
1

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 1

Concurrency

Multitasking &
Operating Systems

8C

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 2

Operating Systems & Multitasking

 Multitasking - The coordination of several
computational processes on one processor.

 An operating system (OS) is the system software
responsible for the direct control and management
of hardware and basic system operations.

 An OS provides a foundation upon which to run
application software such as word processing
programs, web browsers, etc.

from Wikipedia.org



2

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 3

Operating System "Flavors"

 UNIX
 System V, BSD, Linux
 Proprietary: Solaris, Mac OS X

 Windows
 Windows NT
 Windows 2000
 Windows XP
 Windows Vista (2007)

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 4

Multitasking

 Each (un-blocked) application runs for a very short
time on the computer's processor and then another
process runs, then another...

 This is done at such a fast rate that it appears to the
computer user that all applications are running at
the same time.
 How do actors appear to move in a motion picture?



3

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 5

Critical Section

 A critical section is a section of computer
code that must only be executed by one
process or thread at a time.

 Examples:
 A printer queue receiving a file to be printed
 Code to set a seat as reserved
 Web server that generates and returns a web

page showing current registration in course

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 6

A Critical Section
Cars may not make turns
through this intersection.
They may only proceed
straight ahead. When a car
stops at this intersection, it
can proceed straight
ahead if there is no car to its
left and no car to its right.
Otherwise it must wait
some random amount of
seconds and then check
again to see if it's safe
to proceed. If not, it waits
again, and so on.



4

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 7

Shared Resources

 memory
 tape drives
 disk drives
 printers
 communication ports
 input devices (keyboard, mouse)

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 8

Deadlock

 Deadlock is the condition when two or more
processes are all waiting for some shared
resource that other processes of the group hold,
causing all processes to wait forever without
proceeding.

 How can deadlock occur at the intersection with
the 4-way stop?



5

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 9

Dining Philosophers Problem

 Each philosopher thinks for a while, then picks up
his left fork, then picks up his right fork, then eats,
then puts down his left fork, then puts down his right
fork, thinks for a while...
 We assume here that each philosopher thinks and eats

for random times, and a philosopher cannot be
interrupted while he picks up or puts down a single fork.

 Each fork models a "resource" on a computer
controlled by an OS.

 Original problem proposed by Dijkstra

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 10

Dining Philosophers Problem

 There are N philosophers.
 Philosopher i does the following:

1. THINK
2. Pick up fork i.
3. Pick up fork (i modulo N)+1.
4. EAT
5. Put down fork i.
6. Put down fork (i modulo N)+1.
7. Go to step 1.

Fork 1 Fork 2

Fork 3Fork 4

1
2

3
4

NOTE: (i modulo N) + 1 = i + 1, if 1 < i < N
(i modulo N) + 1 = 1, if i = N

N=4



6

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 11

Dining Philosophers Problem

 How can deadlock occur?

1. THINK
2. Pick up fork i.
3. Pick up fork (i modulo N)+1.
4. EAT
5. Put down fork i.
6. Put down fork (i modulo N)+1.
7. Go to step 1. Fork 1 Fork 2

Fork 3Fork 4

1
2

3
4

N=4

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 12

Semaphores

 A (binary) semaphore S is a shared variable
that holds an integer that is initialized to 1.

 Two "atomic" operations on semaphore S:
 Request S

 while S is not equal to 1, wait some random time
 subtract 1 from S

 Release S
 add 1 to S



7

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 13

Using Semaphores

 We can use a semaphore to protect a critical
section so that only one process accesses
this section at a given time.

 Technique:
non-critical program code
Request S
CRITICAL SECTION
Release S
non-critical program code

Initially, semaphore S is 1.
First process to request
S sets S to 0, blocking other
processes from proceeding
once they get to their 
request operations. Once
the first process finishes
running the critical section,
it releases S, causing S
to increase to 1, allowing
another process to proceed
into the critical section.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 14

Solution for the Philosophers?

 F[i] = semaphore for fork i
 Philosopher i performs the following:

1. THINK
2. request F[i]
3. request F[(i mod N) + 1]
4. EAT
5. release F[i]
6. release F[(i mod N) + 1]
7. goto step 1

NO!
Deadlock can still occur!
HOW?



8

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 15

Solution for the Philosophers?
 Let F[i] = semaphore for fork i
 Philosopher i performs the following:

1. THINK
2. If i is not equal to N: request F[i], and then request F[i+1]

otherwise: request F[1], and then request F[N]
3. EAT
4. If i is not equal to N: release F[i], and then release F[i+1]

otherwise: release F[1], and then release F[N]
5. Goto step 1

YES! How does this prevent deadlock?

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 16

Summary

 Distributed computing and multitasking are
very challenging problems in computer
science.

 The simple rules of sequential computation
no longer apply when we compute
 in a distributed manner across networks
 in a single computer system in a multitasking

environment


