
1

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 1

Concurrency

Distributed and Parallel
Computing

8A

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 2

Distributed Computing

  Coordination of physically distributed
computers to access shared resources.
  The Internet itself (e.g. World Wide Web)
  SETI - Search for Extraterrestrial Intelligence
  Airline reservation systems

(e.g. SABRE, Travelocity)
  Google web indexing

2

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 3

  Challenges:
  Reserving seat for plane to only one customer if

multiple requests come in at the same time
  Dealing with down computers

Airline Reservation System

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 4

Google
  Runs on a distributed network of

thousands of low-cost computers
  Main software components of Google:

  Googlebot
  Indexer
  The Query Processor

  uses PageRank
 from www.googleguide.com

http://www.google.com/technology/

3

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 5

Parallelism

  What if a computer contained more than one
processor?
  Each processor can be used to solve some part

of a problem.
  The solutions to the subproblems could then be

merged using one or more processors to yield
the result.

  This is the idea behind a parallel computer.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 6

Parallel Computation

Sequential Parallel (using 3
processors)

  Work is done in 1/3 the time.

x ← 5

y ← 6

z ← 7

x ← 5 y ← 6 z ← 7

4

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 7

Parallel Computation

  CAREFUL! Not all sequential computations
can be parallelized easily:

 Sequential Parallel (using 2 processors)

x ← 5

y ← x+5

z ← x*3

x ← 5

y ← x+5 z ← x*3

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 8

Parallel Computation

  Can we compute the last two instructions
in parallel?

Z ← 7

Z ← Z+5

Z ← Z*4

5

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 9

Parallel Computation

1. Set Z to 7.
2. Processor 1 gets the value in Z.
3. Processor 2 gets the value in Z.
4. Processor 1 adds 5 to its value of Z and stores the result in Z.
5. Processor 2 multiplies its value of Z by 4 and stores the result in

Z, overwriting the result that processor 1 just wrote.
THE FINAL VALUE OF Z IS ___________

Z ← 7

Z ← Z+5 Z ← Z*4

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 10

Parallel Computation

1. Set Z to 7.
2. Processor 1 gets the value in Z.
3. Processor 2 gets the value in Z.
4. Processor 2 multiplies its value of Z by 4 and stores the result in Z.
5. Processor 1 adds 5 to its value of Z and stores the result in Z,

overwriting the result that processor 2 just wrote.
THE FINAL VALUE OF Z IS ___________

Z ← 7

Z ← Z+5 Z ← Z*4

6

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 11

Parallel Computation

1. Set Z to 7.
2. Processor 1 gets the value in Z.
3. Processor 1 adds 5 to its value of Z and stores the result in Z.
4. Processor 2 gets the value in Z.
5. Processor 2 multiplies its value of Z by 4 and stores the result in

Z, overwriting the result that processor 1 wrote.
THE FINAL VALUE OF Z IS ___________

Z ← 7

Z ← Z+5 Z ← Z*4

atomic
operations

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 12

Parallel Computation

1. Set Z to 7.
2. Processor 2 gets the value in Z.
3. Processor 2 multiplies its value of Z by 4 and stores the result in Z.
4. Processor 1 gets the value in Z.
5. Processor 1 adds 5 to its value of Z and stores the result in Z,

overwriting the result that processor 2 wrote.
THE FINAL VALUE OF Z IS ___________

Z ← 7

Z ← Z+5 Z ← Z*4

atomic
operations

7

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 13

Example
Three processors run a sequence of instructions,
including the following:

Processor 1 Processor 2 Processor 3
 : : :

❶ X = X + 5 ❸ X = X + 6 ❺ X = X + 7
 : : :

❷ X = X * 2 ❹ X = X * 3 ❻ X = X * 4
 : : :

(Assume X starts off initially at 0, each instruction is an atomic operation
and that the processors do not necessarily run at the same pace nor at a
constant pace.)

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 14

Example (cont’d)
Processor 1 Processor 2 Processor 3

 :      :      : 
❶ X = X + 5 ❸ X = X + 6 ❺ X = X + 7

 : : :
❷ X = X * 2 ❹ X = X * 3 ❻ X = X * 4

 : : :
One possible ordering of instructions is:
❶❸❺❷❹❻ yielding a final value of x = _____________
Another possible ordering of instructions is:
❸❶❷❺❻❹ yielding a final value of x = _____________
The following ordering is not possible:
❺❸❷❻❶❹ Why?

8

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 15

Processor 1 Processor 2 Processor 3
❶ X = X + 5 ❸ X = X + 6 ❺ X = X + 7
❷ X = X * 2 ❹ X = X * 3 ❻ X = X * 4
How many possible orderings are there?
If we start with ❶, there are only 30 possible orderings:
❶❷❸❹❺❻  ❶❸❷❹❺❻  ❶❸❺❷❹❻  ❶❺❷❸❹❻  ❶❺❸❹❻❷ 
❶❷❸❺❹❻  ❶❸❷❺❹❻  ❶❸❺❷❻❹  ❶❺❷❸❻❹  ❶❺❸❻❷❹ 
❶❷❸❺❻❹  ❶❸❷❺❻❹  ❶❸❺❹❷❻  ❶❺❷❻❸❹  ❶❺❸❻❹❷ 
❶❷❺❸❹❻  ❶❸❹❷❺❻  ❶❸❺❹❻❷  ❶❺❸❷❹❻  ❶❺❻❷❸❹ 
❶❷❺❸❻❹  ❶❸❹❺❷❻  ❶❸❺❻❷❹  ❶❺❸❷❻❹  ❶❺❻❸❷❹ 
❶❷❺❻❸❹  ❶❸❹❺❻❷  ❶❸❺❻❹❷  ❶❺❸❹❷❻  ❶❺❻❸❹❷ 

If we start with ❸, there are 30 more orderings.
If we start with ❺, there are 30 more orderings. Total=90

Example

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 16

Maximum Speedup
  Assume an algorithm runs sequentially (on one

processor) in time t.
  If we are given p processors, and we can split the

algorithm up evenly between all p processors, then the
best running time for our algorithm will be t/p.

  Example:
  Let S be a sequential algorithm that runs in 2 mins.
  If P is a parallel version that splits the work in the

sequential algorithm evenly between 10 processors, then
the running time of P would be 0.2 min = 12 sec.
 (assuming maximum speedup)

9

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 17

Problems

  The maximum speedup is not typically
obtainable because:
  Some parts of the algorithm may not be

parallelizable.
  Some parts of the algorithm may not require

use of all the processors.
(See sorting example in textbook.)

  Parallel algorithms also require overhead in
terms of communication between processors
and protection of shared memory.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 18

Amdahl's Law

  Let f be the fraction of operations in a
computation that must be performed
sequentially, where 0 ≤ f ≤ 1.

  The maximum speedup s achievable by a
parallel computer with p processors is
s = 1/ (f + (1-f)/p)

  Example: If half of the operations must be performed
sequentially and we have 2 processors (f = 0.5, p = 2),
then the maximum speedup is s = 1/(0.5 + (1-0.5)/2) = 4/3.

Named after Gene Amdahl,
founder of Amdahl Corporation,
competitor to IBM in the 1970s
in computer mainframe hardware.

10

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 19

Computability
  If we use a parallel computer or distributed

computers, can we solve previously
unsolvable problems?

  NO
  Parallel computations can be simulated with

sequential computers (like the Turing Machine), so
parallel computations give us no more power than
we had before computationally.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 20

Computability
  If we use a parallel computer or distributed

computers, can we solve previously
intractable problems?

  YES
  We can take a problem with an exponential

number of potential solutions, and check each one
in polynomial time using a separate processor.

  BUT, we would need an exponential number of
processors and a very complex communication
network/algorithm.

