
1

1

Trees

Heaps & Other Trees

6B

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

2

Heap

  A min-heap is a binary tree such that
 - the data contained in each node is less than
(or equal to) the data in that node’s children.
 - the binary tree is complete

  A max-heap is a binary tree such that
 - the data contained in each node is greater than
(or equal to) the data in that node’s children.

 - the binary tree is complete

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

2

3

Is it a min-heap?

5

14 23

20 16 48 62

53 71

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

4

Is it a min-heap?

5

14 23

12 26 34 20

24 35

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

3

5

Is it a min-heap?
5

14 23

32 87 90

50 64 53

41

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

6

Using heaps

What are min-heaps good for?
(What operation is extremely fast when
using a min-heap?)

The difference in level between any two leaves
in a heap is at most what?

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

4

7

Storage of a heap

  Use an array to hold the data.
  Store the root in position 1.

  We won’t use index 0 for this implementation.
  For any node in position i,

  its left child (if any) is in position 2i
  its right child (if any) is in position 2i + 1
  its parent (if any) is in position i/2

 (use integer division)

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

8

0 1 2 3 4 5 6 7 8 9 10
5 14 23 32 41 87 90 50 64 53

5

14 23

32 87 90

50 64 53

41

Storage of a heap

For node at i:
Left child is at 2i
Right child is at 2i12
Parent is at i/2

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

5

9

Inserting into a min-heap

  Place the new element in the next available
position in the array.

  Compare the new element with its parent. If the
new element is smaller, than swap it with its
parent.

  Continue this process until either
 - the new element’s parent is smaller than or
equal to the new element, or
 - the new element reaches the root (index 0 of
the array)

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

10

Inserting into a min-heap
Insert 43

43

5

14 23

32 87 90

50 64 53

41

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

6

11

Inserting into a min-heap
Insert 18

18 43

5

14 23

32 87 90

50 64 53

41 18

87

18

23

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

12

Inserting into a min-heap
Insert 2

2 87 43

5

14 18

32 23 90

50 64 53

41 2

23

2

18

2

5

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

7

13

Removing from a heap

  Place the root element in a variable to
return later.

  Remove the last element in the deepest
level and move it to the root.

  While the moved element has a value
greater than at least one of its children,
swap this value with the smaller-valued
child.

  Return the original root that was saved.

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

14

Removing from a min-heap
Remove min

53

5

14 23

32 87 90

50 64

41

returnValue 5 53

53

14

53

32

53

50

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

8

15

Removing from a min-heap
Remove min

64

14

32 23

50 87 90

53

41

returnValue 14 64

64

23

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

16

Efficiency of heaps

Assume the heap has N nodes.
Then the heap has log2(N+1) levels.
  Insert

 Since the insert swaps at most once per level, the order
of complexity of insert is O(log N)

  Remove
 Since the remove swaps at most once per level, the
order of complexity of remove is also O(log N)

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

9

17

Priority Queues

  A priority queue PQ is like an ordinary queue except
that we can only remove the “maximum” element at
any given time (not the “front” element necessarily).

  If we use an array to implement a PQ,
 enqueue is O(______) dequeue is O(______)

  If we use a sorted array to implement a PQ
 enqueue is O(______) dequeue is O(______)

  If we use a max-heap to implement a PQ
 enqueue is O(______) dequeue is O(______)

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

18

General Trees

  A general tree consists of nodes that
can have any number of children.

  Implementation
using a binary tree:

Each node has 2 fields:
firstChild, nextSibling

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

10

19

Balanced Trees

  Binary search trees can become quite
unbalanced, with some branches being much
longer than others.
  Searches can become O(n) operations

  These variants allow for searching while
keeping the tree (nearly) balanced:
  2-3-4 trees
  Red-black trees

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

20

2-3-4-trees

  A 2-3-4 Tree is a tree in which each internal
node (nonleaf) has two, three, or four children,
and all leaves are at the same depth.
  A node with 2 children is called a "2-node".
  A node with 3 children is called a "3-node".
  A node with 4 children is called a "4-node".

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

11

21

Sample 2-3-4-tree

30 50 70

10 15 20 80 90 40 60

Insert 100:

30

10 15 20 80 90 100 40 60

50

70

whenever a 4-node
is encountered on the
way to the insert point,
it is split

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

22

Red-Black Trees

  A red-black tree has the advantages of a
2-3-4 tree but requires less storage.

  Red-black tree rules:
 - Every node is colored either red or black.
 - The root is black.
 - If a node is red, its children must be black.
 - Every path from a node to a null link must

 contain the same number of black nodes.
15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

12

23

2-3-4 Trees vs. Red-Black Trees

x

<x >x

x

<x >x

"2-node" in a 2-3-4 tree equivalent red-black tree configuration

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

24

2-3-4 Trees vs. Red-Black Trees

x y

<x >x
<y >y

y x or

<x >x
<y

>y <x

>x
<y >y

x y

"3-node" in a 2-3-4 tree equivalent red-black tree configurations

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

13

25

2-3-4 Trees vs. Red-Black Trees

x y z

<x >x
<y

>y
<z >z

y

<x >x
<y

>y
<z >z

"4-node" in a 2-3-4 tree equivalent red-black tree configuration

x z

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

26

Sample Red-Black Tree

30 50 70

10 15 20 80 90 40 60

Original 2-3-4 tree:

50

Equivalent red-black tree: 30

15 60 40 80

70

10 20 90
15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

14

27

Rotation
  Insert 85:

violates
red-black tree
rules

10 20

30 70

90

85

50

15 40 60 80

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

28

Rotation (cont'd)

70

 rotate right  rotate left

See textbook for additional cases where rotation is required.

70 70

90

90

90
85

85 80

60 60 60 80 80 85

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

15

29

Additional
Self-Balancing Trees

  AVL Trees
  2-3 Trees
  B-Trees
  Splay Trees

  (co-invented by Prof. Danny Sleator at CMU)

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

