Recursive Functions

Here is a recursive function to find n! (factorial).

def fact(n):
if n ==
return 1
else:
return n * fact(n - 1)

To find fact (4), we simply write out each step in the recursive computation:

fact(4)

4 * fact(3)

4 * 3 * fact(2)

4 * 3 %2 * fact(1)

4 *3*2*1* fact(0)
4*3*F2*]*]

Exercise 1

def m(a, b):
if a < b:
return a
else:
return m(a - b, b)
Findm (3, 5).
Findm (7, 5).

Findm (14, 5).
What does m do?

Exercise 2

def gcd(a, b):

if b == 0:
return a
else:

return gcd(b, a % b)

Use this definition to find gcd (15, 9).
Now find gcd (13, 8).

Exercise 3

The function power should compute the value of 5", where 7 is any non-negative
integer. Fill in the blanks below, so that power behaves correctly.

def power (b, n):

1f n ==

return

else:
return * power (,)

Hint: How does knowing the value of 3° help you find the value of 3'%?

Exercise 4

def double (n):

if n == 0:
return 1
else:

return double(n - 1) + double(n - 1)

Find double (3).

What does this function do?

Can you modify the definition of double so that it computes the same result with a
single recursive call?

Exercise 5

def f(x):
if x == 1:
return 1
else:

if x $ 2 == 0:

return f(x / 2)
else:

return £(3 * x + 1)

Find £ (3).
Find £ (7).
Can you find a positive integer x so that £ (x) that results in an infinite loop?

