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Concurrency 

Distributed and Parallel 
Computing 

8A 
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Distributed Computing 

  Coordination of physically distributed 
computers to access shared resources. 
  The Internet itself (e.g. World Wide Web) 
  SETI - Search for Extraterrestrial Intelligence 
  Airline reservation systems  

(e.g. SABRE, Travelocity) 
  Google web indexing 
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  Challenges: 
  Reserving seat for plane to only one customer if 

multiple requests come in at the same time 
  Dealing with down computers 

Airline Reservation System 
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Google 
  Runs on a distributed network of  

thousands of low-cost computers 
  Main software components of Google: 

  Googlebot  
  Indexer  
  The Query Processor  

  uses PageRank 
    from www.googleguide.com 

http://www.google.com/technology/ 
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Parallelism 

  What if a computer contained more than one 
processor? 
  Each processor can be used to solve some part 

of a problem. 
  The solutions to the subproblems could then be 

merged using one or more processors to yield 
the result. 

  This is the idea behind a parallel computer. 
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Parallel Computation 

Sequential    Parallel (using 3 
processors) 

  Work is done in 1/3 the time. 

x ← 5 

y ← 6 

z ← 7 

x ← 5 y ← 6 z ← 7 
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Parallel Computation 

  CAREFUL! Not all sequential computations 
can be parallelized easily: 

 Sequential   Parallel (using 2 processors) 

x ← 5 

y ← x+5 

z ← x*3 

x ← 5 

y ← x+5 z ← x*3 
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Parallel Computation 

  Can we compute the last two instructions 
in parallel? 

Z ← 7 

Z ← Z+5 

Z ← Z*4 
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Parallel Computation 

1. Set Z to 7. 
2. Processor 1 gets the value in Z. 
3. Processor 2 gets the value in Z. 
4. Processor 1 adds 5 to its value of Z and stores the result in Z. 
5. Processor 2 multiplies its value of Z by 4 and stores the result in 

Z, overwriting the result that processor 1 just wrote. 
THE FINAL VALUE OF Z IS ___________ 

Z ← 7 

Z ← Z+5 Z ← Z*4 
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Parallel Computation 

1. Set Z to 7. 
2. Processor 1 gets the value in Z. 
3. Processor 1 adds 5 to its value of Z and stores the result in Z. 
4. Processor 2 gets the value in Z.  
5. Processor 2 multiplies its value of Z by 4 and stores the result in 

Z, overwriting the result that processor 1 wrote. 
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Z ← 7 

Z ← Z+5 Z ← Z*4 

atomic 
operations 
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Parallel Computation 

1. Set Z to 7. 
2. Processor 2 gets the value in Z. 
3. Processor 2 multiplies its value of Z by 4 and stores the result in Z. 
4. Processor 1 gets the value in Z. 
5. Processor 1 adds 5 to its value of Z and stores the result in Z, 

overwriting the result that processor 2 wrote. 
THE FINAL VALUE OF Z IS ___________ 
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Example 
Three processors run a sequence of instructions, 
including the following: 

Processor 1  Processor 2  Processor 3 
 :    :    : 

❶ X = X + 5  ❸ X = X + 6  ❺ X = X + 7 
 :    :    : 

❷ X = X * 2   ❹ X = X * 3   ❻ X = X * 4 
 :    :    : 

(Assume X starts off initially at 0, each instruction is an atomic operation 
and that the processors do not necessarily run at the same pace nor at a 
constant pace.) 
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Example (cont’d) 
Processor 1   Processor 2   Processor 3 

 :      :      : 
❶ X = X + 5   ❸ X = X + 6   ❺ X = X + 7 

 :    :    : 
❷ X = X * 2   ❹ X = X * 3   ❻ X = X * 4 

 :    :    : 
One possible ordering of instructions is: 
❶❸❺❷❹❻ yielding a final value of x = _____________ 
Another possible ordering of instructions is: 
❸❶❷❺❻❹ yielding a final value of x = _____________ 
The following ordering is not possible:  
❺❸❷❻❶❹  Why? 
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Processor 1   Processor 2   Processor 3 
❶ X = X + 5   ❸ X = X + 6   ❺ X = X + 7 
❷ X = X * 2   ❹ X = X * 3   ❻ X = X * 4 
How many possible orderings are there? 
If we start with ❶, there are only 30 possible orderings: 
❶❷❸❹❺❻  ❶❸❷❹❺❻  ❶❸❺❷❹❻  ❶❺❷❸❹❻  ❶❺❸❹❻❷ 
❶❷❸❺❹❻  ❶❸❷❺❹❻  ❶❸❺❷❻❹  ❶❺❷❸❻❹  ❶❺❸❻❷❹ 
❶❷❸❺❻❹  ❶❸❷❺❻❹  ❶❸❺❹❷❻  ❶❺❷❻❸❹  ❶❺❸❻❹❷ 
❶❷❺❸❹❻  ❶❸❹❷❺❻  ❶❸❺❹❻❷  ❶❺❸❷❹❻  ❶❺❻❷❸❹ 
❶❷❺❸❻❹  ❶❸❹❺❷❻  ❶❸❺❻❷❹  ❶❺❸❷❻❹  ❶❺❻❸❷❹ 
❶❷❺❻❸❹  ❶❸❹❺❻❷  ❶❸❺❻❹❷  ❶❺❸❹❷❻  ❶❺❻❸❹❷ 

If we start with ❸, there are 30 more orderings. 
If we start with ❺, there are 30 more orderings.  Total=90 

Example 
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Maximum Speedup 
  Assume an algorithm runs sequentially (on one 

processor) in time t. 
  If we are given p processors, and we can split the 

algorithm up evenly between all p processors, then the 
best running time for our algorithm will be t/p. 

  Example:  
  Let S be a sequential algorithm that runs in 2 mins. 
  If P is a parallel version that splits the work in the 

sequential algorithm evenly between 10 processors, then 
the running time of P would be 0.2 min = 12 sec. 
 (assuming maximum speedup) 
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Problems 

  The maximum speedup is not typically 
obtainable because: 
  Some parts of the algorithm may not be 

parallelizable. 
  Some parts of the algorithm may not require 

use of all the processors. 
(See sorting example in textbook.) 

  Parallel algorithms also require overhead in 
terms of communication between processors 
and protection of shared memory. 
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Amdahl's Law 

  Let f be the fraction of operations in a 
computation that must be performed 
sequentially, where 0 ≤ f ≤ 1.  

  The maximum speedup s achievable by a 
parallel computer with p processors is  
s = 1/ (f + (1-f)/p) 

  Example: If half of the operations must be performed 
sequentially and we have 2 processors (f = 0.5, p = 2),  
then the maximum speedup is s = 1/(0.5 + (1-0.5)/2) = 4/3. 

Named after Gene Amdahl, 
founder of Amdahl Corporation, 
competitor to IBM in the 1970s 
in computer mainframe hardware. 
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Computability 
  If we use a parallel computer or distributed 

computers, can we solve previously 
unsolvable problems? 

  NO 
  Parallel computations can be simulated with 

sequential computers (like the Turing Machine), so 
parallel computations give us no more power than 
we had before computationally. 
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Computability 
  If we use a parallel computer or distributed 

computers, can we solve previously 
intractable problems? 

  YES 
  We can take a problem with an exponential 

number of potential solutions, and check each one 
in polynomial time using a separate processor. 

  BUT, we would need an exponential number of 
processors and a very complex communication 
network/algorithm. 


