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The Limits of 
Computation 

Intractability 

7A 
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Decision Problems 
  A specific set of computations are classified as 

decision problems. 
  An algorithm describes a decision problem if 

its output is simply YES or NO, depending on 
whether a certain property holds for its input. 

  Example: 
Given a set of N shapes, 
can these shapes be 
arranged into a rectangle?  
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Monkey Puzzle Problem 
  Given: 

  A set of N square cards whose sides are imprinted 
with the upper and lower halves of colored 
monkeys. 

  N is a square number, such that N = M2. 
  Cards cannot be rotated. 

  Problem: 
  Determine if an arrangement of the N cards in an  

M X M grid exists such that each adjacent pair of 
cards display the upper and lower half of a monkey 
of the same color. 
      Source: www.dwheeler.com (2002) 
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Example 

Images from: Simonas Šaltenis, Aalborg University, simas@cs.auc.dk 
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Solution 
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Analysis 
Simple algorithm: 
  Pick one card for each cell of M X M grid. 
  Verify if each pair of touching edges make a full 

monkey of the same color. 
  If not, try another arrangement until a solution is 

found or all possible arrangements are checked. 
  Answer "YES" if a solution is found. Otherwise, 

answer "NO" if all arrangements are analyzed and 
no solution is found.  
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Analysis 
If there are N = 9 cards (M = 3): 

To fill the first cell, we have 9 card choices. 

To fill the second cell, we have 8 card 
choices left. 

To fill the third cell, we have 7 card choices 
remaining. 

etc. 

The total number of unique arrangements for N = 9 cards is: 

9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 = 362,880 
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Analysis 
For N cards, the number of arrangements to examine 

is N! (N factorial) 
If we can analyze one arrangement in a microsecond: 
N    Time to analyze all arrangements 
9    362,880 µs = 0.36288 s 
16    20,922,789,888,000 µs 

    ≈ 242 days 

25    15,511,210,043,330,985,984,000,000 µs 
    ≈ 491,520,585,955 years 
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Map Coloring 

  Given a map of N territories, can the map 
be colored using K colors such that no two 
adjacent territories are colored with the 
same color? 

  K=4: Answer is always yes. (See Chap 5) 
  K=2: Only if the map contains no point that 

is the junction of an odd number of 
territories. 
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Map Coloring 
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Map Coloring 
  Given a map of 48 territories, can the map be colored 

using 3 colors such that no two adjacent territories are 
colored with the same color? 
  Pick a color for California (3 choices) 
  Pick a color for Nevada (3 choices) 
  ... 

  There are 348 = 79,766,443,076,872,509,863,361 
possible colorings. 

  No one has come up with a better algorithmic solution 
that works in general for any map, so far. 
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Classifications 

  Algorithms that are O(Nk) for some  
fixed k are polynomial-time algorithms. 
  O(1), O(log N), O(N), O(N log N), O(N2) 
  reasonable, tractable 

  All other algorithms are  
super-polynomial-time algorithms. 
  O(2N), O(NN), O(N!) 
  unreasonable, intractable 
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Traveling Salesperson 

  Given: a weighted graph of nodes 
representing cities and edges representing 
flight paths (weights represent cost) 

  Is there a route that takes the salesperson 
through every city and back to the starting 
city with cost no more than K? 
  The salesperson can visit a city only once 

(except for the start and end of the trip). 
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Traveling Salesperson 
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Is there a route with cost at most 52?  YES (Route above costs 50.) 
Is there a route with cost at most 48?  YES? NO? 
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Traveling Salesperson 
  If there are N cities, what is the maximum number 

of routes that we might need to compute? 
  Worst-case: There is a flight available between 

every pair of cities. 
  Compute cost of every possible route. 

  Pick a starting city 
  Pick the next city (N-1 choices remaining) 
  Pick the next city (N-2 choices remaining) 
  ... 

  Maximum number of routes: ___________ 

how to 
build a 
route 
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Hamiltonian Paths 
  Given an undirected graph of N nodes, is there a 

path that passes through all nodes exactly once? 
  A path cannot have a cycle since a node would be on the 

path more than once. 

NO YES 
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Hamiltonian Path 

  If there are N nodes, what is the maximum 
number of paths that we might need to 
examine? 
  Pick a starting node (N choices) 
  Pick the next node (N-1 choices remaining) 
  Pick the next node (N-2 choices remaining) 
  ... 

  Maximum number of paths: _________ 
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Satisfiability 
  Propositional calculus 
  Operations on boolean (logical) values: 

P Q P & Q P v Q P → Q 
F F F F T 
F T F T T 
T F F T F 
T T T T T 

P ~P 
F T 
T F 

T = True 
F = False 
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Satisfiability 
  Given a sentence in the propositional calculus 

using the operators &, v, →, ~ : 
  Is there an assignment of boolean values for the 

symbols so that the sentence reduces down to T 
(true)? (Is the sentence satisfiable?) 

  Example: (A & B) v (~C → A) 
  Truth assignment: A = True, B = False, C = False. 

  How many assignments do we need to check  
for N symbols?  
  Each symbol has 2 possibilities .... ___ assignments 
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P and NP 
  The class P consists of all those decision 

problems that can be solved on a deterministic 
sequential machine in an amount of time that is 
polynomial in the size of the input 

  The class NP consists of all those decision 
problems whose positive solutions can be verified 
in polynomial time given the right information, or 
equivalently, whose solution can be found in 
polynomial time on a non-deterministic machine. 

 from Wikipedia  
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NP Complete 
  The class NPC consists of all those problems in NP 

that are least likely to be in P. 
  Each of these problems is called NP Complete. 
  Monkey puzzle, Traveling salesperson, Hamiltonian 

path, map coloring, satisfiability are all in NPC. 
  Every problem in NPC can be transformed to 

another problem in NPC. 
  If there were some way to solve one of these problems 

in polynomial time, we should be able to solve all of 
these problems in polynomial time. 
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Reductions 
  To show a new problem R is NP-Complete, we 

must show: 
  R can be reduced in polynomial time to another NP-

Complete problem Q. (R cannot be any worse than Q.) 
  An NP-Complete problem S can be reduced in 

polynomial time to R. (R cannot be any better than S.) 

  First NP Complete problem: Satisfiability problem 
(1971, Cook's Theorem) 

But since S and Q are NP-Complete, R must be also. 
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Reduction Example 
  Reduce the Hamiltonian path problem to the 

traveling salesperson problem: 
weight 1 
weight 2 

A graph G with N nodes has a Hamiltonian path  
if and only if the corresponding traveling salesperson  
graph has a route with a total cost of at most N+1. 
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Complexity Classes 

NP Problems 

P Problems 
NP Complete 

Problems 

If P ≠ NP, then all decision problems can be broken 
down into this classification scheme. 
If P = NP, then all three classes are one and the same. 

The Clay Mathematics Institute is offering a $1M prize  
for the first person to prove P = NP or P ≠ NP.  
(http://www.claymath.org/millennium/P_vs_NP/) 


