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Distributed Computing 

  Coordination of physically distributed 
computers to access shared resources. 
  The Internet itself (e.g. World Wide Web) 
  SETI - Search for Extraterrestrial Intelligence 
  Airline reservation systems  

(e.g. SABRE, Travelocity) 
  Google web indexing 
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  Challenges: 
  Reserving seat for plane to only one customer if 

multiple requests come in at the same time 
  Dealing with down computers 

Airline Reservation System 
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Google 
  Runs on a distributed network of  

thousands of low-cost computers 
  Main software components of Google: 

  Googlebot  
  Indexer  
  The Query Processor  

  uses PageRank 
    from www.googleguide.com 

http://www.google.com/technology/ 
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Parallelism 

  What if a computer contained more than one 
processor? 
  Each processor can be used to solve some part 

of a problem. 
  The solutions to the subproblems could then be 

merged using one or more processors to yield 
the result. 

  This is the idea behind a parallel computer. 
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Parallel Computation 

Sequential    Parallel (using 3 
processors) 

  Work is done in 1/3 the time. 

x ← 5 

y ← 6 

z ← 7 

x ← 5 y ← 6 z ← 7 
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Parallel Computation 

  CAREFUL! Not all sequential computations 
can be parallelized easily: 

 Sequential   Parallel (using 2 processors) 

x ← 5 

y ← x+5 

z ← x*3 

x ← 5 

y ← x+5 z ← x*3 
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Parallel Computation 

  Can we compute the last two instructions 
in parallel? 

Z ← 7 

Z ← Z+5 

Z ← Z*4 
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Parallel Computation 

1. Set Z to 7. 
2. Processor 1 gets the value in Z. 
3. Processor 2 gets the value in Z. 
4. Processor 1 adds 5 to its value of Z and stores the result in Z. 
5. Processor 2 multiplies its value of Z by 4 and stores the result in 

Z, overwriting the result that processor 1 just wrote. 
THE FINAL VALUE OF Z IS ___________ 

Z ← 7 

Z ← Z+5 Z ← Z*4 
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Parallel Computation 
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Parallel Computation 

1. Set Z to 7. 
2. Processor 1 gets the value in Z. 
3. Processor 1 adds 5 to its value of Z and stores the result in Z. 
4. Processor 2 gets the value in Z.  
5. Processor 2 multiplies its value of Z by 4 and stores the result in 

Z, overwriting the result that processor 1 wrote. 
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Z ← 7 

Z ← Z+5 Z ← Z*4 

atomic 
operations 
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Parallel Computation 

1. Set Z to 7. 
2. Processor 2 gets the value in Z. 
3. Processor 2 multiplies its value of Z by 4 and stores the result in Z. 
4. Processor 1 gets the value in Z. 
5. Processor 1 adds 5 to its value of Z and stores the result in Z, 

overwriting the result that processor 2 wrote. 
THE FINAL VALUE OF Z IS ___________ 

Z ← 7 

Z ← Z+5 Z ← Z*4 

atomic 
operations 
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Example 
Three processors run a sequence of instructions, 
including the following: 

Processor 1  Processor 2  Processor 3 
 :    :    : 

❶ X = X + 5  ❸ X = X + 6  ❺ X = X + 7 
 :    :    : 

❷ X = X * 2   ❹ X = X * 3   ❻ X = X * 4 
 :    :    : 

(Assume X starts off initially at 0, each instruction is an atomic operation 
and that the processors do not necessarily run at the same pace nor at a 
constant pace.) 
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Example (cont’d) 
Processor 1   Processor 2   Processor 3 

 :      :      : 
❶ X = X + 5   ❸ X = X + 6   ❺ X = X + 7 

 :    :    : 
❷ X = X * 2   ❹ X = X * 3   ❻ X = X * 4 

 :    :    : 
One possible ordering of instructions is: 
❶❸❺❷❹❻ yielding a final value of x = _____________ 
Another possible ordering of instructions is: 
❸❶❷❺❻❹ yielding a final value of x = _____________ 
The following ordering is not possible:  
❺❸❷❻❶❹  Why? 
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Processor 1   Processor 2   Processor 3 
❶ X = X + 5   ❸ X = X + 6   ❺ X = X + 7 
❷ X = X * 2   ❹ X = X * 3   ❻ X = X * 4 
How many possible orderings are there? 
If we start with ❶, there are only 30 possible orderings: 
❶❷❸❹❺❻  ❶❸❷❹❺❻  ❶❸❺❷❹❻  ❶❺❷❸❹❻  ❶❺❸❹❻❷ 
❶❷❸❺❹❻  ❶❸❷❺❹❻  ❶❸❺❷❻❹  ❶❺❷❸❻❹  ❶❺❸❻❷❹ 
❶❷❸❺❻❹  ❶❸❷❺❻❹  ❶❸❺❹❷❻  ❶❺❷❻❸❹  ❶❺❸❻❹❷ 
❶❷❺❸❹❻  ❶❸❹❷❺❻  ❶❸❺❹❻❷  ❶❺❸❷❹❻  ❶❺❻❷❸❹ 
❶❷❺❸❻❹  ❶❸❹❺❷❻  ❶❸❺❻❷❹  ❶❺❸❷❻❹  ❶❺❻❸❷❹ 
❶❷❺❻❸❹  ❶❸❹❺❻❷  ❶❸❺❻❹❷  ❶❺❸❹❷❻  ❶❺❻❸❹❷ 

If we start with ❸, there are 30 more orderings. 
If we start with ❺, there are 30 more orderings.  Total=90 

Example 
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Maximum Speedup 
  Assume an algorithm runs sequentially (on one 

processor) in time t. 
  If we are given p processors, and we can split the 

algorithm up evenly between all p processors, then the 
best running time for our algorithm will be t/p. 

  Example:  
  Let S be a sequential algorithm that runs in 2 mins. 
  If P is a parallel version that splits the work in the 

sequential algorithm evenly between 10 processors, then 
the running time of P would be 0.2 min = 12 sec. 
 (assuming maximum speedup) 
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Problems 

  The maximum speedup is not typically 
obtainable because: 
  Some parts of the algorithm may not be 

parallelizable. 
  Some parts of the algorithm may not require 

use of all the processors. 
(See sorting example in textbook.) 

  Parallel algorithms also require overhead in 
terms of communication between processors 
and protection of shared memory. 
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Amdahl's Law 

  Let f be the fraction of operations in a 
computation that must be performed 
sequentially, where 0 ≤ f ≤ 1.  

  The maximum speedup s achievable by a 
parallel computer with p processors is  
s = 1/ (f + (1-f)/p) 

  Example: If half of the operations must be performed 
sequentially and we have 2 processors (f = 0.5, p = 2),  
then the maximum speedup is s = 1/(0.5 + (1-0.5)/2) = 4/3. 

Named after Gene Amdahl, 
founder of Amdahl Corporation, 
competitor to IBM in the 1970s 
in computer mainframe hardware. 
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Computability 
  If we use a parallel computer or distributed 

computers, can we solve previously 
unsolvable problems? 

  NO 
  Parallel computations can be simulated with 

sequential computers (like the Turing Machine), so 
parallel computations give us no more power than 
we had before computationally. 
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Computability 
  If we use a parallel computer or distributed 

computers, can we solve previously 
intractable problems? 

  YES 
  We can take a problem with an exponential 

number of potential solutions, and check each one 
in polynomial time using a separate processor. 

  BUT, we would need an exponential number of 
processors and a very complex communication 
network/algorithm. 


