Applications

9A

Cryptography

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

1

Cryptography

- Cryptography is the process of encoding and decoding messages so that only intended recipients can read the messages.
- Security is extremely important in the age of the Internet.
 - Tampering
 - Eavesdropping
 - Theft
 - Impersonation

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

Properties of Encryption

- Let M = the original message.
- H = Encr(M)
- M = Decr(H)
- M = Decr(Encr(M))
- H = Encr(Decr(H))
- Encr is the inverse function of Decr

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

- Encr: Take each letter in the message and replace it with the letter i positions ahead in the alphabet (wrapping around to 'A' if necessary).
- Decr: Take each letter in the ciphertext and replace it with the letter i positions before in the alphabet (wrapping around to 'Z' if necessary)

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Message: COMPUTATION i = 10

Ciphertext: MYWZEDKDSYX What if you don't know i to decode the message?

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

5

Secure Encryption

- The Caesar cipher is very easy to break.
 - Why?
- We need an encryption function (Encr) that is easy and fast to compute.
- We need a decryption function (Decr) that is very difficult to compute without knowing what it is.
 - Another way to look at it: Decr should be a function that would take a very, very long time to figure out by brute force.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

Enigma Machine

- Used by the Germans in World War II to encode messages.
- Consisted of 3 rotors and a reflector.
- After each letter is encoded, the first rotor is rotated one position.
- If the first rotor rotates a full round, the second rotates one position also, etc.
- The same letter encoded twice won't yield the same result.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

7

Enigma Machine

images from Wikipedia

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

8

- Each person P has his or her own Encr_P function and his or her own Decr_P function.
- For each person P, the Encr_P function is made <u>public</u> for all to use. Anyone who wants to send a message to P uses the Encr_P function to encode it.
- Once the encoded message is sent, person P uses the Decr_P function to decode it. Decr_P is kept <u>private</u> and only person P knows it.
- It is very important that no one else can determine how the private Decr_P works given the public Encr_P.
 - Deducing Decr_p should be computationally infeasible.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

9

Electronic Signatures

- Alice sends a message to Bob using Bob's public encoding procedure.
 - "I think Carol is good. Alice"
- Bob decodes the message using his private decoding procedure. He then adds an additional message to Alice's message.
 - "I think Carol is good for nothing. Alice"
- He then sends this message (encoded) to Carol.
- Carol decodes it and calls up Alice to yell at her.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

- We need to encode the signature as a function of the message.
- This way, when Bob alters the message, the signature won't match anymore.
- To do this, we must have an encryption and decryption scheme that is <u>commutative</u>.
 - Decr(Encr(M)) = M and Encr(Decr(M)) = M

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

11

Signing Securely

- Alice takes her message M and "signs" it by using her private <u>decryption</u> function to generate S = Decr_A(M).
- Alice then encrypts S using Bob's public function to get T = Encr_B(S) and sends T to Bob.
- Bob receives T and decodes it using his private function Decr_B(T) = Decr_B(Encr_B(S)) = S.
 - Note: S is still unreadable by Bob.
- Bob then uses all of his friends' public encryption functions and finds that Alice's public encryption function yields a readable message: Encr_A(S) = Encr_A(Decr_A(M)) = M.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

Signing Securely

- Bob tries to alter Alice's message to make M'.
- But he can't sign it as Alice since he would need Alice's private Decr_A function.
- But Bob can send Alice's original message to Carol since he has S (the signed message before its decoded).
- Carol will then think that Alice, rather than Bob, sent her the message when she decodes it.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

The RSA Cryptosystem

- Developed around 1977 for preventing outside parties from reading encrypted messages.
- Alice generates two extremely large prime numbers p and q. (Each number might be 1024 bits.) Let n = pq.
- Let r = (p-1)(q-1). Alice chooses e such that e and r are relatively prime (have no factors in common).
- She computes d such that de-1 is evenly divisible by r.
- $H = Encr_A(M) = M^e \text{ modulo } n \leftarrow Alice gives out n and e as the public key.}$
- $M = Decr_A(H) = H^d \text{ modulo } n \blacktriangleleft Alice does not give out d.$

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

15

RSA Example

http://en.wikipedia.org/wiki/RSA

Choose 2 prime numbers: p = 61, q = 53Compute n: n = pq = 3233

Compute r: r = (p-1)(q-1) = 3120

Choose e > 1 such that

e and r are relatively prime: e = 17

Choose d such that

de - 1 is evenly divisible by r: d = 2753

(2753*17-1)/3120 = 15

PUBLIC KEY: H = Me modulo n PRIVATE KEY: M = Hd modulo n

Example: Encoding M = 123: $H = 123^{17}$ modulo 3233 = 855

Decoding H = 855: $M = 855^{2753}$ modulo 3233 = 123

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

Summary

- The RSA Algorithm has not been cracked.
 - There are no known ways to factor n into p and q in polynomial time.
 - If we knew a way to factor n into p and q quickly, we could compute d and then decode messages meant for Alice only.
- Security on the Internet is one of the big research areas in computer science.
 - Electronic commerce
 - National security

Look for https://
on the web.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA