
1

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 1

Concurrency

Distributed and Parallel
Computing

8A

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 2

Distributed Computing

  Coordination of physically distributed
computers to access shared resources.
  The Internet itself (e.g. World Wide Web)
  SETI - Search for Extraterrestrial Intelligence
  Airline reservation systems

(e.g. SABRE, Travelocity)
  Google web indexing

2

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 3

  Challenges:
  Reserving seat for plane to only one customer if

multiple requests come in at the same time
  Dealing with down computers

Airline Reservation System

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 4

Google
  Runs on a distributed network of

thousands of low-cost computers
  Main software components of Google:

  Googlebot
  Indexer
  The Query Processor

  uses PageRank
 from www.googleguide.com

http://www.google.com/technology/

3

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 5

Parallelism

  What if a computer contained more than one
processor?
  Each processor can be used to solve some part

of a problem.
  The solutions to the subproblems could then be

merged using one or more processors to yield
the result.

  This is the idea behind a parallel computer.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 6

Parallel Computation

Sequential Parallel (using 3
processors)

  Work is done in 1/3 the time.

x ← 5

y ← 6

z ← 7

x ← 5 y ← 6 z ← 7

4

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 7

Parallel Computation

  CAREFUL! Not all sequential computations
can be parallelized easily:

 Sequential Parallel (using 2 processors)

x ← 5

y ← x+5

z ← x*3

x ← 5

y ← x+5 z ← x*3

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 8

Parallel Computation

  Can we compute the last two instructions
in parallel?

Z ← 7

Z ← Z+5

Z ← Z*4

5

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 9

Parallel Computation

1. Set Z to 7.
2. Processor 1 gets the value in Z.
3. Processor 2 gets the value in Z.
4. Processor 1 adds 5 to its value of Z and stores the result in Z.
5. Processor 2 multiplies its value of Z by 4 and stores the result in

Z, overwriting the result that processor 1 just wrote.
THE FINAL VALUE OF Z IS ___________

Z ← 7

Z ← Z+5 Z ← Z*4

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 10

Parallel Computation

1. Set Z to 7.
2. Processor 1 gets the value in Z.
3. Processor 2 gets the value in Z.
4. Processor 2 multiplies its value of Z by 4 and stores the result in Z.
5. Processor 1 adds 5 to its value of Z and stores the result in Z,

overwriting the result that processor 2 just wrote.
THE FINAL VALUE OF Z IS ___________

Z ← 7

Z ← Z+5 Z ← Z*4

6

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 11

Parallel Computation

1. Set Z to 7.
2. Processor 1 gets the value in Z.
3. Processor 1 adds 5 to its value of Z and stores the result in Z.
4. Processor 2 gets the value in Z.
5. Processor 2 multiplies its value of Z by 4 and stores the result in

Z, overwriting the result that processor 1 wrote.
THE FINAL VALUE OF Z IS ___________

Z ← 7

Z ← Z+5 Z ← Z*4

atomic
operations

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 12

Parallel Computation

1. Set Z to 7.
2. Processor 2 gets the value in Z.
3. Processor 2 multiplies its value of Z by 4 and stores the result in Z.
4. Processor 1 gets the value in Z.
5. Processor 1 adds 5 to its value of Z and stores the result in Z,

overwriting the result that processor 2 wrote.
THE FINAL VALUE OF Z IS ___________

Z ← 7

Z ← Z+5 Z ← Z*4

atomic
operations

7

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 13

Example
Three processors run a sequence of instructions,
including the following:

Processor 1 Processor 2 Processor 3
 : : :

❶ X = X + 5 ❸ X = X + 6 ❺ X = X + 7
 : : :

❷ X = X * 2 ❹ X = X * 3 ❻ X = X * 4
 : : :

(Assume X starts off initially at 0, each instruction is an atomic operation
and that the processors do not necessarily run at the same pace nor at a
constant pace.)

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 14

Example (cont’d)
Processor 1 Processor 2 Processor 3

 :      :      : 
❶ X = X + 5 ❸ X = X + 6 ❺ X = X + 7

 : : :
❷ X = X * 2 ❹ X = X * 3 ❻ X = X * 4

 : : :
One possible ordering of instructions is:
❶❸❺❷❹❻ yielding a final value of x = _____________
Another possible ordering of instructions is:
❸❶❷❺❻❹ yielding a final value of x = _____________
The following ordering is not possible:
❺❸❷❻❶❹ Why?

8

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 15

Processor 1 Processor 2 Processor 3
❶ X = X + 5 ❸ X = X + 6 ❺ X = X + 7
❷ X = X * 2 ❹ X = X * 3 ❻ X = X * 4
How many possible orderings are there?
If we start with ❶, there are only 30 possible orderings:
❶❷❸❹❺❻  ❶❸❷❹❺❻  ❶❸❺❷❹❻  ❶❺❷❸❹❻  ❶❺❸❹❻❷ 
❶❷❸❺❹❻  ❶❸❷❺❹❻  ❶❸❺❷❻❹  ❶❺❷❸❻❹  ❶❺❸❻❷❹ 
❶❷❸❺❻❹  ❶❸❷❺❻❹  ❶❸❺❹❷❻  ❶❺❷❻❸❹  ❶❺❸❻❹❷ 
❶❷❺❸❹❻  ❶❸❹❷❺❻  ❶❸❺❹❻❷  ❶❺❸❷❹❻  ❶❺❻❷❸❹ 
❶❷❺❸❻❹  ❶❸❹❺❷❻  ❶❸❺❻❷❹  ❶❺❸❷❻❹  ❶❺❻❸❷❹ 
❶❷❺❻❸❹  ❶❸❹❺❻❷  ❶❸❺❻❹❷  ❶❺❸❹❷❻  ❶❺❻❸❹❷ 

If we start with ❸, there are 30 more orderings.
If we start with ❺, there are 30 more orderings. Total=90

Example

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 16

Maximum Speedup
  Assume an algorithm runs sequentially (on one

processor) in time t.
  If we are given p processors, and we can split the

algorithm up evenly between all p processors, then the
best running time for our algorithm will be t/p.

  Example:
  Let S be a sequential algorithm that runs in 2 mins.
  If P is a parallel version that splits the work in the

sequential algorithm evenly between 10 processors, then
the running time of P would be 0.2 min = 12 sec.
 (assuming maximum speedup)

9

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 17

Problems

  The maximum speedup is not typically
obtainable because:
  Some parts of the algorithm may not be

parallelizable.
  Some parts of the algorithm may not require

use of all the processors.
(See sorting example in textbook.)

  Parallel algorithms also require overhead in
terms of communication between processors
and protection of shared memory.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 18

Amdahl's Law

  Let f be the fraction of operations in a
computation that must be performed
sequentially, where 0 ≤ f ≤ 1.

  The maximum speedup s achievable by a
parallel computer with p processors is
s = 1/ (f + (1-f)/p)

  Example: If half of the operations must be performed
sequentially and we have 2 processors (f = 0.5, p = 2),
then the maximum speedup is s = 1/(0.5 + (1-0.5)/2) = 4/3.

Named after Gene Amdahl,
founder of Amdahl Corporation,
competitor to IBM in the 1970s
in computer mainframe hardware.

10

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 19

Computability
  If we use a parallel computer or distributed

computers, can we solve previously
unsolvable problems?

  NO
  Parallel computations can be simulated with

sequential computers (like the Turing Machine), so
parallel computations give us no more power than
we had before computationally.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 20

Computability
  If we use a parallel computer or distributed

computers, can we solve previously
intractable problems?

  YES
  We can take a problem with an exponential

number of potential solutions, and check each one
in polynomial time using a separate processor.

  BUT, we would need an exponential number of
processors and a very complex communication
network/algorithm.

