Data Driven Resource Allocation for Distributed Learning

Travis Dick, Mu Li, Venkata Krishna Pillutla, Colin White, Maria-Florina Balcan, Alex Smola
Outline

1. Problem
2. Clustering-based Data Partitioning
3. Summary of results
4. Efficiently Clustering Data
 1. LP-Rounding Approximation Algorithm
 2. Beyond worst-case analysis: k-means++
 3. Efficiency from subsampling
5. Experimental results
 1. Accuracy comparison
 2. Scaling experiments
The problem

• Want to distribute data to multiple machines for efficient machine learning.

• **How should we partition the data?**

• Common idea: randomly partition the data.
 • Clean both in theory and practice, but suboptimal.
Our approach

• Cluster the data and send one cluster to each machine.
• Accurate models tend to be *locally simple* but *globally complex*.
Our approach

• Cluster the data and send one cluster to each machine.
• Accurate models tend to be **locally simple** but **globally complex**.

Each machine learns a model for its *local* data.

• Additional clustering constraints:
 • **Balance:** Clusters should have roughly the same number of points.
 • **Replication:** Each point should be assigned to p clusters.
Summary of results

1. Efficient algorithms with provable worst-case guarantees for balanced clustering with replication.

2. For non-worst case data, we show that common clustering algorithms produce high-quality balanced clusterings.

3. We show how to efficiently partition a large dataset by clustering only a small sample.

4. We empirically show that our technique significantly outperforms baseline methods and strongly scales.
How can we efficiently compute balanced clusterings with replication?
Balanced k-means with replication

Given a dataset S...

- Choose k centers $c_1, \ldots, c_k \in S$,
- Assign each $x \in S$ to p centers: $f_1(x), \ldots, f_p(x) \in \{c_1, \ldots, c_k\}$

- k-means cost: $\sum_{x \in S} \sum_{i=1}^{p} d(x, f_i(x))^2$.
- Balance constraints: Each center has between $\ell |S|$ and $L |S|$ points.
LP-Rounding Algorithm

- Can formulate problem as an integer program (NP Hard to solve exactly).
- The linear program relaxation can be solved efficiently...
 - but gives “fractional” centers and “fractional” assignments.

1. Compute a coarse clustering of the data using a simple greedy procedure.
2. Combine centers within each coarse cluster to form “whole” centers.
3. Find optimal assignments by solving a min-cost flow problem.

Theorem

The LP-rounding algorithm returns a constant factor approximation for balanced k-means clustering with replication when $p \geq 2$ and violates the upper capacities by at most $\frac{p+2}{2}$.

* We have analogous results for k-median and k-center clustering as well.
Beyond worst-case: k-means++

- For non-worst-case data, common algorithms also work well!

- A clustering instance satisfies (α, ε)-approximation stability if all clusterings C with $\text{cost}(C) \leq (1 + \alpha)OPT$ are ε-close to the optimal clustering. [1]

Theorem

k-means++ seeding with greedy pruning [5] outputs a nearly optimal solution for balanced clustering instances satisfying (α, ε)-approximation stability.
Efficiency from Subsampling

Goal: Cluster a small sample of data and use this to partition entire dataset with good guarantees.

Assign new point to the same clusters as its nearest neighbor.

- Automatically handles balance constraints.
- New point costs about the same as neighbor.

Theorem

If the cost on sample is $\leq r \cdot OPT$, then the cost of the extended clustering is $\leq 4r \cdot OPT + O(rpD^2\epsilon + p\alpha + r\beta)$

- D is the diameter of the dataset
- α, β measure how representative the sample is, and go to zero as sample size grows.
How well does our method perform?
Experimental Setup

Goal: Measure the difference in accuracy from different partitioning methods.

1. Partition the data using one of the partitioning methods.
2. Learn a model on each machine.
3. Report the test accuracy.

• Repeat for multiple values of \(k \)
 • Larger values of \(k \) are more parallelizable.
Baseline Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Fast?</th>
<th>Balanced?</th>
<th>Locality?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Balanced Partition Tree (kd-tree)</td>
<td></td>
<td></td>
<td>1/2</td>
</tr>
<tr>
<td>Locality Sensitive Hashing</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Our Method</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Experimental Evaluation

- **MNIST-8M**
 - Accuracy graphs for different datasets:
 - CIFAR10_IN3C
 - CIFAR10_IN4D
 - CTR

- Graphs show the accuracy of different clustering methods (
 - **ours**, **random**, **bpt**, **lsh**) as a function of the number of clusters (k).

- The datasets used are:
 - MNIST-8M
 - CIFAR10_IN3C
 - CIFAR10_IN4D
 - CTR

- The accuracy values are as follows:
 - MNIST-8M: 0.77, 0.775, 0.78, 0.785, 0.79, 0.795, 0.8, 0.85, 0.9
 - CIFAR10_IN3C: 0.65, 0.7, 0.75, 0.8, 0.85, 0.9
 - CIFAR10_IN4D: 0.67, 0.68, 0.69, 0.7, 0.71, 0.72, 0.73
 - CTR: 0.58, 0.59, 0.6, 0.61, 0.62, 0.63, 0.64
Strong Scaling

• For a fixed dataset we evaluate the running time of our method using 8, 16, 32, or 64 machines.
• We report the speedup over using 8 machines.
• For all datasets, doubling the number of workers reduces running time by a constant fraction (i.e., our method strongly scales).
Conclusion

• Propose using balanced clustering with replication for data partitioning in DML.
• LP-Rounding algorithm with worst-case guarantees.
• Beyond worst-case analysis for k-means++.
• Efficiently partition large datasets by clustering a sample.
• Empirical support for utility of clustering-based partitioning.
• Empirically demonstrated strong scaling.
Thanks!
Extra Slides (You’ve gone too far!)
Capacitated k-means with replication

Choose k centers and assign every point to p centers so that points are "close" to their centers and each cluster is roughly the same size.

As an Integer Program:

- Number the points 1 through n.
- Variable $y_i = \text{"1 if point } i \text{ is a center, 0 otherwise."}$
- Variable $x_{i,j} = \text{"1 if point } j \text{ is assigned to point } i \text{."}$

Minimize $\sum_{i,j} x_{i,j} d(i,j)^2$

Subject to:

- $\sum_i x_{i,j} = p$ for all points j (p assignments)
- $\sum_i y_i = k$ (k centers)
- $\ell ny_i \leq \sum_j x_{i,j} \leq L ny_i$ for all points i (balancedness)
- $x_{i,j}, y_i \in \{0,1\}$ for all points i, j.

Linear Program Relaxation: $x_{i,j}, y_i \in [0,1]$

xs are “fractional assignment”, ys are “fractional centers”
LP-Rounding algorithm

1. Solve the LP to get fractional ys and xs.
2. Compute a very coarse clustering of the points using a greedy procedure.
3. Within each coarse cluster, round the ys to 0 or 1.
4. Find the optimal integral xs by solving a min-cost flow.
LP-Rounding algorithm

1. Solve the LP to get fractional ys and xs.
2. Compute a very coarse clustering of the points using a greedy procedure.
3. Within each coarse cluster, round the ys to 0 or 1.
4. Find the optimal integral xs by solving a min-cost flow.
LP-Rounding algorithm

1. Solve the LP to get fractional ys and xs.
2. Compute a very coarse clustering of the points using a greedy procedure.
3. Within each coarse cluster, round the ys to 0 or 1.
4. Find the optimal integral xs by solving a min-cost flow.
LP-Rounding algorithm

1. Solve the LP to get fractional ys and xs.
2. Compute a very coarse clustering of the points using a greedy procedure.
3. Within each coarse cluster, round the ys to 0 or 1.
4. Find the optimal integral xs by solving a min-cost flow.
LP-Rounding algorithm

1. Solve the LP to get fractional ys and xs.
2. Compute a very coarse clustering of the points using a greedy procedure.
3. Within each coarse cluster, round the ys to 0 or 1.
4. Find the optimal integral xs by solving a min-cost flow.

![Diagram](image)
LP-Rounding Algorithm

1. Solve the LP to get fractional ys and xs.
2. Compute a very coarse clustering of the points using a greedy procedure.
3. Within each coarse cluster, round the ys to 0 or 1.
4. Find the optimal integral xs by solving a min-cost flow.

Theorem

The LP-rounding algorithm returns a constant factor approximation for capacitated k-means clustering with replication when $p > 1$ and violates the upper capacities by at most $\frac{p+2}{2}$.

* We have analogous results for k-means and k-center clustering as well.