Simulation: Overview and Taxonomy

Jeffery von Ronne

Department of Computer Science Carnegie Mellon University

April 16, 2012

Jeffery von Ronne (CMU)

15-110 Unit 12B

April 16, 2012

1/12

Computer Simulation

Outline

- Computer Simulation
- Categorizing Simulations
- A Couple Examples

 Jeffery von Ronne (CMU)
 15-110 Unit 12B
 April 16, 2012
 2 / 12

Simulation

simulation The imitative representation of the functioning of one system or process by means of the functioning of another [i.e., a computer program]. (Merriam Webster)

- often applied to dynamic processes
- method of understanding and predicting the behavior of real processes
- based on mathematical models (ignore some details)
 - often include many interacting components
- distinct from but often connected to visualization
- fundamental to research in many disciplines (e.g., Computational Science)

Jeffery von Ronne (CMU)

15-110 Unit 12B

April 16, 2012

3 / 12

Categorizing Simulations

Outline

- Computer Simulation
- Categorizing Simulations
- A Couple Examples

A Taxonomy of Simulation

How can we categorize simulations?

Dimensions

- timing of change
- randomness
- data organization

Jeffery von Ronne (CMU)

15-110 Unit 12B

April 16, 2012

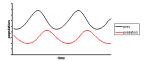
5 / 12

Categorizing Simulations

Timing

How does the simulation reflect the passage of time?

- steady-state
- dynamic
 - continuous
 - discrete
 - time-stepped
 - event-driven


Wikimedia: Rabbit in montana.jpg (left), and Coyote by Rebecca Richardson.jpg (right)

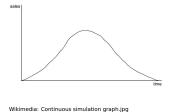
steady state

- ignores time, finds balance
- E.g.: 5 coyote, 200 rabits

dynamic

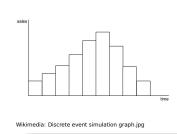
system evolves over time

Wikimedia Commons: Volterra lotka dynamics.PNG


Categorizing Simulations

Timing

How does the simulation reflect the passage of time?


- steady-state
- dynamic
 - continuous
 - discrete
 - time-stepped
 - event-driven

Continous

changes occur continuously (time is a real number)

Discrete

changes at discrete points in time (time is an integer)

Jeffery von Ronne (CMU)

15-110 Unit 12B

April 16, 2012

6/12

Categorizing Simulations

Timing

How does the simulation reflect the passage of time?

- steady-state
- dynamic
 - continuous
 - discrete
 - time-stepped
 - event-driven

time-stepped

Time intervals are regular. The simulation is organized with loop, such that each iteration represents the passing of a fixed amount of time.

event-driven

Time intervals are irregular.
Updates are associated with
events, which are scheduled in
advanced. Usually implemented
with a priority queue.

Example: http://www.youtube.com/watch?v=Y8XMP_44PRU

 Jeffery von Ronne (CMU)
 15-110 Unit 12B
 April 16, 2012
 6 / 12

Randomness

Simulations may be deterministic or stochastic.

Deterministic

The result of the simulation depends only on the input. Some deterministic systems are chaotic and produce unpredictable results.

Stochastic

The result of the simulation is based on random values chosen according to some distribution.

Jeffery von Ronne (CMU)

15-110 Unit 12B

April 16, 2012

7 / 12

Categorizing Simulations

Data Organization

Simulations of physical phenomena tend to be either *grid-based* or *meshfree*.

grid-based (a.k.a. stencil codes)

- Data is associated with discrete cells at particular locations in a grid.
- Updates occur to each cell based on its previous state and those of its neighbors.

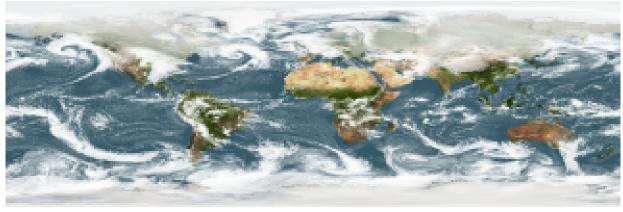
meshfree

- Data is associated with individual particles.
- Updates look at each pair of particles.
- More expensive than grid-based.

Outline

- Computer Simulation
- Categorizing Simulations
- A Couple Examples

Jeffery von Ronne (CMU)


15-110 Unit 12B

April 16, 2012

9/12

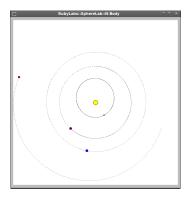
A Couple Examples

Climate Modeling

 $NASA/Goddard\ Space\ Flight\ Center\ Scientific\ Visualization\ Studio\ --GEOS-5\ Modeled\ Clouds\ --http://svs.gsfc.nasa.gov/goto?3723$

Categorization

Time-stepped or event-driven?


• 30 minutes time steps (mostly)

Grid-based or meshfree?

5-km per grid cell

 Jeffery von Ronne (CMU)
 15-110 Unit 12B
 April 16, 2012
 10 / 12

N-Body Simulation

time-stepped

or event-driven?

grid-based or meshfree?

irb commands

```
include SphereLab
b = make_system(:solarsystem)
view_system(b[0..4], :dash => 1)
365.times {update_system(b, 86459)}
```

update code

```
def step_system(bodies, dt)
  nb = bodies.length
  for i in 0..(nb-1)
     for j in (i+1)..(nb-1)
        Body.interaction(bodies[i], bodies[j])
     end
end
bodies.each do |b|
     b.move(dt)
     b.clear_force
end
```

Jeffery von Ronne (CMU)

15-110 Unit 12B

April 16, 2012

11 / 12

A Couple Examples

Summary

- a computer simulation is a computation process that models some other system
- usually applied to dynamic processes
- discrete simulation:
 - time-stepped
 - event-drivent
- deterministic vs. stochastic
- grid-based vs. meshfree