Computational Goals
Correctness & Efficiency 6B

Efficiency

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 1

Efficiency

e A computer program should be totally correct,
but it should also
e execute as quickly as possible (time-efficiency)
e use memory wisely (storage-efficiency)

e How do we compare programs (or algorithms in
general) with respect to execution time?

e various computers run at different speeds due to
different processors

e compilers optimize code before execution

the same algorithm can be written differently
depending on the programming paradigm

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 2

Example: Linear Search

e Input: Vector A of n unique integers.
e The integers are not in any specific order.

e Output: The index of a specific integer (called the
target) or O if the integer is not found.
e Algorithm:
1. Setindex = 1.
2. While index < N and A[index] # target, do the following:
a. Add 1 to index

3. If index < N, output index;
Otherwise, output 0.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 3

Some questions

e \What is the maximum number of data values we
need to examine? (i.e. worst case)

e \What is the minimum number of data values we
need to examine? (i.e. best case)

e How many storage cells do we need to store
information for use in this algorithm?

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 4

Linear Search

e We measure time efficiency by counting the
number of operations performed by the algorithm.

e But what is an operation?

1. Setindex = 1.
2. While index < N and A[index] # target,
do the following:
a. Add 1 to index
3. If index < N, output index;
Otherwise, output 0.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 5

Counting Operations

e We typically count operations that are a function of
the amount of data (n) that we have to process.

e Abstraction:
e We don't count individual operators (+, -, ...).
e We count more general operations:
e assignments («— or "Set ... equal to ...")
e comparisons (<, >, <, >, =, #)
e For linear search, we might count operations as:
#ops= 1 (step 1)+ N+1 (while comparison) +
N (step 2a) + 2 (step 3) = 2N + 4
(note: this is the worst case scenario)

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 6

Example: Binary Search

e Input: Vector A of n unique integers.
e The integers must be sorted in increasing order.

e Output: The index of a specific integer (called the
target) or O if the integer is not found.

e (Recursive) Algorithm:
1. If number of integers to be examined is 0, output 0 and stop.
2. Set mid = subscript of middle element of A.
3. If A[mid] = target, output mid and stop.
4. If A[mid] > target, perform binary search on A[1..mid-1]

Otherwise, perform binary search on A[mid+1..n]

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 7

Binary Search

11 22 33 44 -55—66—F7—88—99—

Search for 22

Found it! Output 2
(index of target)

—tt—22—33—44— 55—66—77—88—99—

Search for 42

No sub-vector to search
Output 0 (not found)

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 8

Counting Operations Again

e For binary search, consider the worst-case scenario
(target is not in vector)

e How many times can we split the vector in half
before we the vector becomes empty?

e 9->4->2->1->0

e In general, we can split the vector in half approximately
|log,n] + 1 times before it becomes empty.

e Recall the log function:
log,b =c isequivalentto a°=b
Examples: log,128 =7 log,n =5 implies n = 32

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 9

Comparing Algorithms

e Assume an algorithm requires N data values to process.
If each operation takes 1 us* to execute, how many us
will it take to run the algorithm on 100 data values if the
algorithm has the following number of computations?

* 1 microsecond (us) = 1 millionth of a second

Number of Computations Execution Time
N 100 us

N« log,N 665 us

N2 10,000 us

N3 1,000,000 us = 1 sec

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 10

Comparing Algorithms

e Assume an algorithm requires N data values to process. If
each operation takes 1 us to execute, how many us will it
take to run the algorithm on 100 data values if the
algorithm has the following number of computations?

Number of Computations

Execution Time

oN
N!
NN

> 1030 us
> 10160 s
> 10201 yg

e The number of protons in the known universe is < 107°
e The number of microseconds since the Big Bang is < 10%4.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

1"

Order of Complexity

e For very large n, we express the number of
operations as the (time) order of complexity.

e Order of complexity for worst-case behavior is often
expressed using Big-O notation:

Number of operations
N

N/2 + 6

2N +9

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

Order of Complexity

O(N)
Usually doesn't
O(N) matter what the
O(N) constants are...
we are only
concerned about
the highest power
of n.

(X X J
(X X X J
0000
HH
[L) H (]]
O(N) ("Linear") :
2N+9
Number of
Operations N/2 +6
N
(amount of data)
15-105 Principles of Computation, Carnegie Mellon University - CORTINA 13
(X X J
(X X X J
0000
[X X]
(X J
[J

O(N)

Number of
Operations

30
20

10

10

10

20 30

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

N
(amount of data)

e00
XX
o000
X
')
O(N) 3
Number of
Operations
N/2 + 6
21 Xs
A
16 :L 5
11
10 20 30 N
(amount of data)
15-105 Principles of Computation, Carnegie Mellon University - CORTINA 15
e00
XX
o000
X
')
O(N) 3
A 2N +9
69 A
20
49 }x
20
29 —
Number of
Operations
10 20 30 N

(amount of data)

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 16

Order of Complexity

Number of operations

Order of Complexity

N2 O(N?)
2N2 +7 O(N?)
N2/2 + 5N + 2 O(N?)
Usually doesn't
matter what the
constants are...
we are only
concerned about
the highest power
of n.
15-105 Principles of Computation, Carnegie Mellon University - CORTINA 17
00
' TXX)
o000
a2t
1] = "
O(N?) ("Quadratic") :
N2
A ON2 + 7 N2/2 + 5N + 2
Number of
Operations
N

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

(amount of data)

(X X J
(X X X J
0000
[X X]
O(N?) 2
Numbgr of a N2
Operations
900 |
500
A
400 4
! 300
100
10 20 30 N
(amount of data)
15-105 Principles of Computation, Carnegie Mellon University - CORTINA 19
(X X J
(X X X J
0000
[X X]
O(N?) 2
4 2N2 +7
1807
1000
A
807 a
! 600
207
Number of >
- 10 20 30 N
Operations (amount of data)
15-105 Principles of Computation, Carnegie Mellon University - CORTINA 20

10

Order of Complexity

Number of operations
log,N

log (N

2(log,N) + 5

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

Order of Complexity

O(log N)
O(log N)
O(log N)

The logarithm base
is not written in

big O notation

since all that matters
is that the function

is logarithmic.

21

O(log N) ("Logarithmic")

Number of
Operations

2(log, N) + 5

log, N

logy N

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

N
(amount of data)

22

11

(X X J
(X X X J
0000
HH
O(log N) :
Number of ,
Operations
log, N
6
A1
A
5 A
1
4 /
16 32 64 N
(amount of data)
15-105 Principles of Computation, Carnegie Mellon University - CORTINA 23
(X X J
(X X X J
0000
[X X]
(X J
[J

O(log N)

Number of ,
Operations
(not drawn to scale)
logy N
4 A
1
3—%
1
2 A
100 1000 10000
N

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

(amount of data)
24

12

O(N log N)

Number of ,
Operations
384
224
A
160
96
64

N log,N = O(N log N)

(not drawn to scale)

16 32

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

64

N
(amount of data)

25

O(1) ("Constant™)

Number of ,
Operations
15=0(1)
15
N

10 20

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

40

(amount of data)

26

13

X
XX
I
X
O(2N) e
Number of 4 2N = 0(2V)
Operations
(definitely
32768 4 not drawn to scale)
31744
1024 -
t /992
\ N
32 (amount of data)
5 10 15
15-105 Principles of Computation, Carnegie Mellon University - CORTINA 27
X
XX
I
8:
Comparing Big O Functions :
Number of 4 ©(") O(N2) O(N log N)
Operations
O(N)
O(log N)
L= o(1)

N
(amount of data)

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 28

[X X J
(X X X J
0000
[X X]
([X]
Searches :
e Linear Search
e Count comparisons as operations.
e Worst Case: O(N)
e Binary Search
e Count comparisons as operations.
e Worst Case: O(log N)
e Which algorithm is better?
e In general, for large values of N: log N <N
so binary search is better for large N.
e BUT, binary search requires a sorted vector.
e What about if the target is in the first vector cell?
(X X J
(X X X J
0000
[X X]
([X]
[J

Order of Complexity

Algorithm

O(A) Overall

order of complexity
of algorithm is

O(B) max (O(A), O(B))

e Examples:
e O(logN) + O(N) = O(N)
e O(Nlog N)+ O(N) = O(N log N)
e O(NlogN) + O(N2) = O(N2)
e O(2N) + O(N2) = O(2V)

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 30

15

e00
XY
o000
: 8:
Order of Complexity :
Algorithm
/O(A) Overall
d order of complexity
O(B) of algorithm is O(A * B).
O(A) does not
include complexity Example:
of part B of algorithm - Nested loops
e Examples:
e O(logN)* O(N) = O(N log N)
e O(Nlog N)* O(N) = O(N2 log N)
e O(N)*O(1) = O(N)
e0o
XY
o000
T
o0
°

Nested Loops Example 1

e What is the (worst-case) order of complexity of the
following algorithm?

. _ Count assignment
1. Seti=1 } 1= 0(1) and I/O instryctions
2. While i < N do the following: as operations
[a.Setj=1

b. While j < N do the following:

3N = O(N) i. Outputi * j N = O
e ii. Add 1 to | =OM)

16

Nested Loops Example 2

e What is the (worst-case) order of complexity of the
following algorithm?

1.Seti=1 | 1=0(1) and 1O imtructions
2. While i < N do the following: as operations
a.Setj=1
b. While j < N do the following:
3N = O(N) i. Output i * | 2([log,N1)
25 one om ii. Multiply j by 2 | =O(log N)
\ c.Add1toi
O(1) + O(N*logN) = O(NIogN)
[X X]
[X X X J
(X X X}
0ee
Bubble Sort :

e What is the worst-case order of complexity of
bubble sort on N data values?

e Count the comparisons as operations.
e First pass through: N-1 comparisons
e Second pass through: N-2 comparisons

e Last (N-18!) pass through: 1 comparison
e Order of complexity:
(N-1)+(N-2)+...+1 = N(N-1)/2 = (N2-N)/2 = O(N?)

e We call bubble sort a "quadratic sort".

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 34

17

Recursive Algorithms

e We use recurrence relations to determine
the order of complexity of recursive algorithms.
e Example (Towers of Hanoi algorithm):
e Let C(N) = the number of operations needed for
N discs (NOTE: C(1) = 1)
e In general, the number of operations is:
the number required to move N-1 discs to the middle peg +
1 (to move the largest disc) +
the number required to move N-1 discs to the final peg
e Thus, C(N)=C(N-1)+ 1+ C(N-1) =2C(N-1) + 1
e Solution: C(N) =2N -1 =0(2N)

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 35

Merge Sort

e What is the order of complexity of merge sort?

e Let C(N) = total number of operations performed for
merge sort on N data values.

e Operations include comparisons in the merge process.
e C(M=0

e Maximum number of comparisons to merge 2 arrays

on size N/2 into one array of size N: N-1 comparisons.

e C(N)=C(N/2)+ C(N/2)+ N-1=2C(N/2) + N -1

e Solution: C(N) = Nlog,N - N + 1 = O(N log N).

e Order of complexity usually doesn't take into account the

extra overhead of handling recursion on the computer.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 36

18

Complexity...

e "Simplicity does not precede complexity, but
follows it."

e "Fools ignore complexity. Pragmatists suffer
it. Some can avoid it. Geniuses remove it."

. % Alan Perlis
= First head of the CS dept at CMU
“8% Recipient of the ACM Turing Award in 1966.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 37

19

