On Performance of Delegation in Java

Sebastian Gotz

Software Technology Group, Dresden University
of Technology, Germany

sebastian.goetz@mail.inf.tu-dresden.de

Abstract

Delegation is an important design concept in object-oriented
languages. In contrast to inheritance, which relates classes
to each other, delegation operates on the level of objects and
thus provides more flexibility. It is well known, that usage
of delegation imposes performance penalties in the sense of
delayed execution. But delegation on the level of sourcecode
is optimized on bytecode level up to a degree, that imposes
much lower performance penalties than expected. This paper
examines in detail how big these penalties are.

Categories and Subject Descriptors D.2.7 [Software En-
gineering]: Distribution, Maintenance, and Enhancement—
Dynamic Software Upgrade

General Terms Java, HotSpot, Inlining, Software Upgrade

Keywords Upgrade, Java, JVM, Delegation, Inlining

1. Introduction

Many approaches in the context of object-orientation base
on the concept of delegation. For example, Pukall et. al.’s
object-wrapping approach [6] enabling dynamic runtime up-
grades of Java applications. Objects of updated classes are
wrapped. Every further update introduces another wrapper,
leading to deep delegation chains. In [3] Kniesel presents
an object wrapping approach based on type-safe delegation,
which also exhaustively utilizes delegation. Biichi and Weck
[1] introduced Generic Wrappers for late composition of
component systems, which enable generic aggregation of
objects at runtime. Again delegation is keenly utilized. In
[2] Savga et al. present ComeBack!, an approach supporting
clients to run with newer frameworks, than they were orig-
inally written for. The key idea is to put binary-compatible

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

HotSWUp’09, October 25, 2009, Orlando, Florida, USA.

Copyright © 2009 ACM ISBN 978-1-60558-723-3/09/10. .. $5.00

Mario Pukall

Database Research Group,
Otto-von-Guericke-University Magdeburg,
Germany

mario.pukall@iti.cs.uni-magdeburg.de

adapters between clients and frameworks, thus introducing
further levels of delegation. PROSE[S5] is a system support-
ing runtime method body changes. Changes are realized as
separate Java classes to enable composition of changes, lead-
ing to delegation chains of considerable depth.

It is well known, that heavy usage of delegation imposes
valuable performance penalties in the sense of delayed exe-
cution. But how big these penalties actually are, is unknown.
Nevertheless, these performance penalties are often seen as
drawbacks of approaches keenly utilizing delegation. As we
will show in Section 3, source code is optimized on byte-
code level and delegation imposes much lower performance
penalties than expected, thus puts these drawbacks into per-
spective.

This paper presents empirical data about performance
penalties, introduced due to delegation. Six of the most com-
mon Java Virtual Machines (Suns and Apples HotSpot 5 and
6 and Oracles JRockit Mission Control 5 and 6) were exam-
ined on three different operating systems (Windows 7, Linux
and Mac OS X).

2. Experimental Setup

To measure the performance penalties implied by introduc-
ing levels of indirection, a set of classes, whose instances
are connected to each other via method calls, needs to be
created. That is, each class has at least one method, which
invokes a method of another class. All methods connected to
each other by invocation form a method chain.

To simulate real world methods a complex calculation is
performed in each method. Four different numbers (a to d)
between 0 and 100, are randomly generated for each method
containing an invocation and are used in the following for-
mula: sin(a) * tan(b) + Vc? + d?.

The randomly generated classes differ in their name,
number and names of their methods, as well as number and
type of arguments per method. This circumvents, that the
just-in-time (JIT) compilers optimizer is able to see the co-
herency between the methods, i.e. the method chain, simply
by looking at their names. The generated classes have the
form depicted in Listing 1.

class C; {
private C;;; next;

public String call{ (&1 p1 ,....t; p}) {
if (next != null) {
double x = Math.sin(a) =
return next.call! (v{ ,... ,v});
} else return “end”;
}
public String callf (t} pfth pk) {

}

Listing 1. General Class Format. Each Class Comprises k
Methods. They Differ in Their Name and Number/Type of
Arguments.

In order to measure the time an execution of the first
method in the chain takes, a client is used, which instantiates
the classes, connects all instances to each other, and calls
the first method in the delegation chain. The method call is
surrounded by calls of System.nanoTime (), which return
the current system time in nanoseconds.

The method is executed several times. This is, because
the JIT compiler needs a warm-up phase to optimize the
running code. The more often the code is executed, the closer
its execution time comes to execution times of code, which
does not use delegation at all.

The class and client generation is parameterized by the
number of classes to be generated, the maximum number
of methods per class, parameters per method, and the num-
ber of execution times. In the following this test is called
TestJIT.

Due to limitations of class files[4], the maximum num-
ber of classes is limited. This is, because the byte code of
any method must not exceed the size of 65534 kilobyte. The
client needs to create instances of all classes and connect
them to each other. The maximum number of classes re-
vealed to be approximately 2000.

In order to make a statement about the performance
penalty of delegation, reference values are necessary. Hence
the question is, how long would the same execution take, if
delegation is not used? In consequence a single method, con-
taining all calculations, which originally were spread over all
methods in the chain, needs to be executed and the time this
execution takes has to be measured. As for the measurement
of delegation the method should be executed several times,
so the JIT compiler is able to identify the hotspots. To get
comparable total times the same numbers a to d as used in
the generated classes are used in this method. This class is
furtheron called TestManual.

3. Empirical Data

We run the clients described in Section 2 on different combi-
nations of machines and Java Virtual Machines (JVM). The
JVMs we used are Suns HotSpot, Oracles JRockit Mission
Control 3.1.0 and Apples HotSpot. All VMs were chosen,
because they are well-known and often used in productive
environments. The HotSpot VM is the standard VM, which
is delivered by Sun. Hence it is optimized for general pur-
pose usage. Its name typifies its special feature. The HotSpot
VM continuously analyzes the byte code to detect so-called
“hot spots”, statements which are frequently or repeatedly
executed. As the VM compiles byte code to native code
just in time, i.e. at runtime, it is able to optimize these hot
spots based on runtime information. Oracles JRockit JVM
allegedly has a better performance than Suns HotSpot.! Un-
fortunately Oracle does not provide information about how
they achieve better performance. Apples HotSpot is similar
to Suns implementation, but optimized for a single processor
architecture.

All of these JVMs have been tested for Java Version 5
and 6. Always the latest release of the corresponding JVM
has been used. The reason for testing on different JVMs is
the assumption, that they will optimize the code in different
ways. Version 1.4.2 of the JVMs has been omitted, because
it does not provide methods to retrieve the current time at the
granularity of nanoseconds, but just milliseconds.

Different operating systems and different editions of the
JVMs have been used. The tests have been run multiple
times, revealing a negligible deviation between the results
of the same tests. Thus the results are reproducible. The
machines used for the tests are:

e Windows 7 and Linux (2.6.28) on Intel Core 2 Duo
T7700, 2.4GHz, 3GB RAM

e Mac OS X on MacBook Pro, Intel Core 2 Duo, 2.66GHz,
4GB RAM

3.1 Results for Windows 7

Figure 1 shows the results of TestJIT and TestManual for
the Sun HotSpot 6 VM on the Windows 7 machine for a
set of 1000 classes, having a maximum of 10 methods per
class and a maximum of 10 attributes per method. The x-axis
shows the number of execution times and ends at 10.000.
The y-axis denotes the time a single execution took in mil-
liseconds. The lightgray line depicts the times achieved by
TestManual. Except for some outbreaks the time is al-
most all time around 2,5 milliseconds. Thus, by executing
the same method over and over again, the JIT compiler is
not able to optimize. The darkgray line depicts the times of
TestJIT. Here 1000 instances of different classes are con-
nected to each other, as described in Section 2. During the
first 2000 executions the necessary time for a single execu-
tion varies around 7,5 milliseconds, but there are multiple

Uhttp://www.oracle.com/technology/products/jrockit/

Sun HotSpot 6 - Windows 7 o

—— Manual

Milleconds
~
51

15 11—

10 H H
: Mu.u*i ORPPTR W .
0t T T T T 1

1 2001 4001 6001 8001 10000

JRockitMC 6 - Windows 7 a

40 T —

35 — _ —

30 I 1 1

25 HH

20— H—1 1T

Millseconds

15— H1- 1T

10—

1 2001 4001 6001 8001 10000

Figure 1. Total Execution Time by Number of Execution
Times for Sun HotSpot 6 under Windows 7

outbreaks taking around 32 milliseconds. After 2000 exe-
cutions the necessary time for a single execution varies be-
tween 2,5 and 5 milliseconds, having an average of 3,5 mil-
liseconds. In comparison to the time needed to execute the
single method in TestManual, using the running average
values over all execution times, delegation imposes a perfor-
mance penalty of 50%.

The reason for the speedup is an optimization technique
of the JIT compiler: inlining. If one method often calls an-
other method, the content of the other method is inlined, i.e.
copied, into the first method, thereby avoiding an expensive
virtual call. In TestManual this has been done manually.
In TestJIT, after approximately 2000 times of execution,
all methods, which are chained together, have been called at
least once. Thus, the JIT compiler knows, about all of them
and is able to inline them. Therefore, the optimized code is
able to achieve execution times even of 2,5 milliseconds, just
like the single method. Thus modularization of source code,
i.e. using delegation and inheritance, does not contradict fast
execution.

Figure 2 shows the results for the same test on a Sun
HotSpot 5 VM. In comparison to HotSpot 6 the times for

Sun HotSpot 5 - Windows 7 o

Manual

Millseconds
o
5]

1 2001 4001 6001 8001 10000

Figure 2. Total Execution Time by Number of Execution
Times for Sun HotSpot 5 under Windows 7

Figure 3. Total Execution Time by Number of Execution
Times for Oracle JRockit MC 6 under Windows 7.

the single method are approximately the same. The times
needed for the chained methods have more breakouts, but in
general are, too, approximately the same. The average time
for the single method is slightly better at 2,3 milliseconds.
The average time for the method chain degraded to 3,1
milliseconds. Suns HotSpot 5 VM showed a performance
penalty for delegation of 46%.

Figures 3 and 4 show the same test run with Oracles
JRockit for Java 6 and 5. The results for the single method
are again stable, but slightly better at an average of 2 mil-
liseconds. This holds for both, Java 6 and 5. Interestingly the
first execution took more than 100 milliseconds. The results
for the method chain differ from those of Suns HotSpot VMs
in that much more breakouts occur, even after 2000 execu-
tions. The first execution even took almost 500 milliseconds.
The y-axis is limited to 40 milliseconds for clarity. The many
breakouts show, that Oracles JIT optimizer works in another
way and gives the impression, that it performes worse than
Suns optimizer. But this is not the case, as a look on the av-
erage time for an execution of the method chain shows. In
average such an execution in Java 6 takes only 2,7 millsec-
onds. In Java 5 it takes 2,8 milliseconds. The performance

JRockitMC 5 - Windows 7 am

= Manual
40 —

35 ——

30 H— ——1 —1—

25 -— _ _ _

2 —HF+—

Millseconds

s - H4+——HH

10

1 2001 4001 6001 8001 10000

Figure 4. Total Execution Time by Number of Execution
Times for Oracle JRockit MC 5 under Windows 7.

Jir

Sun HotSpot 6 - Linux

—— Manual

Milleconds
~
51

Z !’TF’T“’]“T‘F'I—I__'_l—l_"_{"I""ll_.l'—l'J—'I_.I'l

2001 4001 6001 8001 10000

JRockitMC 6 - Linux a

—— Manual

40

35

30

25

20

Millseconds

15

10

1 2001 4001 6001 8001 10000

Figure 5. Total Execution Time by Number of Execution
Times for Sun HotSpot 6 under Linux.

penalty introduced by delegation is thus 43% for Java 6 and
39% for Java 5.

3.2 Results for Linux

We run the test on the same machine, but under Linux
(2.6.28). The results for Suns HotSpot 6 und 5, depicted
in Figures 5 and 6, show, that the JIT compilers optimizer
works in a slightly different way compared to its Windows
7 implementation. Althouh this VM is the HotSpot VM de-
veloped by Sun, too. But it is a separate port of it, which has
its own characteristics. In version 6, after the first few exe-
cutions, the time needed for a single execution goes down
to approximately 3 milliseconds. Under Windows this only
rarely happened before the first 2000 executions. But under
Linux much more outbreaks occur, though they are rela-
tively small. Also version 5 of Suns HotSpot slightly dif-
fers from its Windows counterpart, in that it too has much
more outbreaks and no change occurs after 2000 executions.
The performance penalties introduced by delegation are less
than under Windows. Suns HotSpot 6 needs an average of
1,8 milliseconds for the method chain and an average of 1,3
milliseconds to execute the single method. This results in a

i

Sun HotSpot 5 - Linux

Manual

Millseconds
o
5]

1 2001 4001 6001 8001 10000

Figure 6. Total Execution Time by Number of Execution
Times for Sun HotSpot 5 under Linux.

Figure 7. Total Execution Time by Number of Execution
Times for Oracle JRockit MC 6 under Linux.

penalty of 37%. Version 5 of Suns HotSpot needs an average
of 1,33 milliseconds for the method chain and 1,4 millisec-
onds for the single method, thus imposes a performance
penalty of 8%.

Comparing Suns HotSpot implementations for Windows
and Linux gives the impression, that Linux is the better
choice for applications making heavy usage of delegation.
The JRockit results show, that this is indeed the case. Fig-
ure 7 and 8 show the results for version 5 and 6. They don’t
differ in their characteristics from the results of their Win-
dows counterpart, but in the penalties imposed by delega-
tion. Version 5 and 6 need an average of 1,2 milliseconds for
the method chain, which is more than twice as fast as un-
der Windows. The average time needed to execute the single
method is 1,07 milliseconds, which is much faster than under
Windows, too. The performance penalty imposed by delega-
tion results in only 14% for Java 5 and 6. This is less than
half of the penalty under Windows 7.

3.3 Results for Mac OS X

Finally we run the same test on Mac OS X. Oracle does
not provide a JRockit Mission Control for Mac OS X, thus
only Apples Java HotSpot implementations have been tested.

JRockitMC 5 - Linux am

= Manual

40

35

30

25

20

Millseconds

15

10 H—1—

1 2001 4001 6001 8001 10000

Figure 8. Total Execution Time by Number of Execution
Times for Oracle JRockit MC 5 under Linux.

Manual

Apple HotSpot 6 - Mac 0S X

il

Milleconds

5

o

TR L]

2001 4001 6001 8001 10000

60% win win win win linux linux linux linux mac
sun6 sun5 JRE6 JR6 sun 6 sun5 JR6 IR5 Apple6

13%

=

Penalties 2x Workload

WinSun HotSpot 6 EIWin Sun HotSpot 5 B Win JRockit 6 mwin JRockit 5 B Linux Sun HotSpot 6

O Linux Sun HotSpot 5 B Linux JRockit 6 DLinux JRockit 5 EMac Sun HotSpot 6

Figure 9. Total Execution Time by Number of Execution
Times for Sun HotSpot 6 under Mac OS X.

Manual

Apple HotSpot 5 - Mac 0S X

AT

Millseconds

B ST T I T N E—

ot

1 2001 4001 6001 8001 10000

Figure 10. Total Execution Time by Number of Execution
Times for Sun HotSpot 5 under Mac OS X. The y-Axis is
Limited to 10 Milliseconds. The 1500th Execution had a
Breakout of More Then 300 Milliseconds.

Figures 9 and 10 show the results. We used a slightly bet-
ter equipped machine, thus tests run faster. For the single
method Apples HotSpot 5 achieved an average of 1,5 mil-
liseconds, version 6 of Apples HotSpot even 1,25 millisec-
onds. The figures emphasize, that under Mac OS X the single
method sometimes takes longer than the method chain. Ap-
ples HotSpot 6 needs an average of 1,44 millseconds for the
method chain and 1,25 milliseconds for the single method.
Thus the performance penalty introduced by delegation is
only 15%. Version 5 of Apples HotSpot is even better. Both,
the single method and the method chain need an average of
1,5 milliseconds, thus in this case no performance penalty
at all is implied by delegation. An important difference be-
tween Apples and Suns HotSpot, as well as Oracles JRockit
is, that Apple was able to optimize their VM for a single pro-
cessor architecture, whereas the other VMs need to support
a variety of them.

3.4 Varying Workload

All results were measured with the same workload, that is
the same calculation. This makes the results comparable,

Figure 11. Penalties for Double Workload, Measured Un-
der Windows 7, Linux and Mac OS X

60% win win win win linux linux linux linux mac
sun6 suns JRE IR6 sun6 sun5 IR6 IR5 Apple6

W Win JRockit 5

W WinSun HotSpot 6 EWin Sun HotSpot 5 B Win JRockit 6

B Linux Sun HotSpot 6

O Linus Sun HotSpot 5 B Linux JRockit 6 DLinux IRockit 5 EMac Sun Hotspot 6

Figure 12. Penalties for 2.5 Times Workload, Measured
Under Windows 7, Linux and Mac OS X

but doesn’t take the influence of the workload into consid-
eration. Hence, we run the same tests with double and 2.5
times workload. To simulate double workload, the formula
was doubled, that is, the same formula is calculated twice,
though with different values. For 2.5 times workload, half
of the formula is added to the doubled formula. The reason
for using 2.5 times workload, instead of triple workload is,
that using triple workload, the number of classes is limited
to less than 1000 classes.

The results of these tests showed a basic principle: the
more workload, the less penalty. Figure 11 summarizes the
resulting penalties for double workload. The penalties are
never worse than 32% and go down to even 0%. For 2.5
times workload, depicted in Figure 12 the penalties are even
lower. A maximum of 24%, going down to -8%. That is, the
JIT optimized delegation code is faster, than the manually
inlined code, which is optimized by the JIT, too.

Thus, delegation imposes less performance penalties for
computation-intensive methods. Because sometimes delega-
tion is even faster than manually inlined code, big methods
should be avoided. Modular, reusable code, using delega-
tion, is able to perform better.

8%

6%

4%

2%

0%

JRockit 6 JRockit 5

-2%

33, Win64 win 64 Win 64

-10%

M 1xWorkload zxWorkload ~ M2,5x Workload

60% win win win win linux linux linux linux mac

sunt sun5 JR6 JRE sun 6 suns JRE JRS Apple 6
50%

46%

43%

Penalties 1x Workload

WinSun HotSpot 6 EIWin Sun HotSpot 5 B Win JRockit 6 mwin JRockit 5 B Linux Sun HotSpot 6

O Linux Sun HotSpot 5 B Linux JRockit 6 DLinux JRockit 5 EMac Sun HotSpot 6

Figure 13. Penalties For Suns HotSpot and Oracles JRockit
MC in Version 5 and 6, Measured on a 64bit Windows 7.

3.5 32bit vs. 64bit

An important difference between the two machines used for
testing is, that the first machine, running Windows 7 and
Linux, works with 32bit, but the second with 64bit. This
could be an important difference, as different ports of the JIT
compilers for 64bit, instead of 32bit, exist. Hence we run the
same tests on a comparable 64bit machine for Windows 7
and Linux using the appropriate VM implementations.

The results show, that JVM implementations for 64bit
perform much better, than those for 32bit. Figure 13 de-
picts the results for Windows 7 on a 64bit machine. Suns
HotSpot VM for Java 5 is most performant. It starts, like
Suns HotSpot for Java 6, with -3% for usual workload. Thus,
even for small workloads the JIT compiler is able to optimize
delegation code in a way, that it runs faster, than manually
inlined code. For 2.5 times workload the penalty is even -
10%, confirming the statement “the more workload, the less
penalty”. A look at Oracles JRockit Mission Control shows
very small penalties, too. They never exceed 6% and, for
double and 2.5times workload go down to just 1%.

In comparison the 32bit results under Windows 7 are be-
tween 39% and 50% for usual workloads. The 64bit imple-
mentations of the VMs are at least 6 times as fast, as their
32bit counterparts.

4. Conclusion

The paper presented empirical data about performance
penalties imposed by delegation. Two different tests were
developed as described in Section 2. The first one simulates
exhaustive delegation, the second one represents the same
code, but without using delegation. The resulting times were
the basis to calculate the running average, whose last values
were used to calculate the performance penalty imposed by
each virtual machine on the corresponding operating system.
Figure 14 summarizes the derived penalties.

As has been shown in Subsection 3.4, the more workload
the method chain contains, the less performance penalty is
imposed by it. Big, unstructured methods do not necessarily

Figure 14. Performance Penalties Inmposed by Delegation
in Percent, Relative to Manual Inlining. I.e. 50% means,
code using delegation takes 1.5 times longer.

perform better, than many modular and reusable methods,
utilizing delegation.

Furtheron 64bit implementations of all VMs used to col-
lect the data, perform much better than their 32bit counter-
parts. They are at least 6 times faster.

In the worst case delegation imposes a penalty of 50%.
The majority of Virtual Machines imposes for usual work-
load at most 40%. But increasing the workload even leads
to penalties, below 0%! Thus, although delegation imposes
performance penalties, these penalties stay in reconcilable
borders.

References

[1] Martin Biichi and Wolfgang Weck. Generic wrappers. In
Proceedings of ECOOP 2000, LNCS 1850, pages 201—
225. Springer, 2000.

[2] Tlie Savga, Michael Rudolf, Sebastian Go6tz, and Uwe
ABmann. Practical refactoring-based framework up-
grade. In Proceedings of GPCE 2008, pages 171-180,
New York, NY, USA, 2008. ACM.

[3] Giinter Kniesel. Type-safe delegation for run-time com-
ponent adaptation. In Proceedings of ECOOP 1999,
LNCS 1628, pages 351-366. Springer, 1999.

[4] Tim Lindholm and Frank Yellin. Java™ Virtual Ma-
chine Specification, The, 2nd Edition. Prentice Hall,
1999.

[5] Angela Nicoara, Gustavo Alonso, and Timothy Roscoe.
Controlled, systematic, and efficient code replacement
for running java programs. In Proceedings of EuroSys
2008, pages 233-246, 2008.

[6] Mario Pukall, Christian Késtner, and Gunter Saake. To-
wards unanticipated runtime adaptation of java applica-
tions. In Proceedings of APSEC 2008, pages 85-92.
IEEE, 2008.

