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Trees 

Heaps & Other Trees  

6B 
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Heap 

  A min-heap is a binary tree such that  
 - the data contained in each node is less than 
(or equal to) the data in that node’s children. 
 - the binary tree is complete 

  A max-heap is a binary tree such that  
 - the data contained in each node is greater than 
(or equal to) the data in that node’s children. 

 - the binary tree is complete 
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Is it a min-heap? 

5 

14 23 

20 16 48 62 

53 71 
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Is it a min-heap? 

5 

14 23 

12 26 34 20 

24 35 
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Is it a min-heap? 
5 

14 23 

32 87 90 

50 64 53 

41 
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Using heaps 

What are min-heaps good for?  
(What operation is extremely fast when  
using a min-heap?)  

The difference in level between any two leaves 
in a heap is at most what? 
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Storage of a heap 

  Use an array to hold the data. 
  Store the root in position 1.  

  We won’t use index 0 for this implementation. 
  For any node in position i,  

  its left child (if any) is in position 2i 
  its right child (if any) is in position 2i + 1 
  its parent (if any) is in position i/2  

 (use integer division) 
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0 1 2 3 4 5 6 7 8 9 10 
5 14 23 32 41 87 90 50 64 53 

5 

14 23 

32 87 90 

50 64 53 

41 

Storage of a heap 

For node at i: 
Left child is at 2i 
Right child is at 2i12 
Parent is at i/2 
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Inserting into a min-heap 

  Place the new element in the next available 
position in the array. 

  Compare the new element with its parent. If the 
new element is smaller, than swap it with its 
parent.  

  Continue this process until either 
 - the new element’s parent is smaller than or 
equal to the new element, or 
 - the new element reaches the root (index 0 of 
the array) 
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Inserting into a min-heap 
Insert 43 

43 

5 

14 23 

32 87 90 

50 64 53 

41 
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Inserting into a min-heap 
Insert 18 

18 43 

5 

14 23 

32 87 90 

50 64 53 

41 18 

87 

18 

23 
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Inserting into a min-heap 
Insert 2 

2 87 43 

5 

14 18 

32 23 90 

50 64 53 

41 2 

23 

2 

18 

2 

5 
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Removing from a heap 

  Place the root element in a variable to 
return later. 

  Remove the last element in the deepest 
level and move it to the root. 

  While the moved element has a value 
greater than at least one of its children, 
swap this value with the smaller-valued 
child. 

  Return the original root that was saved.  
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Removing from a min-heap 
Remove min 

53 

5 

14 23 

32 87 90 

50 64 

41 

returnValue   5 53 

53 

14 

53 

32 

53 

50 
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Removing from a min-heap 
Remove min 

64 

14 

32 23 

50 87 90 

53 

41 

returnValue   14 64 

64 

23 
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Efficiency of heaps 

Assume the heap has N nodes. 
Then the heap has log2(N+1) levels. 
  Insert 

 Since the insert swaps at most once per level, the order 
of complexity of insert is O(log N) 

  Remove 
 Since the remove swaps at most once per level, the 
order of complexity of remove is also O(log N) 
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Priority Queues 

  A priority queue PQ is like an ordinary queue except 
that we can only remove the “maximum” element at 
any given time (not the “front” element necessarily). 

  If we use an array to implement a PQ,  
 enqueue is O(______)   dequeue is O(______) 

  If we use a sorted array to implement a PQ 
 enqueue is O(______)   dequeue is O(______) 

  If we use a max-heap to implement a PQ 
 enqueue is O(______)   dequeue is O(______) 
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General Trees 

  A general tree consists of nodes that  
can have any number of children. 

  Implementation 
using a binary tree: 

Each node has 2 fields: 
firstChild, nextSibling 
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Balanced Trees 

  Binary search trees can become quite 
unbalanced, with some branches being much 
longer than others. 
  Searches can become O(n) operations   

  These variants allow for searching while 
keeping the tree (nearly) balanced: 
  2-3-4 trees 
  Red-black trees 
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2-3-4-trees 

  A 2-3-4 Tree is a tree in which each internal 
node (nonleaf) has two, three, or four children, 
and all leaves are at the same depth. 
  A node with 2 children is called a "2-node". 
  A node with 3 children is called a "3-node". 
  A node with 4 children is called a "4-node". 
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Sample 2-3-4-tree  

30 50 70 

10 15 20 80  90 40 60 

Insert 100: 

30 

10 15 20 80  90  100 40 60 

50 

70 

whenever a 4-node 
is encountered on the 
way to the insert point, 
it is split 
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Red-Black Trees 

  A red-black tree has the advantages of a  
2-3-4 tree but requires less storage. 

  Red-black tree rules: 
 - Every node is colored either red or black. 
 - The root is black. 
 - If a node is red, its children must be black. 
 - Every path from a node to a null link must 

 contain the same number of black nodes. 
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2-3-4 Trees vs. Red-Black Trees 

x 

<x >x 

x 

<x >x 

"2-node" in a 2-3-4 tree equivalent red-black tree configuration 

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA 

24 

2-3-4 Trees vs. Red-Black Trees 

x  y 

<x >x 
<y >y 

y x or 

<x >x 
<y 

>y <x 

>x 
<y >y 

x y 

"3-node" in a 2-3-4 tree equivalent red-black tree configurations 

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA 



13 

25 

2-3-4 Trees vs. Red-Black Trees 

x  y  z 

<x >x 
<y 

>y 
<z >z 

y 

<x >x 
<y 

>y 
<z >z 

"4-node" in a 2-3-4 tree equivalent red-black tree configuration 

x z 
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Sample Red-Black Tree 

30 50 70 

10 15 20 80  90 40 60 

Original 2-3-4 tree: 

50 

Equivalent red-black tree: 30 

15 60 40 80 

70 

10 20 90 
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Rotation 
  Insert 85: 

violates 
red-black tree 
rules 

10 20 

30 70 

90 

85 

50 

15 40 60 80 
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Rotation (cont'd) 

70 

 rotate right  rotate left 

See textbook for additional cases where rotation is required. 

70 70 

90 

90 

90 
85 

85 80 

60 60 60 80 80 85 
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Additional  
Self-Balancing Trees 

  AVL Trees 
  2-3 Trees 
  B-Trees 
  Splay Trees  

  (co-invented by Prof. Danny Sleator at CMU) 
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