
1

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 1

Computational Goals
Correctness & Efficiency

Efficiency

6B

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 2

Efficiency

 A computer program should be totally correct,
but it should also
 execute as quickly as possible (time-efficiency)
 use memory wisely (storage-efficiency)

 How do we compare programs (or algorithms in
general) with respect to execution time?
 various computers run at different speeds due to

different processors
 compilers optimize code before execution
 the same algorithm can be written differently

depending on the programming paradigm

2

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 3

Example: Linear Search
 Input: Vector A of n unique integers.

 The integers are not in any specific order.
 Output: The index of a specific integer (called the

target) or 0 if the integer is not found.
 Algorithm:

1. Set index = 1.
2. While index ≤ N and A[index] ≠ target, do the following:
 a. Add 1 to index
3. If index ≤ N, output index;

Otherwise, output 0.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 4

Some questions
 What is the maximum number of data values we

need to examine? (i.e. worst case)

 What is the minimum number of data values we
need to examine? (i.e. best case)

 How many storage cells do we need to store
information for use in this algorithm?

3

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 5

Linear Search
 We measure time efficiency by counting the

number of operations performed by the algorithm.
 But what is an operation?

1. Set index = 1.
2. While index ≤ N and A[index] ≠ target,
 do the following:

a. Add 1 to index
3. If index ≤ N, output index;
 Otherwise, output 0.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 6

Counting Operations
 We typically count operations that are a function of

the amount of data (n) that we have to process.
 Abstraction:

 We don't count individual operators (+, -, ...).
 We count more general operations:

 assignments (← or "Set ... equal to ...")
 comparisons (<, >, <, >, =, ≠)

 For linear search, we might count operations as:
ops = 1 (step 1) + N+1 (while comparison) +

N (step 2a) + 2 (step 3) = 2N + 4
(note: this is the worst case scenario)

4

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 7

Example: Binary Search
 Input: Vector A of n unique integers.

 The integers must be sorted in increasing order.
 Output: The index of a specific integer (called the

target) or 0 if the integer is not found.
 (Recursive) Algorithm:

1. If number of integers to be examined is 0, output 0 and stop.
2. Set mid = subscript of middle element of A.
3. If A[mid] = target, output mid and stop.
4. If A[mid] > target, perform binary search on A[1..mid-1]

Otherwise, perform binary search on A[mid+1..n]

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 8

Binary Search
11 22 33 44 55 66 77 88 99

11 22 33 44 55 66 77 88 99

12 Found it! Output 2
(index of target)

1

Search for 22

Search for 42
2 3 4

No sub-vector to search
Output 0 (not found)

5

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 9

Counting Operations Again
 For binary search, consider the worst-case scenario

(target is not in vector)
 How many times can we split the vector in half

before we the vector becomes empty?
 9 --> 4 --> 2 --> 1 --> 0
 In general, we can split the vector in half approximately

log2n + 1 times before it becomes empty.
 Recall the log function:

logab = c is equivalent to ac = b
Examples: log2128 = 7 log2n = 5 implies n = 32

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 10

Comparing Algorithms
 Assume an algorithm requires N data values to process.

If each operation takes 1 µs* to execute, how many µs
will it take to run the algorithm on 100 data values if the
algorithm has the following number of computations?
* 1 microsecond (µs) = 1 millionth of a second

Number of Computations Execution Time
N 100 µs
N • log2N 665 µs
N2 10,000 µs
N3 1,000,000 µs = 1 sec

6

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 11

Comparing Algorithms
 Assume an algorithm requires N data values to process. If

each operation takes 1 µs to execute, how many µs will it
take to run the algorithm on 100 data values if the
algorithm has the following number of computations?

Number of Computations Execution Time
2N > 1030 µs
N! > 10160 µs
NN > 10201 µs
 The number of protons in the known universe is < 1079

 The number of microseconds since the Big Bang is < 1024.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 12

Order of Complexity
 For very large n, we express the number of

operations as the (time) order of complexity.
 Order of complexity for worst-case behavior is often

expressed using Big-O notation:
Number of operations Order of Complexity
N O(N)
N/2 + 6 O(N)
2N + 9 O(N)

Usually doesn't
matter what the
constants are...
we are only
concerned about
the highest power
of n.

7

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 13

O(N) ("Linear")

N
(amount of data)

Number of
Operations

N

N/2 + 6

2N + 9

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 14

O(N)

N
(amount of data)

Number of
Operations

N

10 20 30

10

20

30

10

10

8

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 15

O(N)

N
(amount of data)

Number of
Operations

N/2 + 6

10 20 30

11

16

21

5
5

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 16

O(N)

N
(amount of data)

Number of
Operations

2N + 9

10 20 30

29

49

69

20

20

9

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 17

Order of Complexity
Number of operations Order of Complexity
N2 O(N2)
2N2 + 7 O(N2)
N2/2 + 5N + 2 O(N2)

Usually doesn't
matter what the
constants are...
we are only
concerned about
the highest power
of n.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 18

O(N2) ("Quadratic")

N
(amount of data)

Number of
Operations

N2/2 + 5N + 22N2 + 7
N2

10

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 19

O(N2)

N
(amount of data)

Number of
Operations

10 20 30

100

400

900

300

500

N2

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 20

O(N2)

N
(amount of data)

Number of
Operations 10 20 30

207

807

1807

600

1000

2N2 + 7

11

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 21

Order of Complexity
Number of operations Order of Complexity
log2N O(log N)
log10N O(log N)
2(log2N) + 5 O(log N)

The logarithm base
is not written in
big O notation
since all that matters
is that the function
is logarithmic.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 22

O(log N) ("Logarithmic")

N
(amount of data)

Number of
Operations

log2 N

log10 N

2(log2 N) + 5

12

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 23

O(log N)

N
(amount of data)

Number of
Operations

16 32 64

4

5

6

1

log2 N

1

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 24

O(log N)

N
(amount of data)

Number of
Operations

100 1000 10000

2

3

4

1

log10 N

1

(not drawn to scale)

13

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 25

O(N log N)

N
(amount of data)

Number of
Operations

16 32 64

64
160

384

96

224

N log2N = O(N log N)

(not drawn to scale)

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 26

O(1) ("Constant")

N
(amount of data)

Number of
Operations

10 20 40

15
15 = O(1)

14

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 27

O(2N)

N
(amount of data)

Number of
Operations

5 10 15

32

1024

32768

992

31744

2N = O(2N)

(definitely
not drawn to scale)

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 28

Comparing Big O Functions

N
(amount of data)

Number of
Operations

O(2N)

O(1)

O(N log N)

O(log N)

O(N2)

O(N)

15

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 29

Searches
 Linear Search

 Count comparisons as operations.
 Worst Case: O(N)

 Binary Search
 Count comparisons as operations.
 Worst Case: O(log N)

 Which algorithm is better?
 In general, for large values of N: log N < N

so binary search is better for large N.
 BUT, binary search requires a sorted vector.
 What about if the target is in the first vector cell?

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 30

Order of Complexity

 Examples:
 O(log N) + O(N) = O(N)
 O(N log N) + O(N) = O(N log N)
 O(N log N) + O(N2) = O(N2)
 O(2N) + O(N2) = O(2N)

O(A)

O(B)

Algorithm
Overall
order of complexity
of algorithm is
max (O(A), O(B)).

16

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 31

Order of Complexity

 Examples:
 O(log N) * O(N) = O(N log N)
 O(N log N) * O(N) = O(N2 log N)
 O(N) * O(1) = O(N)

O(A)

O(B)

Algorithm
Overall
order of complexity
of algorithm is O(A * B).

Example:
- Nested loops

O(A) does not
include complexity
of part B of algorithm

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 32

Nested Loops Example 1
 What is the (worst-case) order of complexity of the

following algorithm?
1. Set i = 1
2. While i < N do the following:

a. Set j = 1
b. While j < N do the following:

i. Output i * j
ii. Add 1 to j

c. Add 1 to i

Count assignment
and I/O instructions

as operations

2N = O(N)
3N = O(N)
(count step b
as one op.)

1 = O(1)

O(1) + O(N*N) = O(N2)

17

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 33

Nested Loops Example 2
 What is the (worst-case) order of complexity of the

following algorithm?
1. Set i = 1
2. While i < N do the following:

a. Set j = 1
b. While j < N do the following:

i. Output i * j
ii. Multiply j by 2

c. Add 1 to i

2(log2N)
= O(log N)

3N = O(N)
(count step b
as one op.)

1 = O(1)

O(1) + O(N*logN) = O(NlogN)

Count assignment
and I/O instructions

as operations

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 34

Bubble Sort
 What is the worst-case order of complexity of

bubble sort on N data values?
 Count the comparisons as operations.

 First pass through: N-1 comparisons
 Second pass through: N-2 comparisons
 ...
 Last (N-1st) pass through: 1 comparison

 Order of complexity:
(N-1)+(N-2)+...+1 = N(N-1)/2 = (N2-N)/2 = O(N2)
 We call bubble sort a "quadratic sort".

18

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 35

Recursive Algorithms
 We use recurrence relations to determine

the order of complexity of recursive algorithms.
 Example (Towers of Hanoi algorithm):

 Let C(N) = the number of operations needed for
N discs (NOTE: C(1) = 1)

 In general, the number of operations is:
the number required to move N-1 discs to the middle peg +
1 (to move the largest disc) +
the number required to move N-1 discs to the final peg

 Thus, C(N) = C(N-1) + 1 + C(N-1) = 2C(N-1) + 1
 Solution: C(N) = 2N - 1 = O(2N)

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 36

Merge Sort
 What is the order of complexity of merge sort?

 Let C(N) = total number of operations performed for
merge sort on N data values.

 Operations include comparisons in the merge process.
 C(1) = 0
 Maximum number of comparisons to merge 2 arrays

on size N/2 into one array of size N: N-1 comparisons.
 C(N) = C(N/2) + C(N/2) + N - 1 = 2C(N/2) + N - 1
 Solution: C(N) = N log2N - N + 1 = O(N log N).

 Order of complexity usually doesn't take into account the
extra overhead of handling recursion on the computer.

19

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 37

Complexity...

 "Simplicity does not precede complexity, but
follows it."

 "Fools ignore complexity. Pragmatists suffer
it. Some can avoid it. Geniuses remove it."

Alan Perlis
First head of the CS dept at CMU
Recipient of the ACM Turing Award in 1966.

