12.22) 40.00(11.12) 50.62(17.68) 71.14(19.94) 99.71 (1.23) 14.71(11.85) 7.49 (5.02) 80.79 (7.69) 47.19(32.25)
50 | 17.02(11.16) 45.01 (9.98) 53.00(16.63) 79.36(17.51) 99.83 (1.01) 20.20(12.16) 9.19 (6.53) 83.46 (6.58) 50.98(31.89)
60 | 17.21(17.20) 53.20(11.53) 59.35(17.69) 85.59(14.34) 99.63 (1.56) 24.19(12.16) 12.94 (7.45) 87.85 (4.30) 54.99(31.97)
70 | 18.29(22.80) 57.16(15.92) 61.75(18.50) 86.41(21.46) 97.22(16.43) 24.50(20.70) 15.08(10.42) 86.97(15.78) 55.92(31.04)
80 | 17.50(28.18) 63.48(14.99) 63.34(26.97) 92.04(14.89) 99.82 (1.04) 34.58(25.75) 15.19(11.98) 91.30 (7.95) 59.66(31.77)

Percentage of Predictive Actions, PA

% | agents cure jobs kdd mead msc personal phd Overall

20| 155 (5.43) 17.34(10.98) 30.02(21.80) 56.29(26.52) 96.51 (8.02) 3.95 (7.05) 0.00 (0.00) 58.16(13.53) 32.98(32.38)
30| 212 (7.42) 27.60(12.80) 30.11(24.20) 56.70(28.99) 98.73 (3.45) 4.30 (8.17)  0.00 (0.00) 69.08(10.46) 36.08(33.56)
40 | 2.55 (6.50) 34.71(12.96) 36.70(23.94) 59.11(26.90) 99.42 (1.67) 6.88(11.51) 0.00 (0.00) 73.93 (8.80) 39.16(33.88)
50| 1.22 (5.12) 39.79(11.29) 36.66(23.27) 72.37(23.44) 99.50 (1.67) 10.53(12.42) 0.00 (0.00) 76.18 (8.58) 42.03(35.09)
60| 2.88 (8.57) 46.63(13.92) 43.95(23.21) 77.43(25.02) 99.63 (1.56) 11.35(13.76) 0.00 (0.00) 78.83 (6.55) 45.09(35.56)
70| 4.40(12.95) 51.63(18.20) 47.17(23.45) 80.99(27.72) 97.22(16.43) 12.65(20.14) 0.62 (2.59) 76.41(16.45) 46.39(34.83)
80| 6.13(15.30) 57.41(17.27) 49.85(33.48) 90.76(15.88) 99.82 (1.04) 20.79(27.25) 0.46 (2.74) 78.18(13.09) 50.43(35.75)

100
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D.2 Results - Varying the trust threshold T = 3

% | agents cure jobs kdd mead msc personal phd Overall

20| 421 (6.73) 9.18 (7.08) 20.93(17.67) 35.15(27.59) 84.69(15.48) 5.43 (5.58) 2.71 (1.83) 43.20(11.94) 25.69(26.39)
30| 7.97 (9.87) 15.14 (8.24) 28.02(17.57) 50.19(27.20) 92.49 (6.06) 8.43 (6.92) 3.15 (2.02) 55.67(10.77) 32.63(29.18)
40| 6.77 (8.11) 20.37 (8.36) 38.57(14.22) 59.38(24.49) 94.36 (5.62) 10.41 (7.27) 3.17 (1.93) 61.67 (9.65) 36.84(30.50)
50 | 8.92(11.44) 25.35 (8.10) 41.65(17.24) 69.91(17.49) 96.16 (4.67) 11.96 (9.12) 4.41 (2.90) 66.53 (9.87) 40.61(31.59)
60 | 13.39(20.16) 30.53(11.29) 47.07(15.44) 74.30(21.13) 97.08 (4.33) 15.34(10.25) 5.73 (3.93) 68.77(12.64) 44.03(31.15)
70 | 18.83(21.80) 37.20(12.11) 53.00(18.96) 77.67(22.45) 97.03 (5.16) 20.06(14.77) 851 (5.83) 73.16(10.07) 48.18(30.10)
80 | 16.38(27.55) 40.22(13.27) 58.31(26.39) 76.11(24.79) 97.46 (6.72) 14.64(20.77) 12.81(11.39) 75.66(13.09) 48.95(30.64)

Percentage of Predictive Actions, PA

% | agents cure jobs kdd mead msc personal phd Overall

20| 0.64 (2.38) 8.71 (7.08) 16.66(18.09) 34.31(28.09) 84.69(15.48) 4.30 (5.19) 0.00 (0.00) 42.88(12.29) 24.0p(27.26)
30| 3.25(8.66) 14.68 (8.32) 21.55(16.93) 47.70(28.60) 92.49 (6.06) 5.99 (6.98)  0.00 (0.00) 55.22(10.90) 30.11(30.32)
40| 1.39 (5.31) 19.74 (8.45) 31.24(14.99) 55.21(29.13) 94.36 (5.62) 8.01 (7.99) 0.00 (0.00) 61.05 (9.81) 33.8(31.49)
50| 1.50 (5.65) 25.11 (8.37) 34.13(19.65) 67.44(20.53) 96.16 (4.67) 7.59 (9.04) 0.00 (0.00) 65.55(10.52) 37.18(33.33)
60| 0.83 (4.49) 30.05(11.27) 39.02(19.84) 72.63(21.44) 97.08 (4.33) 10.07(10.59) 0.22 (1.20) 66.85(12.98) 39.60(33.83)
70| 0.00 (0.00) 36.75(12.24) 46.88(22.77) 75.06(24.38) 97.03 (5.16) 14.86(15.62) 0.94 (2.84) 71.69(11.14) 42.90(33.98)
80| 1.15 (6.08) 39.16(13.79) 50.80(31.56) 75.00(25.91) 97.46 (6.72) 13.55(20.81) 5.51(10.25) 72.29(16.59) 44.37(33.42)
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