

Cryptography

- Cryptography is the process of encoding and decoding messages so that only intended recipients can read the messages.
- Security is extremely important in the age of the Internet.
- Tampering
- Eavesdropping
- Theft
- Impersonation

Process of Encryption

Properties of Encryption

- Let $M=$ the original message.
- $\mathrm{H}=\operatorname{Encr}(\mathrm{M})$
- $\mathrm{M}=\operatorname{Decr}(\mathrm{H})$
- $\mathrm{M}=\operatorname{Decr}(\operatorname{Encr}(\mathrm{M}))$
- $\mathrm{H}=\operatorname{Encr}(\operatorname{Decr}(\mathrm{H}))$
- Encr is the inverse function of Decr

Example: Caesar cipher

- Encr: Take each letter in the message and replace it with the letter i positions ahead in the alphabet (wrapping around to 'A' if necessary).
- Decr: Take each letter in the ciphertext and replace it with the letter i positions before in the alphabet (wrapping around to ' Z ' if necessary)

ABCDEFGHIJKLMNOPQRSTUVWXYZ

- Message: COMPUTATION i = 10
- Ciphertext: MYWZEDKDSYX What if you don't know i to decode the message?

Secure Encryption

- The Caesar cipher is very easy to break.
- Why?
- We need an encryption function (Encr) that is easy and fast to compute.
- We need a decryption function (Decr) that is very difficult to compute without knowing what it is.
- Another way to look at it: Decr should be a function that would take a very, very long time to figure out by brute force.

Enigma Machine

- Used by the Germans in World War II to encode messages.
- Consisted of 3 rotors and a reflector.
- After each letter is encoded, the first rotor is rotated one position.
- If the first rotor rotates a full round, the second rotates one position also, etc.
- The same letter encoded twice won't yield the same result.

Enigma Machine

images from Wikipedia

Public-key Systems

- Each person P has his or her own Encr $_{P}$ function and his or her own Decr $_{p}$ function.
- For each person P, the Encr $_{P}$ function is made public for all to use. Anyone who wants to send a message to P uses the Encr $_{P}$ function to encode it.
- Once the encoded message is sent, person P uses the $\mathrm{Decr}_{\mathrm{P}}$ function to decode it. Decr ${ }_{P}$ is kept private and only person P knows it.
- It is very important that no one else can determine how the private Decr $_{p}$ works given the public Encr $_{p}$.
- Deducing Decr $_{p}$ should be computationally infeasible.

Electronic Signatures

- Alice sends a message to Bob using Bob's public encoding procedure.
- "I think Carol is good. - Alice"
- Bob decodes the message using his private decoding procedure. He then adds an additional message to Alice's message.
- "I think Carol is good for nothing. - Alice"
- He then sends this message (encoded) to Carol.
- Carol decodes it and calls up Alice to yell at her.

Commutative Functions

- We need to encode the signature as a function of the message.
- This way, when Bob alters the message, the signature won't match anymore.
- To do this, we must have an encryption and decryption scheme that is commutative.
- $\operatorname{Decr}(\operatorname{Encr}(\mathrm{M}))=\mathrm{M}$ and $\operatorname{Encr}(\operatorname{Decr}(\mathrm{M}))=\mathrm{M}$

Signing Securely

- Alice takes her message M and "signs" it by using her private decryption function to generate $S=\operatorname{Decr}_{A}(M)$.
- Alice then encrypts S using Bob's public function to get $\mathrm{T}=\operatorname{Encr}_{\mathrm{B}}(\mathrm{S})$ and sends T to Bob.
- Bob receives T and decodes it using his private function $\operatorname{Decr}_{\mathrm{B}}(\mathrm{T})=\operatorname{Decr}_{\mathrm{B}}\left(\operatorname{Encr}_{\mathrm{B}}(\mathrm{S})\right)=\mathrm{S}$.
- Note: S is still unreadable by Bob.
- Bob then uses all of his friends' public encryption functions and finds that Alice's public encryption function yields a readable message: $\operatorname{Encr}_{A}(\mathrm{~S})=$ $\operatorname{Encr}_{A}\left(\operatorname{Decr}_{A}(M)\right)=M$.

Signing Securely

Signing Securely

- Bob tries to alter Alice's message to make M'.
- But he can't sign it as Alice since he would need Alice's private Decr $_{\mathrm{A}}$ function.
- But Bob can send Alice's original message to Carol since he has S (the signed message before its decoded).
- Carol will then think that Alice, rather than Bob, sent her the message when she decodes it.

The RSA Cryptosystem

- Developed around 1977 for preventing outside parties from reading encrypted messages.
- Alice generates two extremely large prime numbers p and q. (Each number might be 1024 bits.) Let $n=p q$.
- Let $r=(p-1)(q-1)$. Alice chooses e such that e and r are relatively prime (have no factors in common).
- She computes d such that de-1 is evenly divisible by r.
- $\quad \mathrm{H}=\operatorname{Encr}_{A}(\mathrm{M})=\mathrm{Me}$ modulo $\mathrm{n} \longleftarrow$ Alice gives out n and e
- as the public key.
- $M=\operatorname{Decr}_{A}(H)=H^{d}$ modulo $n \longleftarrow$ Alice does not give out d.

RSA Example

http://en.wikipedia.org/wiki/RSA
Choose 2 prime numbers:

$$
p=61, q=53
$$

Compute n:
$n=p q=3233$
Compute r:
$r=(p-1)(q-1)=3120$
Choose e>1 such that e and r are relatively prime: $\quad e=17$
Choose d such that
de -1 is evenly divisible by r : $\quad d=2753$
$\left(2753^{*} 17-1\right) / 3120=15$
PUBLIC KEY: $\mathrm{H}=\mathrm{M}^{\mathrm{e}}$ modulo n
PRIVATE KEY: $\mathrm{M}=\mathrm{H}^{\mathrm{d}}$ modulo n
Example: \quad Encoding $M=123: \quad H=123^{17}$ modulo $3233=855$

$$
\text { Decoding } \mathrm{H}=855: \quad \mathrm{M}=855^{2753} \text { modulo } 3233=123
$$

Summary

- The RSA Algorithm has not been cracked.
- There are no known ways to factor n into p and q in polynomial time.
- If we knew a way to factor n into p and q quickly, we could compute d and then decode messages meant for Alice only.
- Security on the Internet is one of the big research areas in computer science.
- Electronic commerce
- National security

Look for https: / / on the web.

17

