Concurrency 8C

Multitasking &
Operating Systems

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 1

Operating Systems & Multitasking

e Multitasking - The coordination of several
computational processes on one processor.

e An operating system (OS) is the system software
responsible for the direct control and management
of hardware and basic system operations.

e An OS provides a foundation upon which to run
application software such as word processing
programs, web browsers, etc.

from Wikipedia.org

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 2




esse
i
Operating System "Flavors" | ::
e UNIX
e System V, BSD, Linux
e Proprietary: Solaris, Mac OS X
e Windows
e Windows NT
e Windows 2000
e Windows XP
e Windows Vista (2007)
esse
i
:0

e Each (un-blocked) application runs for a very short
time on the computer's processor and then another
process runs, then another...

e This is done at such a fast rate that it appears to the
computer user that all applications are running at
the same time.

e How do actors appear to move in a motion picture?

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 4




Critical Section

e A critical section is a section of computer
code that must only be executed by one
process or thread at a time.

e Examples:

e A printer queue receiving a file to be printed
e Code to set a seat as reserved

e Web server that generates and returns a web
page showing current registration in course

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 5
(X X J
(X X X J
0000
[ X X ]
- - - . .
A Critical Section :

Cars may not make turns
through this intersection.
They may only proceed
straight ahead. When a car
stops at this intersection, it
can proceed straight
ahead if there is no car to its
left and no car to its right.
Otherwise it must wait
some random amount of
seconds and then check
again to see if it's safe

to proceed. If not, it waits
again, and so on.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 6




Shared Resources 2
e memory

e tape drives

e disk drives

e printers

e communication ports

e input devices (keyboard, mouse)
Deadlock e

e Deadlock is the condition when two or more
processes are all waiting for some shared
resource that other processes of the group hold,
causing all processes to wait forever without
proceeding.

e How can deadlock occur at the intersection with
the 4-way stop?

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 8




Dining Philosophers Problem

Each philosopher thinks for a while, then picks up
his left fork, then picks up his right fork, then eats,
then puts down his left fork, then puts down his right
fork, thinks for a while...

e We assume here that each philosopher thinks and eats
for random times, and a philosopher cannot be
interrupted while he picks up or puts down a single fork.

Each fork models a "resource" on a computer

controlled by an OS.

Original problem proposed by Dijkstra

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 9

Dining Philosophers Problem | ::
e There are N philosophers.
e Philosopher i does the following: N=
1. THINK
2. Pick up fork i.
3. Pick up fork (i modulo N)+1.
4. EAT
5. Put down fork i. S | .
6. Put down fork (i modulo N)+1\_ Fork1 " Fork2
7. Go to step 1.

NOTE: (imoduloN)+1=i+1, if1<i<N
(i modulo N) +1=1, ifi=N

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 10




coee
i
Dining Philosophers Problem |:
e How can deadlock occur?
1. THINK N=
2. Pick up fork i. B
3. Pick up fork (i modulo N)+1. Fork4 ______  Fork3
4. EAT — &P -
5. Put down fork i. = -
6. Put down fork (i modulo N)+1. =7 ]%
7. Go to step 1. Fork 1 = Eork 2

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 1

Semaphores

e A (binary) semaphore S is a shared variable
that holds an integer that is initialized to 1.

e Two "atomic" operations on semaphore S:

e RequestS
e while S is not equal to 1, wait some random time
e subtract 1 from S

e Release S
e add1toS

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 12




Using Semaphores

e We can use a semaphore to protect a critical
section so that only one process accesses

this section at a given time.

e Technique:
non-critical program code
Request S
CRITICAL SECTION
Release S
non-critical program code

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

Initially, semaphore S is 1.
First process to request

S sets S to 0, blocking other
processes from proceeding
once they get to their
request operations. Once
the first process finishes
running the critical section,
it releases S, causing S

to increase to 1, allowing
another process to proceed
into the critical section.

Solution for the Philosophers?

e F[i] = semaphore for fork i

e Philosopher i performs the following:

. THINK
. request FJi]
. request F[(i mod N) + 1] NO!

. release Fi]
. release F[(i mod N) + 1]
. goto step 1

N o g wWN 2

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

EAT Deadlock can still occur!
HOW?




Solution for the Philosophers?

e Let F[i] = semaphore for fork i

e Philosopher i performs the following:

1. THINK

2. Ifiis not equal to N: request FJi], and then request F[i+1]
otherwise: request F[1], and then request F[N]

3. EAT

4. |Ifiis not equal to N: release F[i], and then release F[i+1]
otherwise: release F[1], and then release F[N]

5. Goto step 1

YES! How does this prevent deadlock?

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 15

Summary

e Distributed computing and multitasking are
very challenging problems in computer
science.

e The simple rules of sequential computation
no longer apply when we compute
e in a distributed manner across networks

e in a single computer system in a multitasking
environment

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 16




