
A Fault Model for Upgrades in Distributed Systems

Tudor Dumitraş, Soila Kavulya and Priya Narasimhan
Carnegie Mellon University

Pittsburgh, PA 15217
tudor@cmu.edu spertet@ece.cmu.edu priya@cs.cmu.edu

Abstract

Recent studies, and a large body of anecdotal evidence, suggest that upgrades are unreliable and often end in failure,
causing downtime and data-loss. While this is sometimes due to software defects in the new version, most upgrade-
failures are the result of faults in the upgrade procedure, such as broken dependencies. In this paper, we present data on
upgrade failures from three independent sources — a user study, a survey and a field study — and, through statistical
cluster analysis, we construct a novel fault model for upgrades in distributed systems. We identify four distinct types
of faults: (1) simple configuration errors (e.g., typos); (2) semantic configuration errors (e.g., misunderstood effects of
parameters); (3) broken environmental dependencies (e.g., incorrect libraries, port conflicts); and (4) complex procedural
errors. We estimate that, on average, Type 1 faults occur in 15.2 % of upgrades, and Type 4 faults occur in 16.8 % of
upgrades.

1 Introduction
Software upgrades are unavoidable in distributed enterprise systems. For example, business reasons sometimes
mandate switching vendors; responding to customer expectations and conforming with government regulations
can require new functionality. However, recent studies [3, 10, 17, 23, 34, 43] and a large body of anecdotal evi-
dence [2, 9, 22, 27, 33, 38, 40] suggest that distributed systems suffer from frequent upgrade failures. A 2007 survey
of 50 system administrators from multiple countries (82% of whom had more than five years of experience) identi-
fied broken dependencies and altered system-behavior as the leading causes of upgrade failure, followed by bugs in
the new version, incompatibility with legacy configurations and improper packaging of the new components to be
deployed [34].1 This suggests that most upgrade failures are not due to software defects, but to faults affecting the
upgrading procedure.

Upgrades in distributed systems usually require a complex change-management process that involves hardware and
software additions, reconfigurations, and data migrations. The maze of dependencies in a distributed system includes
relationships among various components, APIs, configuration settings, data objects, communication protocols, Inter-
net routes or performance levels. When the old and new versions of the system-under-upgrade share dependencies
(e.g., they load the same dynamically-linked library but require different versions of its API), the upgrade might break
some of these dependencies and induce downtime. Moreover, dependencies can sometimes remain hidden, because
they cannot be detected automatically or because the are overlooked due to their complexity.

Dependencies on third-party software components and the impact of software defects have been studied exten-
sively [13, 26, 29, 39]. However, these problems account for only a part of the change-management faults. Distributed

1According to the survey, the average upgrade-failure rate was 8.6%, with some administrators reporting that up to 50% of upgrades had failed
in their respective installations.

1

dependencies and the impact of operator errors are not well understood. Several classifications of change-management
faults have been proposed [5, 10, 13, 17, 23, 25], but, in many cases, the fault categories are not disjoint, the underly-
ing criteria for establishing these categories remain unclear, or the classifications are relevant only for subsets of the
change-management faults.

In this paper, we establish a rigorous taxonomy of change-management faults. We analyze fault data from three
sources, collected independently using different methodologies: a user study, a survey and a field study. Using sta-
tistical cluster analysis, we emphasize the similarities between some of these faults and we show that they form four
distinct groups: simple configuration errors (e.g. typos), semantic configuration errors, shared-library problems and
complex procedural errors.

1.1 Related Work
Software defects, also known as software bugs, have been studied extensively, and rigorous taxonomies have been
proposed [31,39]. However, Crameri et al. [34] remark that most upgrade failures are not due to software defects, but
to faults in the upgrade procedure, such as broken dependencies.

Anderson [2] describes three mechanisms that are commonly responsible for breaking dependencies on
dynamically-linked libraries (DLLs) in the Windows NT operating system — a phenomenon colloquially known
as “DLL Hell”. More recently, Dig et al. [13] examine how the natural evolution of APIs can impact upgrades by
breaking dependencies on third-party Java frameworks and libraries. They conclude that 81% – 100% of the break-
ing API changes are refactorings (reorganizations of the code structure) and less than 30% are intended behavioral
changes (modified application semantics).

API compatibility is not the only class of dependency that can be broken during an upgrade. Oppenheimer et
al. [10] study 100+ post-mortem reports of user-visible failures from three large-scale Internet services. They classify
failures by location (front-end, back-end and network) and by the root cause of the failure (operator error, software
fault, hardware fault). Most failures reported occurred during change-management tasks, such as scaling or replacing
nodes, and deploying or upgrading software.

Nagaraja et al. [23] conduct a user study with 21 operators who perform three change-management and three
firefighting tasks on a small e-commerce system called RUBiS [7]. The authors observe seven classes of faults, ordered
by frequency: global misconfiguration, local misconfiguration, start of wrong software version, unnecessary restart of
software component, incorrect restart, unnecessary hardware replacement, wrong choice of hardware component.

Oliveira et al. [17] present a survey of 51 database administrators, who report eight classes of faults, ordered
by frequency: deployment problems, performance problems, general-structure problems, DBMS problems, access-
privilege problems, space problems, general-maintenance problems, and hardware problems. While the database
administrators from the survey spend only 46% of their time performing change-management tasks, all the faults
reported can occur during change management.

Reason [36] presents the Generic Error-Modeling System (GEMS), which identifies three cognitive levels at which
humans solve problems and make mistakes: the skill-based level (responsible for 60% of errors); the rule-based
level (responsible for 30% of errors); and the knowledge-based level (responsible 10% of errors). Building on this
framework, Keller et al. [25] propose a model of configuration errors, with three categories: typographical errors
(corresponding to the skill-based level); structural errors (which may occur on any cognitive levels); and semantic
errors (corresponding to the knowledge-based level).

Brown et al. [5] propose a model for quantifying the configuration complexity from a human perspective, taking into
account the “context switches” between different mental models for the configuration process. The model quantifies
the configuration complexity according to three dimensions: the execution complexity (the actions that an admin-
istrator must perform); the parameter complexity (the amount of parameters that the administrator must understand
and tune); and the memory complexity (related to parameters that must be supplied in more than one configuration

2

action). The authors propose several metrics for each of these three dimensions. Lin et al. [30] continue this research
by studying the complexity involved in the decision-making process required for system administration.

These models do not constitute a rigorous taxonomy of change-management faults. Some classifications are too
coarse-grained (e.g., the fault location [10]) and do not provide sufficient information about the fault. Other classifi-
cations (e.g., the breaking API changes [13] and the typographical/structural/semantic configuration errors [25]) are
relevant for only a subset of the change-management faults (broken dependencies on third-party frameworks and com-
ponents and configuration actions that require file-editing, respectively). In many cases, the fault categories are not
disjoint and the criteria for establishing these categories are not clearly stated. Most of the configuration-complexity
metrics [5] characterize the entire configuration procedure, rather than an individual action that might fail, and it re-
mains unclear whether a higher configuration complexity leads to a higher incidence of change-management faults.
In this paper, we annotate fault data from three different sources with categories from some of these existing models,
and we use statistical cluster analysis to establish a taxonomy of change-management faults.

2 Change-management fault data
We collect data from three sources: a 2004 user study of system-administration tasks in an e-commerce system [23],
a 2006 survey of database administrators [17] and a previously unpublished field study of bug reports filed in 2007 for
the Apache web server [1]. We categorize these faults according to the models proposed in [10, 17, 23, 25, 36], which
are reviewed in Table 1. When describing and analyzing this data, we use a uniform terminology:

• Task: The actions taken by an administrator in order to achieve a pre-defined goal. System-administration tasks
are traditionally classified in two categories [10]: regular-maintenance (change-management and other tasks
performed in the normal operating mode of the system) and firefighting (tasks performed in order to recover from
failures). A task is accomplished through a procedure, which is composed of one or several actions [5].

• Fault: The root cause of a change-management failure. Faults that occur during change-management tasks in-
clude hardware faults, software defects or operator errors [10]. Some faults, e.g., hardware faults, are independent
of the task performed; however, by reducing the system capacity or by rendering certain resources unavailable
for extended periods of time, change-management tasks introduce a window of vulnerability when a random
dependency-fault might have a critical, adverse effect.

• Fault Impact: The measurable outcome of a fault. Some faults, e.g., disabling an application server in the middle
tier, might be masked by the system redundancy. Other faults might generate failures such as increased latency,
throughput degradation, complete system outage, data loss or latent errors.

User study. Nagaraja et al. [23] conduct a user study with 21 system administrators, with varying degrees of experi-
ence, who perform maintenance and firefighting on RUBiS (the Rice University Bidding System) [7], an open-source
online bidding system, modeled after eBay. The system administrators are given three change-management tasks —
adding an application server, upgrading the database machine, and upgrading one web server — and three diagnose-
and-repair tasks. The study reports 32 instances of 16 unique faults, and 10 misdiagnoses; 25 instances of 13 unique
faults occur during the change-management tasks. The study reports the fault locations, their root causes, and it
classifies the faults into seven categories (see Table 1), which constitute a refinement of the root-cause classification.
From the detailed descriptions provided, we infer the cognitive level where these faults occur and, where applicable,
the configuration-error subcategory. The most frequent failures are global misconfigurations, which compromise the
communication between components from different tiers of the system and. These errors occur on the skill-based and

3

Table 1: Fault categories.
Variable Categories Description

Location [10]

front-end Fault in the front end of the infrastructure, which handles the client con-
nections

middle tier Fault in the middle tier of the infrastructure, where the application servers
process client requests

back-end Fault in the backend of the infrastructure, where persistent data is stored
(typically, in a database)

Root cause [10]

software Software defect
hardware Failure of a hardware component
configuration Operator error while configuring the system
procedure Operator error during the task procedure (e.g., stopping/starting a server)

Fault classification: global misconfiguration Inconsistencies in one or more configuration files compromising the
communication between system components

from user study [23]

local misconfiguration Configuration error affecting a single node in the system
start of wrong SW version Configuring one version and starting a different version of a software

component
unnecessary restart Unnecessarily restarting a software component (e.g., the database)
incorrect restart Starting a software component incorrectly (e.g., without obtaining the

necessary access privileges)
unnecessary HW replacement Misdiagnosing the service malfunction as a hardware problem
wrong choice of hardware Installing the database on a slow disk

from survey [17]

deployment Changes to the online system (previously tested offline) cause the
database to misbehave

performance The DBMS delivers poor performance to the application or user
general structure Incorrect database design or unsuitable changes to the database schema
DBMS Software defects in the DBMS
access privileges Insufficient/excessive access-privileges granted to users or applications
space Disk space or tablespace exhaustion
general maintenance Other problems (e.g. incompatible upgrades, incorrect restarts)
hardware Hardware failure and (potential) data loss

from field study [1]

build Wrong compile flags or paths, missing or conflicting libraries prevent
compilation

paths and permissions Incorrect paths to files or insufficient access permissions
environmental conflicts Wrong library versions, byte orders, file separators
third-party error Bugs and misconfigurations in third-party components
parameter tuning Incorrect setting for categorical, integer or real-valued parameter
other error Other errors in the application’s configuration file (e.g., missing com-

mands, wrong order of commands, use of wrong command, typos, syntax
errors)

Cognitive level [36]

skill-based Slips and lapses, occurring during the common, repetitive tasks
rule-based Mistakes when reasoning and solving problems through pattern-

matching
knowledge-based Mistakes when reasoning from first principles

Configuration files [25]
typographical Spelling errors (i.e., typos)
structural Configuration directives misplaced or similar, but incorrect, format used
semantic Constraints among parameters ignored or unknown parameters used

4

rule-based cognitive levels, due to a mental “context switch” [5] between configuration actions performed on different
components.

Survey. Oliveira et al. [17] conduct a survey of 51 database administrators (DBAs), with between 2 and 10+ years
of experience. The DBAs report that their regular-maintenance tasks are related to change management (e.g., tuning
the performance, changing the database structure, modifying the data, coding and upgrading the software), to runtime
monitoring (e.g., space monitoring/management, system monitoring, integrity checks, performance monitoring), and
to recovery preparations (e.g., making/testing backups, conducting recovery drills). The survey identifies eight classes
of faults (see Table 1) and provides details for 20 unique, individual faults. All these faults occur in the system back-
end. From the descriptions provided, we infer the root cause of these faults, the cognitive level where they and, where
applicable, the configuration-error subcategory.

Field study. We analyze the reports filed in the bug database of the Apache web server (v. 2.2) [1] between 1
January 2007 and 21 December 2007. We focus on closed bugs that have been marked FIXED – which correspond
to software defects –, INVALID or WONTFIX – which indicate operator errors. These operator errors have serious
impacts, which prompted the opening of a bug report, but they have been excluded from previous studies mining
the Apache bug database (e.g. [26, 29]), which focus on classifying software defects. Because bug reports are terse,
the tasks performed when these faults occurred remain unclear; however, after we filter out presentation bugs (e.g.,
documentation, maintainability issues), the remaining faults are likely to be related to change-management tasks. To
provide a starting classification for these faults, as for the user study and the survey, we bin them in six categories:
build, paths and permissions, environmental conflicts, third-party error, parameter tuning, other error (see Table 1).
We try to infer the location of the fault from the bug description. If the bug report was filed for a component that
provides functionality typical for front-ends (e.g., mod_proxy, mod_rewrite), we consider that the fault occurred
on the front-end. If the component is used for authentication or computationally-intensive operations (e.g., LDAP,
PHP), we consider that the fault occurred on the middle tier.

It is interesting to note that some bugs are reported in several sources. For instance, a configuration error where
Apache is instructed to serve static HTML files from an existing, but incorrect, location is reported in both the user
and field studies. A configuration error, where the application is granted insufficient access privileges to database
tables, is reported in both the user study and the survey. A procedural error, where the wrong version of the Apache
server is started in the front-end, is reported during three different tasks of the user study, which were performed by
different operators. Another procedural error, where the application queries an incorrect database schema, is reported
in conjunction with four different tasks in the survey. A configuration error, which prevents Apache from sending files
larger than 64K, was the source of two bug reports in the field study. To keep track of these duplicated fault reports,
we assign each unique fault a name and we annotate all the fault’s instances with this name. Faults that occur in
the same way (e.g., configuring the wrong port for a server) but are located on different tiers are considered different
faults, because they are likely to be introduced by different kinds of operators (e.g., system administrators, database
administrators, application developers) who use different mental models for the tasks they perform.

For consistency, we consider that all path-related faults occur on the rule-based cognitive level, and that all the
database-schema faults occur on the knowledge-based level. We consider that faults related to file-system and database
access-privileges are configuration errors, even if they don’t involve editing configuration files, and they occur on the
rule-based cognitive level. The annotated faults used in the classification are listed in Appendix A, and they can also
be downloaded from http://www.ece.cmu.edu/~tdumitra/upgrade_faults/.

5

3 Model of change-management faults
Our goal is to establish a taxonomy of upgrade faults. We annotate each fault reported with several classification
variables, which correspond to the existing fault models. A numerical variable (e.g., whether the configuration com-
plexity of the task that has produced the fault) indicates the magnitude of the variable’s instance for a particular fault.
A categorical variable (e.g., the fault occurred in the frontend, the middle tier or the backend) shows if a fault belongs
to one of several categories. A binary variable (e.g., whether the fault was independent of the task) shows a trait that
is either present or absent in a fault (note that, when both levels of a two-level variable are to be treated on a par, the
variable is categorical rather than binary).

We use three principles for selecting the relevant faults and classification-variables from the data described in
Section 2.

P1. Software defects are orthogonal from upgrading concerns.

While some upgrades fail due to software defects [34] these defects occur for reasons that are not related to the
upgrade, and they might be exposed in other situations as well. Similarly, hardware defects are not always related to
an upgrade. We therefore exclude software and hardware defects from our fault model; for instance, in the field study,
we consider only bug reports marked as INVALID or WONTFIX.

P3. We classify upgrade faults, not fault impacts.

The fault impact depends not only on the upgrade fault, but also on the system architecture. For instance, if the
system emplys replicated application servers in the middle tier, a fault that disables one server may be masked by
the redundancy in the architecture. We therefore exclude the fault impact from the classification variables, to avoid
establishing a connection among distinct faults, which occur in different ways, but which have similar impacts on the
system.

P4. We classify upgrade faults, not upgrade tasks.

Similarly, an upgrade fault can occur during different upgrade tasks. To avoid establishing a connection among multi-
ple faults for the sole reason that they were recorded during the same task, we exclude the task and the configuration-
complexity metrics [5] from the classification variables.

All the classification variables we use are categorical, and they are described in Table 1. To avoid placing identical
faults in different categories, we merge their original fault classifications, originating from different studies. This
pre-processing step merges the “access-privilege problems” from the survey with the “global misconfigurations” from
the user study, and the “path and permissions” classification from the field study with the “local misconfigurations”
from the user study.

3.1 Methodology
We compare the faults using Gower’s similarity coefficient [19], which is widely used in the natural sciences for
establishing taxonomies of living organisms. This is a generalized measure for how closely related two samples
are, and it can be computed for binary, categorical or numerical data. For two samples i and j, characterized by n
variables, Gower’s coefficient Gij is the sum of the similarity scores for all the variables normalized by the number of
comparable variables:

Gij =
∑n

k=1 sijk∑n
k=1 δijk

, where sijk ∈ [0, 1] and δijk ∈ {0, 1}

6

0
0.

2
0.

4
0.

6
0.

8
1

Figure 1: Heat map of the Gower distance for the faults described in Section 2. The lighter colors indicate higher
distances; the elements on the diagonal are 0.

δijk is 1 when i and j are comparable and 0 when the comparison is impossible, because information is missing or in
the case of binary variables indicating the absence of a trait from both samples. The score sijk is 0 when i and j are
considered different and a positive fraction or 1 when they have some degree of similarity, defined as follows:

sijk =

1
0

if both i and j have the trait indicated by variable k
otherwise

}
for binary data

1
0

if i and j belong to the same category of variable k
otherwise

}
for categorical data

1− |xi−xj |
Rk

where Rk is the range of variable k for numerical data

When the two samples belong to the same category of a two-level categorical variable k, the samples are considered
comparable and similar with respect to variable k (δijk = 1 and sijk = 1). Contrariwise, when both samples lack the
trait indicated by a binary variable k, the samples cannot be compared (δijk = 0 and sijk = 0).

Gower’s coefficient is 1 if the samples i and j are identical and 0 if they belong to different categories (for categorical
variables) and are located at opposite ends of the range (for numerical variables); otherwise the coefficient is a positive
fraction (Gij ∈ [0, 1]). If none of the n variables are comparable for samples i and j, then Gij is undefined. For

7

categorical data without any missing information, Gij is the fraction of variables that have matching values in the two
samples.

We cluster the faults described in Section 2 by computing the Gower distance (dG(i, j) =
√

1−Gij) between each
pair of faults, as shown in Figure 1. Because the Gower distance satisfies the triangle inequality, it can substitute the
Euclidian distance in statistical cluster-analysis techniques.

We start by placing each fault in a separate cluster, and then we merge clusters through an iterative algorithm.
At each step, we merge two clusters with the goal of minimizing the distance variance within clusters. The cluster
variance is defined as the sum of the squares of the distance between all objects in the cluster and the centroid of the
cluster; for instance, the variance of a cluster that contains only identical faults is 0. The result of the algorithm is a
binary tree where the leaves correspond to the individual faults and the root corresponds to a cluster encompassing
all the faults. This approach, known as Ward’s hierarchical clustering method [24], emphasizes the natural, compact
clusters in the data by showing how the within-cluster variance increases at each level in the tree, as shown in Figure 2.
To validate our results, we also perform k-means clustering [24] on the fault data. Instead of creating a hierarchy of
clusters, this approach attempts to partition the samples into disjoint subsets and indicates whether the clusters are
overlapping.

3.2 Interpretation
The dendrogram from Figure 2 shows that our fault data contains four natural clusters:

Type 1, on the right, contains simple faults (typos or structural) that occur when editing configuration files. Most
modern enterprise systems check the syntax of their configuration files at startup in an attempt to prevent this
class of faults [25].

Type 2, on the middle-right, corresponds to complex configuration errors, which occur on the knowledge-based
cognitive level and which indicate a misunderstanding of the configuration directives used. Currently, we lack
any automated techniques for handling these faults.

Type 3, on the left, contains simple faults due to to missing libraries or port conflicts, which occur at compile-time
or at run-time. These can be either procedural faults or configuration faults that do not occur while modifying
configuration files. “DLL Hell” faults [2] fall in this category.

Type 4, on the middle-left, includes complex faults that do not occur while modifying configuration files. These
faults can occur on any cognitive level and in any tier of the system, and they are sometimes independent of the
task performed. These faults typically affect the communication between distributed components by preventing
access to certain services or database tables or by degrading the performance. Incorrect or unnecessary restarts
are a distinct subset of this cluster. To the best of our knowledge, these faults have not been characterized as a
distinct group before, despite their strong similarity suggested by Figure 2.

Types 1 and 3 form a larger cluster, which corresponds to faults that occur while editing configuration files. Types 2 and
4 form another large cluster, which corresponds to the other procedural and configuration faults. The clear separation
between these two high-level clusters corresponds to the intuition that editing configuration files and performing
actions through the command line or through a GUI require different mental models and lead to different types of
faults.

The cophenetic correlation coefficient for the dendrogram from Figure 2, which shows the correlation between the
Gower distance and the distance in the cluster tree, is 0.78. The k-means clustering technique produces almost the same
four clusters, with three exceptions: fault mysql_nopass_root, which is placed in cluster 1, and faults no_space

8

ap
ac

he
_4

35
18

 (
f)

ap
ac

he
_l

ib
co

nf
lic

t (
f)

ap
ac

he
_4

25
56

 (
f)

ap
ac

he
_4

33
28

 (
f)

ap
ac

he
_4

23
32

 (
f)

ap
ac

he
_4

35
23

 (
f)

ap
ac

he
_4

39
86

 (
f)

ap
ac

he
_4

13
58

 (
f)

ap
ac

he
_4

39
45

 (
f)

in
co

rr
ec

t_
to

m
ca

t_
no

ro
ot

 (
u)

w
ro

ng
_s

hu
td

ow
n_

db
 (

s)
no

_r
ep

lic
at

io
n

(s
)

ap
ac

he
_4

29
75

 (
f)

w
ro

ng
_s

hu
td

ow
n_

fr
on

te
nd

 (
u)

w
ro

ng
_a

pa
ch

e
(u

)
w

ro
ng

_a
pa

ch
e

(u
)

db
_s

ch
em

a
(s

)
db

_s
ch

em
a

(s
)

db
_s

ch
em

a
(s

)
db

_s
ch

em
a

(s
)

db
_d

ep
lo

ym
en

t_
sc

rip
t (

s)
w

ro
ng

_i
nd

ex
 (

s)
m

ys
ql

_n
op

as
s_

ro
ot

 (
u)

w
ro

ng
_p

riv
ile

ge
s_

ex
ce

ss
iv

e
(s

)
w

ro
ng

_p
riv

ile
ge

s_
in

su
ffi

ci
en

t (
u)

w
ro

ng
_p

riv
ile

ge
s_

in
su

ffi
ci

en
t (

s)
no

_s
pa

ce
 (

s)
ta

bl
es

pa
ce

_f
ul

l (
s)

de
pl

oy
_i

nd
ex

_n
oc

ha
ng

e
(s

)
de

pl
oy

_a
cc

id
en

ta
l_

ch
an

ge
s

(s
)

de
pl

oy
_w

ro
ng

_c
ha

ng
es

 (
s)

w
ro

ng
_d

b_
di

sk
 (

u)
no

_s
pa

ce
_b

ac
ku

p
(s

)
db

_p
er

fo
rm

an
ce

_t
un

in
g

(s
)

db
m

s_
m

is
co

nf
ig

ur
at

io
n

(s
)

ap
ac

he
_4

19
79

 (
f)

ap
ac

he
_4

26
27

 (
f)

ap
ac

he
_s

at
is

fy
 (

f)
ap

ac
he

_l
ar

ge
fil

e
(f

)
ap

ac
he

_l
ar

ge
fil

e
(f

)
ap

ac
he

_s
er

ve
rn

am
e

(f
)

ap
ac

he
_4

17
51

 (
f)

ap
ac

he
_4

21
38

 (
f)

ap
ac

he
_c

on
fig

_t
yp

o
(u

)
ap

ac
he

_c
on

fig
_w

ro
ng

pa
th

 (
u)

ap
ac

he
_c

on
fig

_n
oa

pp
 (

u)
ap

ac
he

_4
33

95
 (

f)
ap

ac
he

_c
on

fig
_n

oc
ha

ng
e

(u
)

ap
ac

he
_c

on
fig

_n
om

ou
nt

 (
u)

ap
ac

he
_c

on
fig

_s
am

en
am

e
(u

)
ap

ac
he

_c
on

fig
_s

ta
tic

pa
th

 (
u)

ap
ac

he
_c

on
fig

_s
ta

tic
pa

th
 (

f)

0
2

4
6

8

C
lu

st
er

 v
ar

ia
nc

e

Figure 2: Fault-model dendrogram, constructed using Ward’s hierarchical clustering method. The leaves correspond
to the faults reported in the user study (u), the survey (s) and the field study (f). A horizontal line indicates two clusters
that are linked together into a larger cluster. The position of these lines on the y-axis indicates the variance within the
cluster. A link variance that is significantly larger than the variance of the links below suggests the presence of natural
clusters in the data (highlighted by the red rectangles in the figure).

9

Fault Frequency

C
lu

st
er

1

2

3

4

0.0 0.2 0.4 0.6 0.8

Field study (f) Survey (s) User study (u)

x

x

x

[

[

[

]

]

]

Figure 3: Frequencies of the four fault types.

and tablespace_full, which are placed in cluster 4. This suggests that there is some overlapping between these
clusters.

3.3 Frequencies of fault types

We also estimate how frequently these fault types occur during an upgrade, by considering the percentage of operators
who induced the fault (during the user study) or the percentage of DBAs who consider the specific fault among the
three most frequent problems that they have to address in their respective organizations (in the survey). We cannot
derive frequency information from the field-study data. The individual estimations are imprecise,2 because the rate
of upgrades is likely to vary among organizations and administrators, and because of the small sample sizes (5–51
subjects) used in these studies. We therefore estimate the fault frequency by combining the individual estimations of
for each fault type. This technique computes the maximum-likelihood estimation by minimizing the sum of squared
errors from the dissimilar estimates [8].

Using this methodology, we estimate that Type 1 faults occur in 15.2 % of upgrades, with a 95% confidence interval
of [0, 42.3], and that Type 4 faults occur in 16.8 % of upgrades, with a 95% confidence interval of [0, 37.8]. Types 2 and
3 were predominantly reported in the field-study, so we lack sufficient information to compute statistically-significant
fault frequency for these clusters.

2The precision of a measurement indicates if the results are repeatable, with small variations, and the accuracy indicates if the measurement
is free of bias. While in general it is not possible to improve the accuracy of the estimation without knowing the systematic bias introduced in an
experiment, combining multiple measurements can improve the precision of the estimation [8].

10

3.4 Threats to validity

The data collected from the three sources has certain characteristics that might skew the results of the cluster analysis.
Because the user study is concerned with the behavior of the operators, it does not report any software defects or
hardware failures. Faults that are independent of the task performed are typically reported in surveys, but not in
user studies, which evaluate the outcome of a set of tasks. Moreover, in our field study the tasks were unknown, so
we are unable to determine whether the fault is task-dependent or not. We have only two independent faults in our
data, no_space and tablespace_full. Hierarchical clustering places them in cluster 2 and k-means clustering
places them in cluster 4, which suggests that task-dependence might have a higher impact on fault classification than
suggested in our results. Configuration errors submitted as bugs tend to be due to significant misunderstandings of
the program semantics, and, as a result, our field study contains an unusually-high number of faults occurring on the
knowledge cognitive level. Finally, the results of bug search are not repeatable because the status of bugs changes over
time; in particular, more open bugs are likely to be marked as invalid or not fixed in the future.

4 Tolerating upgrade faults

Modern enterprise software-systems check the syntax of their configuration files, and they are able to detect 38%–
83% of the Type 1 faults at startup [25]. Type 2 faults are harder to detect automatically. Keller et al. argue that
checking the constraints among parameter values can improve the robustness against Type 2 faults [25], while Zheng
et al. show how to generate configurations that tune a specific metric (e.g., server-side throughput) by solving a
constrained-optimization problem.

To prevent Type 3 faults, modern operating systems provide package managers that determine automatically how to
install a new package, or upgrade an existing one, along with all of its dependencies. These tools include APT [37] for
Debian Linux, YUM [6] for RedHat Linux, Portage [42] for Gentoo Linux and the Windows Update Agent [32] for Mi-
crosoft Windows. Package-management systems maintain repositories of packaged software components, along with
metadata that tracks the dependency and conflict relationships among all the packages in the repository. For example,
Figure 4 shows the dependencies, obtained from the APT package manager, among the software components from the
middle-tier node of a typical RUBiS infrastructure (such as the one used in the user study described in Section 2). The
middle-tier node includes Apache web server with the PHP interpreter and the MySQL client library, which depend on
a complex graph of third-party components. Because Figure 4 does not capture the distributed dependencies among
the application components and because industry-standard e-commerce applications typically require additional ser-
vices, such as directory servers, security infrastructures and backup mechanisms [18], this graph represents but a small
fraction of the complex dependency relationships among the components of a real-world distributed-system.

In practice, dependencies in distributed systems are often poorly documented [13, 15], and they cannot always
be detected automatically. Dependency-mining techniques, such as static analysis [12, 40], semantic analysis [12],
runtime monitoring [14] or active perturbation [4], cannot provide a complete coverage of all the factors that might
influence the behavior of a distributed system. For example, the complete set of shared libraries that might be loaded
by an application cannot be discovered using static analysis (e.g., if the libraries are specified external to the code,
through configuration settings or environment variables), and monitoring the library-loading operations at runtime is
a best-effort approach that might not cover all of the possible application-behaviors. Dependency tracking ultimately
relies on metadata that is partially maintained, manually, by teams of developers and quality-assurance engineers
through a time-intensive and error-prone process.

Moreover, determining the correct configuration of an upgraded system by resolving the dependencies of the in-
stalled components is an NP-complete problem [11]. Current approaches use heuristics [6, 37] to ensure that the
search for a correct configuration terminates in a timely fashion, or they rely on SAT solvers [11,41] to guarantee that

11

apache2php5

php5-common

mysql-client-5.0

debianutils

libdbi-perl

libdbd-mysql-perl

mysql-common

libmysqlclient15off

perl

libc6

libgcc1

libncurses5

libreadline5

libstdc++6libwrap0

zlib1g

...

apache2-mpm-worker

apache2-mpm-prefork

apache2-mpm-event

libapache2-mod-php5

libapache-mod-php5

php5-cgi

sed

coreutils

mktemp

manpages-fr

...libplrpc-perl

libdbd-csv-perl

...

...

libmysqlclient15

libdb4.4

perl-base

perl-modules

libgdbm3

perl-5.004

perl-5.005

perl-5.6

perl-doc

...

tzdata

strace libnss-db

timezone timezones

gconv-modules

libtricks libc6-doc

libc5 libpthread0

libc6-bin

libwcsmbsapt libglib1.2

netkit-rpc wine

cyrus-imapd

e2fsprogs initrd-tools

libterm-readline-gnu-perl

gcc-4.1-base

readline-common

scimnetbase

zlib1

zlib1g-udeb

libbz2-1.0 libcomerr2

libkrb53

libpcre3

libssl0.9.8

libxml2

mime-support

apache2.2-common

libmagic1

ucf

libapache2-mod-php4

apache-commonphp3

php4 libapache-mod-php4

libdb2

openafs-krb5

ssh-krb5

libauthen-krb5-perl

libapache-mod-auth-kerb

libapache2-mod-auth-kerb

libpcre3-dev

ssleay

libssl

openssl

libssl096-dev

libxslt1.1

a2ps

metamail

apache2-mpm-itk

apache2-common

apache2-utils

net-tools

lsb-base

procps

libapache2-mod-mime-xattr

libapache2-mod-mono

libapache2-mod-proxy-html

libapache2-mod-scgi

libapache2-mod-speedycgi

libapache2-modxslt

libapache2-redirtoservername

libapache2-webauth

libapache2-webkdc

file libexpat1

libzzip-0-12php4-common

apache

...

...

...

...

libacl1 libselinux1stat...

libnet-daemon-perl

...

perl-5.004-base

perl-5.005-base perl-5.6-base

autoconf2.13 ...

libtest-harness-perl libtest-simple-perl

...

...

...

... ...

...

libreadline-common

......

libapr1

libaprutil1

libldap2libpq4 libsqlite3-0

libuuid1

apache2-mpm-perchild

libapr1.0

libaprutil1.0

libgnutls13

libsasl2-2 ...

ldap-utils

libattr1acl

libacl1-kerberos4kth

libsepol1

...

...

...

...

...

...

debconf...

...

...

...

...

lynx

libgcrypt11

libgpg-error0

liblzo1libopencdk8 libtasn1-3gnutls0

gnutls0.4

libdb4.2 postfix

libsasl2-gssapi-mit

libsasl2-krb4-mit

...

ncurses-bin lsb-core

lsb

...

libproc-dev

w-bassman

procps-nonfree

pgrep

...

...

...

...

...

...

...

cdebconf

debconf-tiny

menu

dialog

whiptail

...

debconf-utils

debconf-i18n

debconf-english

...

...

...

...

...liblocale-gettext-perl libtext-iconv-perl

libtext-wrapi18n-perl

libtext-charwidth-perl

...

...

libcap1

lzoplibopencdk4

libopencdk8.11

libtasn1-2

...

...

libncursesw5

...

...

...

attr...

ncurses

...

...

...

...

...

...

oval = normal Debian package −→ = dependency • = alternative dependencies
hexagon = missing package dotted line = conflict . . . = dependency-resolution stopped

Figure 4: Package dependencies on a middle tier node.

a solution will be found for all installable packages. Heuristics-based approaches might fail to find a solution where
one exists, while, for certain corner cases, the run-time of SAT solvers is exponential in the size of the repository [41].
These approaches might be adequate for the current sizes and structures of software repositories [16, 41], but they are
likely to fail as the amount of dependency-related metadata increases. For instance, current repositories contain 10,000
– 25,000 packages and 70,000 – 85,000 inter-package dependencies [28]. If we include configuration dependencies –
needed to prevent Type 1 and 2 faults – the size of these repositories would increase by one order of magnitude (e.g.,
a typical instance of the Windows registry has approximately 200,000 configuration settings that may be shared by
several applications [43]). Best practices in distributed-system administration recommend the use of a Configuration-
Management Database (CMDB) that centralizes all of the dependency information in the system [35]; the size of a
complete CMDB would likely expose the fundamental limitations of the current online-upgrade approaches in terms
of their need to track dependencies.

The current effect of these fundamental limitations is that dependencies can sometimes remain hidden, because
they cannot be detected automatically or because the are overlooked due to their complexity, which can lead to up-
grade failures due to broken dependencies. Furthermore, we currently lack automated techniques for handling Type 4

12

faults. Oliveira et al. propose checking the actions of database administrators, using real workloads in a “validation
environment,” but they also remark that such a validation is difficult when the administrator’s goal is to change the
database schema or the system’s observable behavior. As enterprise systems grow larger and more complex, novel
approaches for understanding and tolerating upgrade faults will be needed in order to prevent hidden dependencies
from sustaining a steady increase in upgrade-failure rates.

5 Conclusion
We propose a novel fault-model for upgrades in distributed systems, with four categories. Three of these categories
correspond to the previously-known simple configuration errors (e.g., typos), semantic configuration errors, and bro-
ken environmental dependencies. We identify a new type of fault – complex procedural errors –, which can disrupt the
communication between distributed components in a modern enterprise system by breaking dependencies on remote
components or on data objects. We review the existing approaches for tolerating these faults, and we show that their
fundamental limitations prevent them from improving the reliability of upgrades in distributed systems.

References
[1] Apache Bugzilla. https://issues.apache.org/ bugzilla/. Retrieved on 21 Dec 2007.

[2] R. Anderson. The end of DLL Hell. MSDN Magazine, Jan 2000.

[3] S. Beattie, S. Arnold, C. Cowan, P. Wagle, and C. Wright. Timing the application of security patches for optimal uptime. In Large Installation
System Administration Conference, pages 233–242, Philadelphia, PA, Nov 2002.

[4] A. Brown, G. Kar, and A. Keller. An active approach to characterizing dynamic dependencies for problem determination in a distributed
environment. In Integrated Network Management, pages 377–390, Seattle, WA, May 2001.

[5] A. Brown, A. Keller, and J. L. Hellerstein. A model of configuration complexity and its application to a change management system. In
IFIP/IEEE Symposium on Integrated Network Management, pages 631–644, Nice, FR, May 2005.

[6] R. Brown and J. Pickard. Yum (Yellowdog Updater, Modified) HOWTO, Sep 2003. www.phy.duke.edu/˜rgb/General/
yum_HOWTO/yum_HOWTO.

[7] C. Amza et al. Specification and implementation of dynamic web site benchmarks. In IEEE Workshop on Workload Characterization, pages
3–13, Austin, TX, Nov 2002. http://rubis.objectweb.org/.

[8] C. Chatfield. Statistics for Technology: A Course in Applied Statistics. Chapman & Hall/CRC, 3rd edition, 1983.

[9] China Tech News. Symantec-Norton software upgrade failure causes computer collapse. http://www.chinatechnews.com/2007/05/21/5416-
symantecs-norton-software-upgrade-failure-causes-computer-collapse/, May 2007.

[10] D. Oppenheimer et al. Why do Internet services fail, and what can be done about it? In USENIX Symposium on Internet Technologies and
Systems, Seattle, WA, Mar 2003.

[11] R. Di Cosmo. Report on formal management of software dependencies. Technical report, INRIA, Sep 2005. (EDOS Project Deliverable
WP2-D2.1).

[12] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson. Automated detection of refactorings in evolving components. In European Conference
on Object-Oriented Programming, pages 404–428, Nantes, France, Jul 2006.

[13] D. Dig and R. Johnson. How do APIs evolve? A story of refactoring. Journal of Software Maintenance and Evolution (JSME), 18(2):83–107,
Mar/Apr 2006.

[14] J. Dunagan, R. Roussev, B. Daniels, A. Johson, C. Verbowski, and Y.-M. Wang. Towards a self-managing software patching process using
black-box persistent-state manifests. In International Conference on Autonomic Computing, pages 106–113, New York, NY, May 2004.

[15] A. Egyed. A scenario-driven approach to trace dependency analysis. IEEE Transactions on Software Engineering, 29(2):116–132, 2003.

[16] F. Mancinelli et al. Managing the complexity of large free and open source package-based software distributions. In International Conference
on Automated Software Engineering, pages 199–208, Tokyo, Japan, Sep 2006.

[17] F. Oliveira et al. Understanding and validating database system administration. USENIX Annual Technical Conference, Jun 2006.

13

[18] M. Galic, A. Halliday, A. Hatzikyriacos, M. Munaro, S. Parepalli, and D. Yang. A Secure Portal using WebSphere Portal V5 and Tivoli Access
Manager V4.1. IBM Redbooks, Dec 2003.

[19] J. C. Gower. A general coefficient of similarity and some of its properties. Biometrics, 27(4):857–871, Dec 1971.

[20] J. Gray. Why do computers stop and what can be done about it? In Symposium on Reliability in Distributed Software and Database Systems,
pages 3–12, Los Angeles, CA, 1986.

[21] J. Gray. A census of Tandem system availability between 1985 and 1990. IEEE Transactions on Reliability, 39(4):409–418, Oct 1990.

[22] J. Hart and J. D’Amelia. An analysis of RPM validation drift. In USENIX Large Installation System Administration Conference, pages
155–166, Philadelphia, PA, Nov 2002.

[23] K. Nagaraja et al. Understanding and dealing with operator mistakes in Internet services. In USENIX Symposium on Operating Systems
Design and Implementation, pages 61–76, San Francisco, CA, Dec 2004.

[24] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction to Cluster Analysis. Wiley Series in Probability and Mathematical
Statistics. Wiley, 1990.

[25] L. Keller, P. Upadhyaya, and G. Candea. ConfErr: A tool for assessing resilience to human configuration errors. In International Conference
on Dependable Systems and Networks, Anchorage, AK, Jun 2008.

[26] S. Kim, T. Zimmermann, J. E. James Whitehead, and A. Zeller. Predicting faults from cached history. In International Conference on Software
Engineering, pages 489–498, Minneapolis, MN, May 2007.

[27] C. Koch. AT&T Wireless self-destructs. CIO Magazine, Apr 2004. www.cio.com/archive/041504/wireless.html.

[28] N. LaBelle and E. Wallingford. Inter-package dependency networks in open-source software. In International Conference on Complex
Systems, Boston, MA, Jun 2006.

[29] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai. Have things changed now?: an empirical study of bug characteristics in modern open
source software. In ASPLOS Workshop on Architectural and System Support for Improving Software Dependability, pages 25–33, 2006.

[30] B. Lin, A. B. Brown, and J. L. Hellerstein. Towards an understanding of decision complexity in IT configuration. In Symposium on Computer-
Human Interaction for the Management of Information Technology, 2007.

[31] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou. BugBench: A benchmark for evaluating bug detection tools. In PLDI Workshop on the
Evaluation of Software Defect Detection Tools, Chicago, IL, Jun 2005.

[32] Microsoft Developer Network. Windows Update Agent. http://msdn2.microsoft.com/en-us/library/aa387099.aspx.
Retrieved on 18 Feb 2008.

[33] Neumann, P. et al. America Offline. The Risks Digest, 18(30–31), Aug 8–9 1996.
http://catless.ncl.ac.uk/Risks/18.30.html.

[34] O. Crameri et al. Staged deployment in Mirage, an integrated software upgrade testing and distribution system. In Symposium on Operating
Systems Principles, pages 221–236, Stevenson, WA, Oct 2007.

[35] Office of Government Commerce. Information technology infrastructure library (ITIL), 2001.

[36] J. Reason. Human Error. Cambridge University Press, 1990.

[37] G. N. Silva. APT HOWTO, Aug 2005. www.debian.org/doc/manuals/apt-howto/index.en.html.

[38] Skype. What happened on Aug 16. http://share.skype.com/sites/en/2007/08/what_happened_on_august_16.html,
Aug 2007.

[39] M. Sullivan and R. Chillarege. Software defects and their impact on system availability-a study of field failures in operating systems. In
Fault-Tolerant Computing Symposium, pages 2–9, 1991.

[40] Y. Sun and A. Couch. Global impact analysis of dynamic library dependencies. In USENIX Large Installation System Administration
Conference, pages 145–150, San Diego, California, Dec 2001.

[41] C. Tucker, D. Shuffelton, R. Jhala, and S. Lerner. OPIUM: Optimal package install/uninstall manager. In International Conference on
Software Engineering, pages 178–188, Minneapolis, MN, May 2007.

[42] S. Vermeulen, G. Goodyear, R. Marples, D. Robbins, C. Houser, and J. Alexandratos. Gentoo Handbook, May 2007.
http://www.gentoo.org/doc/en/handbook/handbook-x86.xml.

[43] Wang, Y.-M. et al. STRIDER: A black-box, state-based approach to change and configuration management and support. In USENIX Large
Installation System Administration Conference, pages 159–172, San Diego, CA, Oct 2003.

14

Appendix A Fault Data

F
au

lt n
am

e
U

n
iq

u
e n

am
e

S
o

u
rce

P
ag

e/B

u
g

 Id
D

escrip
tio

n
L

o
catio

n
R

o
o

t cau
se

O
rig

in
al classificatio

n
C

o
n

fig
. file

fau
lt

C
o

g
n

itive

level
R

ep
o

rted
 effect

C
lu

ster

apache_config_noapp
apache_config_noapp

[nagaraja04]
4

A
dded info about the new

 app server; but

forgot to add the m
achine's nam

e to the line

that specifies app-server nam
es

frontend
C

onfiguration
Local m

isconfiguration
structural

know
ledge

Latent error (frontend cannot

contact app server)

1

apache_config_typo
apache_config_typo

[nagaraja04]
4

S
yntax error in A

pache configuration file
frontend

C
onfiguration

Local m
isconfiguration

typo
skill

T
hroughput degradation

(m
od_jk crashed)

1

apache_config_sam
enam

e
apache_config_sam

enam
e

[nagaraja04]
4

C
onfigured identical nam

es for the application

servers in the T
om

cat connector

frontend
C

onfiguration
Local m

isconfiguration
structural

rule
S

ervice inaccessible (m
od_jk

crashed on both frontend

servers)

1

apache_config_nochange
apache_config_nochange

[nagaraja04]
5

F
orgot to m

odify the A
pache configuration file

altogether

frontend
C

onfiguration
G

lobal m
isconfiguration

structural
rule

T
hroughput degradation

1

apache_config_nom
ount

apache_config_nom
ount

[nagaraja04]
6

F
orgot to specify how

 A
pache should m

ap a

given U
R

L to a request for a T
om

cat servlet

frontend
C

onfiguration
G

lobal m
isconfiguration

structural
rule

T
hroughput degradation

(affected w
eb server unable to

process client requests)

1

apache_config_oldpath
apache_config_staticpath

[nagaraja04]
6

C
onfigured new

 server to get static files /

heartbeat program
 from

 the old A
pache's

directory tree

frontend
C

onfiguration
Local m

isconfiguration
structural

rule
Latent error (w

hen old

distribution rem
oved; new

server cannot serve static files)

1

apache_config_w
rongpath

apache_config_w
rongpath

[nagaraja04]
6

Incorrectly specified the path to the heartbeat

program

frontend
C

onfiguration
G

lobal m
isconfiguration

typo
skill

T
hroughput degradation

(m
od_jk crashed)

1

apache_42138
apache_42138

A
pache B

ugzilla
42138

H
ttpd.conf E

rror
C

onfiguration
O

ther error
typo

skill
E

rror m
essage

1

apache_43111
apache_config_staticpath

A
pache B

ugzilla
43111

/htdocs getting served w
hen not configured

frontend
C

onfiguration
Local m

isconfiguration
structural

rule
E

rror m
essage

1

apache_43395
apache_43395

A
pache B

ugzilla
43395

R
ew

riteR
ule and Location or D

irectory does

not w
ork

frontend
C

onfiguration
O

ther error
structural

know
ledge

E
rror m

essage
1

w
rong_apache1

w
rong_apache

[nagaraja04]
5

R
econfigured one A

pache distribution and

launched the executable from
 another

frontend
P

rocedure
S

tart of w
rong S

W

version

none
skill

T
hroughput degradation

(affected w
eb server unable to

process client requests)

4

w
rong_shutdow

n_apache
w

rong_shutdow
n_frontend

[nagaraja04]
5

S
hutdow

n both frontend w
eb-servers at the

sam
e tim

e

frontend
P

rocedure
G

lobal m
isconfiguration

none
skill

T
hroughput degradation (both

frontend servers inaccessible

during restart)

4

incorrect_tom
cat_noroot1

incorrect_tom
cat_noroot

[nagaraja04]
5

T
om

cat started incorrectly (forgot to obtain

root privileges before starting) on app server

m
iddle tier

P
rocedure

Incorrect restart
none

skill
T

hroughput degradation

(T
om

cat silently died on new

app server)

4

m
ysql_nopass_root

m
ysql_nopass_root

[nagaraja04]
5

N
o passw

ord set up for M
yS

Q
L root user

backend
C

onfiguration
Local m

isconfiguration
none

rule
S

ecurity vulnerabiliity
4

m
ysql_w

rong_privileges
w

rong_privileges_insufficient
[nagaraja04]

5
M

yS
Q

L user not given necessary privileges
backend

C
onfiguration

G
lobal m

isconfiguration
none

rule
S

ervice inaccessible (all T
om

cat

threads blocked)

4

w
rong_apache2

w
rong_apache

[nagaraja04]
5

Launched A
pache from

 the w
rong distribution

w
hile restarting the service

frontend
P

rocedure
S

tart of w
rong S

W

version

none
skill

S
ervice inaccessible (both

frontend servers unable to

process client requests)

4

w
rong_db_disk

w
rong_db_disk

[nagaraja04]
5

Installed the D
B

 on a slow
 disk

backend
P

rocedure
W

rong choice of H
W

com
ponent

none
rule

T
hroughput degradation (lim

ited

capacity)

4

db_deploym
ent_script

db_deploym
ent_script

[oliveira06]
5

B
ugs in the scripts for deploying D

B
 changes

backend
P

rocedure
D

eploym
ent problem

s
none

4

deploy_schem
a_nochange

db_schem
a

[oliveira06]
5

F
orgot to change the schem

a of the online D
B

before deploying a new
 or changed

application

backend
P

rocedure
D

eploym
ent problem

s
none

know
ledge

F
atal S

Q
L errors

4

deploy_accidental_changes
deploy_accidental_changes

[oliveira06]
6

A
ccidentally propagated the changes m

ade to

the database in the testing environm
ent

backend
P

rocedure
D

eploym
ent problem

s
none

rule
4

deploy_w
rong_changes

deploy_w
rong_changes

[oliveira06]
6

Inappropriate changes directly to the online

database

backend
P

rocedure
D

eploym
ent problem

s
none

rule
4

deploy_index_nochange
deploy_index_nochange

[oliveira06]
6

F
orgot to reapply indexes in the production

database

backend
P

rocedure
D

eploym
ent problem

s
none

rule
4

w
rong_schem

a_com
pile

db_schem
a

[oliveira06]
6

A
pplications com

piled agains the w
rong

schem
a are deployed online

backend
P

rocedure
D

eploym
ent problem

s
none

know
ledge

F
atal S

Q
L errors

4

perform
ance_w

rong_schem
a

db_schem
a

[oliveira06]
6

Inappropriate database-structure design
backend

P
rocedure

D
eploym

ent problem
s

none
know

ledge
P

oor perform
ance to

applications or users

4

15

w
rong_index

w
rong_index

[oliveira06]
6

Inappropriate indexing schem
e

backend
P

rocedure
D

eploym
ent problem

s
none

know
ledge

P
oor perform

ance to

applications or users

4

w
rong_schem

a
db_schem

a
[oliveira06]

6
Incorrect database design (e.g. duplicated

identity colum
ns; colum

ns too sm
all to hold

data)

backend
P

rocedure
D

eploym
ent problem

s
none

know
ledge

D
eadlocks; etc.

4

w
rong_privileges_insufficient

w
rong_privileges_insufficient

[oliveira06]
6

Insufficient acccess privileges granted to

users and applications

backend
C

onfiguration
G

lobal m
isconfiguration

none
rule

Inability to access the w
hole or

parts of the) database

4

w
rong_privileges_excessive

w
rong_privileges_excessive

[oliveira06]
6

E
xcessive access privileges granted to

som
e users or applications

backend
C

onfiguration
G

lobal m
isconfiguration

none
rule

S
ecurity vulnerabiliity

4

no_space
no_space

[oliveira06]
6

D
isk space exhaustion

backend
P

rocedure
S

pace problem
s

none
rule

4

tablespace_full
tablespace_full

[oliveira06]
6

T
ablespace problem

s
backend

P
rocedure

S
pace problem

s
none

rule
4

w
rong_shutdow

n_dbm
s

w
rong_shutdow

n_db
[oliveira06]

7
Incorrectly shut dow

n the database
backend

P
rocedure

G
eneral m

aintenance

problem
s

none
skill

D
atabase inaccessible to the

application servers

4

no_replication
no_replication

[oliveira06]
7

F
orgot to restart the D

B
M

S
 replication

backend
P

rocedure
G

eneral m
aintenance

problem
s

none
skill

4

no_space_backup
no_space_backup

[oliveira06]
7

Insufficient backup space
backend

P
rocedure

G
eneral m

aintenance

problem
s

none
rule

4

apache_42975
apache_42975

A
pache B

ugzilla
42975

P
roxyP

assR
everse not handling relative

redirects properly

frontend
P

rocedure
O

ther error
none

know
ledge

Incorrect functionality
4

perform
ance_tuning

perform
ance_tuning

[oliveira06]
6

E
rroneous perform

ance tuning
backend

C
onfiguration

D
eploym

ent problem
s

sem
antic

know
ledge

P
oor perform

ance to

applications or users

2

dbm
s_m

isconfiguration
dbm

s_m
isconfiguration

[oliveira06]
7

M
isconfigured D

B
M

S
backend

C
onfiguration

G
eneral m

aintenance

problem
s

sem
antic

know
ledge

C
ould not restart D

B
M

S
2

apache_41979
apache_41979

A
pache B

ugzilla
41979

Load B
alancer M

anager W
eb C

lient Is B
lank

frontend
C

onfiguration
O

ther error
sem

antic
know

ledge
Incorrect functionality

2

apache_42605
apache_42605

A
pache B

ugzilla
42605

H
T

T
P

S
-U

R
L w

ith special-port requesting a

directory (w
ithout trailing slash) is rew

ritten

to H
T

T
P

S
-U

R
L requesting a directory w

ith

trailing slash, B
U

T
 the specified port is

m
issing

frontend
C

onfiguration
P

aram
eter tuning

sem
antic

know
ledge

Incorrect functionality
2

apache_42627
apache_42627

A
pache B

ugzilla
42627

U
nable to authenticate using authz-ldap

require group

m
iddle tier

C
onfiguration

O
ther error

sem
antic

know
ledge

Incorrect functionality
2

apache_42709
apache_42709

A
pache B

ugzilla
42709

.htaccess is view
able by brow

ser after login

validation

m
iddle tier

C
onfiguration

O
ther error

sem
antic

know
ledge

Incorrect functionality
2

apache_42751
apache_largefile

A
pache B

ugzilla
42751

C
IF

S
 m

ounted filesystem
s do not transm

it

files

m
iddle tier

C
onfiguration

P
aram

eter tuning
sem

antic
know

ledge
Incorrect functionality

2

apache_43232
apache_largefile

A
pache B

ugzilla
43232

error w
hile transm

itting file over 64K
m

iddle tier
C

onfiguration
P

aram
eter tuning

sem
antic

know
ledge

Incorrect functionality
2

apache_41751
apache_41751

A
pache B

ugzilla
41751

K
eepalive connections keep children tied up

even if new
 requests starve

C
onfiguration

P
aram

eter tuning
sem

antic
know

ledge
P

erform
ance degradation

2

apache_41358
apache_41358

A
pache B

ugzilla
41358

N
o D

S
O

 w
orks: ./configure --enable-m

ods-

shared doesn't w
ork, neither does apxs,

neither does ./configure --enable-

proxy=
shared.

frontend
P

rocedure
B

uild
none

rule
E

rror m
essage

3

apache_42285
apache_42285

A
pache B

ugzilla
42285

m
od_authnz_ldap reports [C

an't contact

LD
A

P
 server]

m
iddle tier

P
rocedure

E
nvironm

ental conflict
none

rule
E

rror m
essage

3

apache_42332
apache_42332

A
pache B

ugzilla
42332

G
D

B
M

 not supported in 2.2.4?
m

iddle tier
P

rocedure
B

uild
none

rule
E

rror m
essage

3

apache_42556
apache_42556

A
pache B

ugzilla
42556

A
pache w

ith LD
A

P
 support segfaults on

S
olaris 9 w

ith LD
A

P

m
iddle tier

P
rocedure

E
nvironm

ental conflict
none

rule
C

rash
3

apache_43328
apache_43328

A
pache B

ugzilla
43328

m
od_authnz_ldap does not com

pile
m

iddle tier
C

onfiguration
B

uild
none

rule
E

rror m
essage

3

apache_43518
incorrect_apache_port

A
pache B

ugzilla
43518

no listening sockets available
P

rocedure
E

nvironm
ental conflict

none
rule

E
rror m

essage
3

apache_43523
apache_43523

A
pache B

ugzilla
43523

C
om

patibility w
ith last svn dav and authz .so

m
odules...

m
iddle tier

P
rocedure

B
uild

none
rule

E
rror m

essage
3

apache_43945
apache_43945

A
pache B

ugzilla
43945

restart lockup
P

rocedure
B

uild
none

rule
H

ang
3

apache_43986
apache_43986

A
pache B

ugzilla
43986

M
ultiple com

pile errors in m
od_disk_cache.c

P
rocedure

B
uild

none
rule

E
rror m

essage
3

16

