Dispersion for Data-Driven Algorithm Configuration, Online Learning, and Private Optimization

Maria-Florina Balcan, Travis Dick, Ellen Vitercik
Carnegie Mellon University
Data-Driven Algorithm Configuration

Problem instances from specific application.

Goal:
- Automatically find the best parameters for a specific application domain.
- Algorithm is run repeatedly, historic instances are training data.
- Want provable guarantees for online and private settings.
Example: Greedy Knapsack Algorithm

Problem Instance:
- Given n items
- item i has value v_i and size s_i
- a knapsack with capacity K
Find the most value subset of items that fits.

Algorithm: (Parameter $\rho \geq 0$)
Add items in decreasing order of $\text{score}_\rho(i) = v_i/s_i^\rho$.

Goal: Find ρ giving highest total value for an application / source of instances.

Observation: For one instance, total value is piecewise constant in ρ.

If ρ and ρ' give the same item ordering, output is the same.
Items i and j only swap relative order at $\rho = \frac{\ln(v_i/v_j)}{\ln(s_i/s_j)}$.
So at most n^2 discontinuities.
More generally, utility is often a piecewise Lipschitz function of parameters.

Learning protocol:

For each round $t = 1, ..., T$:
1. Learner chooses point $\rho_t \in C \subset \mathbb{R}^d$.
2. Adversary chooses piecewise L-Lipschitz function $u_t: C \rightarrow \mathbb{R}$.
3. Learner gets reward $u_t(\rho_t)$ and either
 - Observes entire function u_t
 - Observes the scalar $u_t(\rho_t)$

Notation: Let $U_t(\rho) = \sum_{s=1}^{t} u_t(\rho)$

Goal: Minimize regret $= \max_{\rho \in C} U_T(\rho) - \sum_{t=1}^{T} u_t(\rho_t)$.
A Mean Adversary

Fact: There exists an adversary choosing piecewise constant functions from [0,1] to [0,1] such that every full information online algorithm has **linear regret**.

At round t, adversary chooses a threshold τ_t and flips a coin to choose either

```
0  \tau_t  1
```

or

```
0  \tau_t  1
```

Every learner has expected utility of $\frac{1}{2}$ per round \rightarrow expected total utility $T/2$.

Let $G_t = \{\rho \in [0,1] : u_s(\rho) = 1 \text{ for all } 1 \leq s \leq t\}$

Set τ_t to be midpoint of $G_{t-1} \rightarrow \max_T U_T(\rho) = T$.

Regret $= T/2$.
Talk Outline

1. Define a condition on collections of PWL functions called *Dispersion*.

2. Regret bounds for Online PWL Optimization under Dispersion.

3. Dispersion in algorithm configuration under realistic assumptions.

4. Differentially private optimization of PWL functions.
Dispersion

The mean adversary concentrated discontinuities near ρ^*. Even very near points had low utility!

Def: Functions $u_1(\cdot), \ldots, u_T(\cdot)$ are (w, k)-dispersed at point ρ if the ℓ_2-ball $B(\rho, w)$ contains discontinuities for at most k of $u_1 \ldots, u_T$.

Each colored line is a discontinuity of one function.

Ball of radius w about ρ contains 2 discontinuities.
$\Rightarrow (w, 2)$-dispersed.

Functions will satisfy a range of dispersion parameters:
Online Optimization with Dispersion
Full Information Regret Bounds

We analyze the classic Exponentially Weighted Forecaster [Cesa-Bianchi and Lugosi ’06]

Algorithm: (Parameter $\lambda > 0$)
At round t, sample ρ_t from $p_t(\rho) \propto \exp(\lambda U_{t-1}(\rho))$.

Theorem: If $u_1, \ldots, u_T : C \rightarrow [0,1]$ are piecewise L-Lipschitz and (w,k)-dispersed
at ρ^*, EWF has regret $O\left(\sqrt{Td \log \frac{1}{w}} + TLw + k\right)$.

Intuition: Any ρ' in $B(\rho^*, w)$ has utility at least $U_T(\rho^*) - TLw - k$. “Many” good points.

When is this a good bound?
If $w = 1/(L\sqrt{T})$ and $k = \tilde{O}(\sqrt{T})$ regret is $\tilde{O}(\sqrt{Td})$.

Note: don’t need to know (w,k) in advance! *assume C has radius 1.
Matching Lower Bound

Theorem: For any algorithm A and T big enough, there are piecewise constant functions $u_1, ..., u_T$ so that A has expected regret at least

$$\Omega\left(\inf_{(w,k)} \sqrt{T d \log\left(\frac{1}{w}\right)} + k\right)$$

Where the infimum is over all (w, k)-dispersion parameters satisfied by $u_1, ..., u_T$ at ρ^*.

Our upper bound in this case is $O\left(\inf_{(w,k)} \sqrt{T d \log\left(\frac{1}{w}\right)} + k\right)$.

More careful construction works even when sublinear regret is possible, and in higher dimensions.
Theorem: There exists a bandit-feedback algorithm A such that, if $u_1, \ldots, u_T : C \rightarrow [0,1]$ are piecewise L-Lipschitz and (w, k)-dispersed at ρ^*, then the expected regret of A is at most $\tilde{O} \left(\sqrt{Td \left(\frac{1}{w} \right)^d} + TLw + k \right)$.

Reduction:
- Let ρ_1, \ldots, ρ_N be a w-net for C (can take $N \approx 1/w^d$).
- N-armed bandit, payout for arm i at round t is $u_i(\rho_t)$.
- Use EXP3 to play this bandit \rightarrow regret is $O(\sqrt{TN \log N})$.
- Ball of radius w about ρ^* must contain some ρ_i.
- Regret of ρ_i compared to ρ^* is at most $TLw + k$.

When is this a good bound?
If $w = T^{d+1}d+2$ and $k = \tilde{O}(T^{d+1}d+2)$, then the regret is $\tilde{O} \left(\frac{T^{d+1}d+1}{T^{d+2}} \sqrt{d3^d + L} \right)$

Matches dependence on T of a lower bound for (globally) Lipschitz functions.
Dispersion in Algorithm Configuration
Smoothed Adversaries and Dispersion

Consider any adversary chooses threshold functions \(u_1, \ldots, u_T : [0,1] \rightarrow [0,1] \):

Location \(\tau \in [0,1] \)
Orientation \(s \in \{ \pm 1 \} \)

Location \(\tau \) corrupted by adding \(Z \sim N(0, \sigma^2) \).

\[
\text{Location } \tau \in [0,1] \\
\text{Orientation } s \in \{ \pm 1 \} \\
0 \quad \tau \quad 1 \\
0 \quad \tau + Z \quad \tau \quad 1
\]

Lemma: For any \(w > 0 \), the functions \(u_1, \ldots, u_T \) are \((w, k)\)-dispersed for \(k = \tilde{O} \left(\frac{T w}{\sigma} + \sqrt{T} \right) \)
w.h.p. For any \(\alpha > \frac{1}{2} \), we can take \(w = T^{\alpha - 1} \sigma \) and \(k = \tilde{O}(T^\alpha) \).

Fix any interval \(I = [a, a + w] \).

Expected number of discontinuities in \(I \) is at most \(T \cdot w / (\sigma \sqrt{2\pi}) \).

Uniform convergence \(\Rightarrow \) all width \(w \) intervals have \(k = \tilde{O}(T w / \sigma + \sqrt{T}) \) discontinuities w.h.p.
Smoothed Adversaries and Dispersion

More generally: adversary is unable to precisely pick some problem parameters (e.g. item values in knapsack).

Challenges:
- Each utility function has multiple dependent discontinuities.
- Distribution of discontinuity location depends on setting.
- How do we generalize to multiple dimensions?

\[\rho = \frac{\ln(v_i/v_j)}{\ln(s_i/s_j)} \]

Dispersion decouples problem-specific smoothness arguments from regret bounds and private utility guarantees.
Dispersion in Knapsack

Problem Instance:

• Given n items
• item i has value v_i and size s_i
• a knapsack with capacity K

Find the most value subset of items that fits.

Algorithm: (Parameter $\rho \in [0, M]$)

Add items in decreasing order of score $\rho (i) = v_i / s_i^\rho$.

Lemma: If $v_i \in [0,1]$, $s_i \in [1,2]$, and the adversary is “smoothed” (e.g. Gaussian noise with std. dev. σ is added to each v_i) then u_1, \ldots, u_T are (w, k)-dispersed with $w = T^{\alpha-1} \sigma$ and $k = \tilde{O}(n^2 T^\alpha)$ for any $\alpha \geq 1/2$ with high probability.

Idea: Discontinuities for items (i,j) across t are independent \rightarrow similar to noisy thresholds.
Union bound over the n^2 pairs of items.

Full information regret $= \tilde{O}(n^2 \sqrt{T})$ Bandit feedback regret $= \tilde{O}(T^{3/2} (\sqrt{\sigma} + n^2))$
Integer Quadratic Programming

IQP: Given $A \in \mathbb{R}^{n \times n}$, solve
\[
\max_x x^T A x = \sum_{i,j} a_{ij} x_i x_j \quad \text{s.t. } x_i \in \{\pm 1\} \text{ for all } i = 1, \ldots, n.
\]

E.g.: Max cut
Given weighted graph $G(V, E)$
Find cut $S, T \subset V$ maximizing weight of edges between S, T.

\[
x_i = \text{which side of cut is vertex } i.
\]

\[
\max \sum_{(i,j) \in E} w_{ij} (1 - x_i x_j) / 2
\]
\[
\text{s.t. } x_i \in \{\pm 1\} \text{ for all } i.
\]
Integer Quadratic Programming

IQP: Given \(A \in \mathbb{R}^{n \times n} \), solve \(\max_{x} x^T A x = \sum_{i,j} a_{ij} x_i x_j \) s.t. \(x_i \in \{ \pm 1 \} \) for all \(i = 1, \ldots, n \).

Algorithmic Approach: SDP + Rounding

1. Associate each binary variable \(x_i \) with a vector \(v_i \in \mathbb{R}^n \). Solve the SDP
 \[
 \max \sum_{i,j} a_{ij} \langle v_i, v_j \rangle \\
 \text{s.t.} \left\| v_i \right\| = 1 \text{ for all } i.
 \]

2. Rounding Procedure [Goemans & Williamson ‘95]
 - Choose a random hyperplane \(h \)
 - Set \(x_i \) to \(+1 \) if \(v_i \) on positive side of \(h \), \(-1\) otherwise.
Integer Quadratic Programming: Outward Rotations

IQP: Given $A \in \mathbb{R}^{n \times n}$, solve

$$\max_x x^T A x = \sum_{i,j} a_{ij} x_i x_j \text{ s.t. } x_i \in \{ \pm 1 \} \text{ for all } i = 1, \ldots, n.$$

Outward Rotation Algorithm:

1. Associate each binary variable x_i with a vector v_i.

$$\max \sum_{i,j} a_{ij} \langle v_i, v_j \rangle$$

s.t. $\|v_i\| = 1$ for all i.

2. Outward Rotations: [Zwick '99]

- For each $i \in [n]$, let $v_i' = [\cos(\rho) \, v_i; \sin(\rho) \, e_i] \in \mathbb{R}^{2n}$.
- Pick random hyperplane h and round as in GW algorithm.

$\rho = 0$: GW algorithm.

$\rho = \pi/2$: Random assignment.

Better performance than GW with $\rho \neq 0$ for MaxCut with light cuts.

Goal: Tune parameter $\rho \in [0, \pi/2]$ to maximize $u_t(\rho) = x^T A x$.

\[[v_i; 0] \quad [0; e_i] \]

\[\rho \]

\[v_i' \quad v_j' \]

\[h \]
Dispersion for Outward Rotations IQP

Think of the random hyperplane as part of the IQP. $u_t(\rho) = u(\rho; A_t, h_t)$.

Lemma: For every sequence of IQPs $A_1, ..., A_T$ and $\alpha \geq 1/2$, the corresponding utility functions $u_1, ..., u_T$ are (w, k)-dispersed with $w = T^{1-\alpha}$ and $k = \tilde{O}(nT^\alpha)$ w.h.p. over the randomly chosen hyperplanes.

Idea:
- The adversary can’t control the random hyperplanes.
- Discontinuities depend on the hyperplanes \rightarrow dispersion for free.

Full Information Regret: $\tilde{O}(n\sqrt{T})$
Bandit feedback regret: $\tilde{O}(nT^{2/3})$

A similar argument holds for s-linear rounding [Feige, Langberg ‘06].
Differentially Private Optimization
Differentially Private Optimization

Goal: Given utility functions u_1, \ldots, u_T where each u_i encodes sensitive information about one individual, find an approximate maximizer of $\frac{1}{T} \sum_t u_t(\rho)$ without violating privacy.

Example:

- Website solves knapsack instances.
- Each instance represents a specific user’s values for some set of items.

 - Suppose a new user joins, and the website decreases ρ.
 - Scores for items were given by v_i/s_i^ρ.

 - We might guess new user highly values large items.
Differential Privacy

Def: Two collections of utility functions S and S' are *neighboring* if they differ on at most one function.

\[S \]
\[
\begin{array}{c}
 u_1 \\
 \vdots \\
 u_i \\
 \vdots \\
 u_T \\
\end{array}
\]

\[S' \]
\[
\begin{array}{c}
 u'_1 \\
 \vdots \\
 u'_i \\
 \vdots \\
 u'_T \\
\end{array}
\]

Def: A randomized alg. A is ϵ-*differentially private* if for any neighboring collections S, S' and any set C of outcomes, we have:

\[
\Pr(A(S) \in C) \leq e^\epsilon \cdot \Pr(A(S') \in C)
\]

This definition of neighboring is good when:
- Each u_i encodes information about an individual or small group.
- Individuals are not present in too many functions.
Exponential Mechanism Utility

We analyze the exponential mechanism. [McSherry and Talwar '07]

Given a collection of functions $S = \{u_1, \ldots, u_T : C \to [0,1]\}$

Algorithm: For $\epsilon > 0$

Sample ρ from $p(\rho) \propto \exp\left(\frac{\epsilon}{2\Delta} \cdot U_S(\rho)\right)$ where $U_S(\rho) = \frac{1}{T} \sum_{i=1}^{N} u_i(\rho)$.

ϵ is the target privacy parameter. $\Delta = 1/N$ is the sensitivity of the average utility.

Theorem: If u_1, \ldots, u_T are L-Lipschitz and (w, k)-dispersed, then with high probability, the exponential mechanism outputs $\hat{\rho}$ such that

$$U_S(\hat{\rho}) \geq \max U_S(\rho) - O\left(\frac{d}{T\epsilon} \log \frac{1}{w} + Lw + \frac{k}{T}\right)$$

Intuition: Exponential mechanism can fail if there are many more bad points than good.

Any ρ' in $B(\rho^*, w)$ has utility at least $U_T(\rho^*) - TLw - k$.

"Many" good points.
Lower bound for Privacy

Theorem: For any ϵ-DP optimizer A there exists a multiset S of T piecewise constant functions from $B(0,1) \subset \mathbb{R}^d$ to $[0,1]$ such that with probability 99%, A outputs an $\Omega \left(\inf_{(w,k)} \frac{d}{N\epsilon} \log \frac{1}{w} + \frac{k}{N} \right)$ suboptimal solution.

Idea:
- Packing argument similar to De [2012].
- Construct many sets of functions whose sets of approximate maximizers are disjoint.
- Every ϵ-DP algorithm must have low utility on at least one.
- Tune the construction so that dispersion parameters match utility lower bound.
Thanks!

1. Dispersion: measuring the concentration of discontinuities.

2. Dispersion-based regret bounds for online optimization.

3. Differentially private utility guarantees for private optimization.

4. Several interesting applications where smoothness implies dispersion.
Correlation Clustering

IQP: Given $A \in \mathbb{R}^{n \times n}$, solve $\max_{\chi} x^T A x = \sum_{i,j} a_{ij} x_i x_j$ s.t. $x_i \in \{\pm 1\}$ for all $i = 1, \ldots, n$.

E.g.: Correlation Clustering

Given weighted graph $G(V, E)$

Find clusters $C_1, C_2 \subset V$ maximizing sum of weights within cluster minus sum of weights between clusters.

$x_i = \text{which cluster } i \text{ belongs to.}$

$max \sum_{(i,j) \in E} w_{ij} x_i x_j$

s.t. $x_i \in \{\pm 1\}$ for all i.