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The Limits of
Computation

Noncomputability

7B
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It gets worse...

 Tractable Problems
 Problems that have reasonable, polynomial-

time solutions
 Intractable Problems

 Problems that have no reasonable, polynomial-
time solutions

 Noncomputable Problems
 Problems that have no algorithms at all to solve

them
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Noncomputability and
Undecidability

 An algorithmic problem that has no algorithm is
called noncomputable.

 If the noncomputable algorithm requires a
yes/no answer, the problem is called
undecidable.

 Example:
 Given any set of any number of different tile designs

(examples shown above), with an infinite number of
each type of tile, can we tile any area with these
tiles so that like colored edges touch?

 This problem is undecidable!
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Tiling Problem

YES

Note the periodicity in the tiling.
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Tiling Problem

NO
For this 3 X 3 room, if we try all 39 
tiling configurations, no tiling works.
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Tiling Problem

 Possible algorithm:
 If we find a repeating pattern, report YES.
 If we find a floor we cannot tile, report NO.

 BUT: there are some tilings which have no
repeating pattern!
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Tiling Problem
 The only way to know if this set of tiles

can tile every finite-sized floor is to evaluate
every possible floor.

 BUT: there are an infinite number of finite-sized
floors!
 So we could never answer YES in this case.

 This problem is undecidable.
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Word Correspondence
Given a finite alphabet (e.g. {a, b})
Consider two groups (call them X and Y) of N words

made from the alphabet.

Is there a way to concatenate words in the same
sequence from X and Y to form the same word?

aaaabaabbabY
abababababaabbX
54321
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Word Correspondence
Sequence: 2, 1, 1, 4, 1, 5
X: a + abb + abb + baba + abb + aba
Y: aa + bbab + bbab + aa + bbab + a
Both sequences yield aabbabbbabaabbaba
Answer: yes

aaaabaabbabY
abababababaabbX
54321
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Word Correspondence

Consider the following word correspondence problem.
Is there a solution this time?

aaaabaababY
ababababababbX
54321
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Word Correspondence
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Word Correspondence

 The word correspondence problem is
undecidable.

 For any set of n pairs of words for a finite
alphabet of any size, there is no general
algorithm that can determine if there is a
valid correspondence or not.
 If there were an algorithm, how would it know

when to output an answer of NO?



7

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 13

Another Undecidable Problem:
The Barber Paradox

Suppose there is a town with one
male barber; and that every man in
the town keeps himself clean-shaven:
some shave themselves and some
are shaved by the barber. Only the
barber can shave another man. The
barber shaves all and only those men
who do not shave themselves.

Does the barber shave himself?
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Program Termination
 Can we determine if a program will terminate

given a valid input?
 Example:

1. Input x
2. While x is not equal to 1, do the following:

(a) Subtract 2 from x.

 Does this algorithm terminate when x = 15105?
 Does this algorithm terminate when x = 2008?
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Program Termination
 Another Example:

1. Input x
2. While x is not equal to 1, do the following:

(a) If x is even, divide x by 2.
(b) Otherwise, Set x to 3x + 1.

 Does this algorithm terminate for x = 15?
 Does this algorithm terminate for x = 105?
 Does this algorithm terminate for any positive x?
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Program Termination

Question:
Does an program Q exist that can take
any program P and an input I and
determine if P terminates/halts when
run with input I?



9

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 17

What is a program anyway?

 A computer program is simply a long
string of characters.

 Example:
Program P(I);
output I*2;
end.

Program P(I);↵output I*2;↵end.

Program P
is stored in 
the computer
as one long string.

Program P 
requires one input I.
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A program that runs a program

 Let Q be a program that takes another program P
(as a string) and an input I, and Q runs P using
input I.

Program Q(P,I);
run P(I);
end.

Program P(I);↵output I*2;↵end.

15105

Q

P
30210

Q runs program P, feeding it input I
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The Halting Problem

 Can we write a general program Q that takes
as its input any program P and an input I and
determines if program P will terminate (halt)
when run with input I?
 It will answer YES if P terminates successfully on input I.
 It will answer NO if P never terminates on input I.

 This computational problem is undecidable!
 No such general program Q can exist!
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The Halting Problem (1)
Proof by Contradiction

 Assume a program Q exists that requires a
program P and an input I.
 Q determines if program P will halt when

P is executed using input I.

 We will show that Q can never exist through
contradiction.

Q
HALT CHECKER

P

I

YES

NO

Q outputs YES
if P halts when run
with input I
Q outputs NO
if P does not halt
when run with input I
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S

The Halting Problem (2)
Proof by Contradiction

 Define a new program S that takes a
program W as its input.

W
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S

The Halting Problem (3)
Proof by Contradiction

 S feeds W as the inputs for Q as the
program and the program's input.

Q
HALT CHECKER

W

W
W



12

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 23

S

The Halting Problem (4)
Proof by Contradiction

 Then S looks at the answer Q gives.
 If Q answers YES, S purposely forces itself into an infinite

loop.
 If Q answers NO, S halts with an output of OK.

Q
HALT CHECKER

W

W

YES

NO
W

OK
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S

The Halting Problem (5)
Proof by Contradiction

 Since S requires as its input a program,
and S is a program, what happens if
the input to S is itself?

Q
HALT CHECKER

S

S

YES

NO
S

OK
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S

The Halting Problem (6)
Proof by Contradiction

 Put another way, S asks Q:
“What do I do if I execute using myself as
input?”

Q
HALT CHECKER

S

S

YES

NO
S

OK
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S

The Halting Problem (7)
Proof by Contradiction

 If Q outputs YES, it computes that
S will halt if it uses itself as input.

 But if Q outputs YES, S purposely goes into an
infinite loop when it uses itself as input.

Q
HALT CHECKER

S

S

YES

NO
S

OK
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S

The Halting Problem (8)
Proof by Contradiction

 If Q outputs NO, it computes that S will not halt
if it uses itself as input (i.e. it will run forever).

 But if Q outputs NO, S purposely halts with the
output “OK” when it uses itself as input.

Q
HALT CHECKER

S

S

YES

NO
S

OK
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S

The Halting Problem (9)
Proof by Contradiction

 We get contradictions no matter
what Q outputs.

 Our initial assumption must
have been false!

Q
HALT CHECKER

S

S

YES

NO
S

OK

Q can't exist!
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The Halting Problem is
Undecidable

 We can never write a computer program
that determines if ANY program halts with
ANY input.
 It doesn’t matter how powerful the computer is.
 It doesn’t matter how much time we devote to

the computation.
 It’s undecidable!
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Contradiction isn't just for
computer scientists...


