Label Efficient Learning by Exploiting Multi-class Output Codes

Maria-Florina Balcan, Travis Dick, Yishay Mansour
Overview

- Active algorithms for *multi-class* learning problems.
- Basic approach:
 - Assume a *supervised* algorithm (output codes) would succeed.
 - Investigate the *implicit assumptions* of that algorithm.
 - Use them to prove guarantees for our active algorithms.

- Clustering and hyperplane-detection based algorithms

![Diagram](image.png)
Output Codes

- Natural generalization of one-vs-all learning.
- Reduction from *multi-class* to *binary* classification.
- Design *m* binary partitions of the classes.
- Think of each partition as a *semantic feature*.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>
Supervised O.C. Training & Prediction

• learn a binary classifier for each semantic feature.

• Result is \(h: X \rightarrow \{\pm 1\}^m \) that predicts semantic features.

• Prediction: Assign \(x \) to class with closest code word to \(\hat{h}(x) \).
What does a linear output code look like?

\[C = \begin{bmatrix} -1 & -1 & -1 & -1 \\ +1 & +1 & +1 & -1 \\ -1 & -1 & +1 & +1 \end{bmatrix} \]
What does a linear output code look like?

\[
K_1 \quad K_2 \quad K_3
\]

\[
\begin{align*}
X &= \begin{bmatrix}
-1 & -1 & -1 & -1 \\
+1 & +1 & +1 & -1 \\
-1 & -1 & +1 & +1 \\
-1 & -1 & +1 & +1 \\
\end{bmatrix}
\end{align*}
\]
Active Learning Setting

• Instance space $X \subset R^d$.
• Unknown target function $f^*: X \rightarrow [L]$.
• Unknown data distribution p on X.

• Algorithm receives an iid sample $x_1, ..., x_n$ from p and can query the label $y_i = f^*(x_i)$ of each point.

• Goal: output $\hat{f}: X \rightarrow [L]$ with $\Pr[\hat{f}(x) \neq f^*(x)] \leq \epsilon$ without too many queries.
Our Main Assumption

Assumption: There exists an unknown **consistent** output code classifier with linear separators. Moreover, the predicted code word $h(x)$ is always (w.p. 1) within distance β of a class code word.

- Second part ensures the OC is not *miraculously* consistent (i.e. consistent despite making terrible predictions on the binary tasks).

- This assumption relates the OC and the unlabeled data distribution:

\[
\begin{align*}
\beta &= 0 & K_1 & K_2 & K_3 \\
\beta &= 1 & K_1 & K_2 & K_3 \\
\beta &= 2 & K_1 & K_2 & K_3
\end{align*}
\]
Summary of Results

1. If the output code is *error correcting* then we are able to learn to accuracy ε with label complexity independent of ε by clustering.

2. If the output code is *one-vs-all* and the data is contained in the unit ball, then we are able to learn to accuracy ε using exactly L label queries by clustering.

3. If the output code satisfies a novel *boundary features* condition, then we can learn to accuracy ε with L label queries using a hyperplane detection algorithm.
Error Correcting Output Codes

• Experts often design the code matrix to be error correcting: Large Hamming dist. between code words.
• Makes the supervised output code robust to errors in the binary classification tasks.

Assumption: Class code words have distance at least $2\beta + d + 1$.

For clustering:

Assumption: Data density p has C-thick level sets: for all $\lambda > 0$ and $\sigma > 0$, every point of $\{p \geq \lambda\}$ is within distance $C\sigma$ of the σ-interior.
ECOC Main Observation

- For points x_1, x_2, the distance $d_{Ham}(h(x_1), h(x_2))$ is the number of hyperplanes crossed by the line segment from x_1 to x_2.
- If $y_1 \neq y_2$ then $d_{Ham}(h(x_1), h(x_2)) \geq 2\beta + d + 1 - 2\beta = d + 1$.
- If hyperplanes are in general position, this implies $|x_1 - x_2| > 0$.
- So there is a non-zero margin $g > 0$ between all classes!
Clustering Algorithm for ECOC Setting

1. Draw an unlabeled sample of data.
2. Connect points closer than distance r.
3. Query the label from each cluster in decreasing order of size until at most an $\epsilon/4$-fraction of data is in unlabeled clusters.
4. Output a nearest neighbor classifier using the labeled clusters.

Let N be the number of connected components of $\{p \geq \tilde{\epsilon}\}$ for $\tilde{\epsilon} \approx \epsilon$.

Theorem: If $r \leq g$ and $n = O\left(\frac{1}{\epsilon^2} \left(\frac{Cd}{r}\right)^{2d} + N\right)$ then with probability at least $1 - \delta$ the above algorithm will query at most N labels and achieve error $\leq \epsilon$.

Label complexity is essentially independent of target error rate ϵ!
What about weaker requirements on the Hamming distance between code words?

1. One-vs-all on the unit ball: Hamming dist. = 2

2. Boundary feature condition: Hamming dist. = 1
 • This means different classes can be very well connected and so clustering will fail!
Assumption: The data is in the unit ball and there exists a consistent one-vs-all classifier.

i.e., there are linear separators h_1, \ldots, h_L such that $x \in B$ belongs to class i if and only if $h_i(x) > 0$.

Assumption: $\beta = 0$ and $c_{lb} \leq p(x) \leq c_{ub}$ for x with $d_{Ham}(h(x), C) \leq \beta$

Idea: After projecting to the surface of the ball, the classes are probabilistically separated! Find high-density clusters after projecting to the unit sphere.

Theorem: For any $\epsilon > 0$, running our alg. on unlabeled sample of size $n = \tilde{O}\left(\frac{c_{ub}^d d^d}{\epsilon^2 d c_{lb}^2 d b_{min}^2}\right)$ will query L labels and have error at most ϵ w.h.p.
Assumption: For every semantic feature j, there exists a class i such that flipping feature i for class j produces a code word not equal to any other class.

Assumption: $\beta = 0$ and $c_{lb} \leq p(x) \leq c_{ub}$ for x with $d_{Ham}(h(x), C) \leq \beta$

- This implies that every linear separator is a linear boundary on the support of p.
- So we can recover the linear separators by estimating linear boundaries of the support!

Theorem: For any $\epsilon > 0$, running our alg. on an unlabeled sample of size $n = \tilde{O}\left(\frac{m^2 c_{ub}^2}{\epsilon^4 R^d}\right)$ will query at most L labels and will have error at most ϵ w.h.p.

* R is a scale parameter of the problem
Summary & Future Work

- Designed and analyzed active algorithms for multi-class problems.
- Analysis leveraged the implicit assumptions of supervised output codes.

![Diagram]

- Future Work:
 - Algorithms with non-exponential unlabeled sample complexity.
 - Similar analysis using implicit assumptions of other supervised algorithms.

Thanks!