
1

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 1

Computational Goals
Correctness & Efficiency

Correctness

6A

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 2

Software Errors

 Software errors consist of:
 syntax errors (incorrect use of computer language)
 runtime errors (invalid execution condition)
 logical errors (incorrect computation/algorithm)
 race conditions (more on this later)

 Modern software applications contain a huge
amount of computer instructions (lines of code):
 Mozilla (web browser): over 2 million
 Red Hat Linux 7.1: over 30 million
 Windows XP: over 40 million

Source: www.dwheeler.com (2002)

2

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 3

First Computer Bug?
 Grace Hopper's team was working on the Harvard Mark II.
 In September 1945, a moth became trapped between the

points of a relay in the system.
 The moth was removed

and taped into the log
with the following
analysis:
"First actual case
of bug being found."

www.jamesshuggins.com

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 4

Famous Software Errors
 Mariner I (1962)

 The omission of a hyphen in coded computer
instructions transmitted incorrect guidance signals to
the spacecraft.

 The program went automatically into a series of
unnecessary course correction signals which threw
spacecraft off course.

 Spacecraft was destroyed 6 seconds
before it would separate from its
booster.

 Cost: approx. $80 million

3

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 5

Famous Software Errors
 Therac-25 (1985-1987)

 Medical linear accelerator used to destroy tumors.
 Software-only control to deliver specific doses to

patient (approximately 200 rad).
 Race condition software error

caused machine to emit a dosage
of about 15,000-20,000 rad.

 Cost: At least 6 cases of radiation
overdose, leading to 3 deaths.
(Lawsuits settled out of court.)

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 6

Famous Software Errors
 AT&T Software Bug (1990)

 A switching node fails, sending a "out of service" message
to neighboring nodes to reroute voice traffic.

 The software running the switch was a misplaced "break"
statement in C code.

 The surrounding nodes also crashed and repeated the
process to more and more nodes in the phone network.

 Cost: 9 hours without long-distance
service for an estimated 60 million people,
and at least $60 million in lost revenue.

4

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 7

Famous Software Errors
 Patriot Missile Failure (1991)

 During the Gulf War, an American Patriot Missile
battery in Saudi Arabia failed to track and intercept an
incoming Iraqi Scud missile.

 Cause of failure: Inaccurate recording of time, causing
the patriot missile to miscalculate the intercept point
and veer past the incoming scud.

 Cost: Death of 28 soldiers and
injury of 100 other people

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 8

Famous Software Errors
 Denver Airport (1994)

 New automated baggage handling system was to be
deployed with the opening of Denver's new airport.

 Software errors caused a delay of 11 months.
 Conveyors belts were jammed, carts were loaded with

bags even though they were full, timing was not
synchronized between carts and conveyors, causing
bags to lodge underneath carts, ...

 Costs: $1 million per day to the
city of Denver (original project
estimate: $234 million)

5

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 9

Famous Software Errors
 Ariane 5 (1996)

 Launched by the European Space Agency
 Went out of control shortly after takeoff and exploded

40 seconds into flight
 Cause of failure: data conversion software error in the

inertial reference system
 Project cost: over $7 billion

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 10

Famous Software Errors
 Y2K Bug (2000)

 Software written in the 1960s and 1970s represented
years with 2 digits (e.g. 1975 would be stored as 75) to
conserve expensive memory cells.

 This software was still in use in the late 1990s, causing
a panic in the software industry and throughout
government, predicting doomsday scenarios.

 Cost: Governments and businesses
spent an estimated $500 Billion
to repair Y2K bugs before the
year 2000.

6

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 11

The Need for Correctness
 Software bugs cost the U.S. economy

approximately $59.5 billion annually (in a NIST
2002 report).

 Half of these costs are borne by software users.
 More than half of the discovered software errors

are reported post-sale by the consumer/user.
 $22.2 billion can be saved by improving software

testing and correctness methods.

Source: www.nist.gov/public_affairs/releases/n02-10.htm

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 12

Verification
 Techniques have been developed for program

verification for limited situations.
 To prove partial correctness, we can attach

assertions to specific points in the software.
 An assertion is a statement that should be true

if the software reaches this point.
 An assertion in the body of a loop is called an

invariant.

7

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 13

Showing Correctness:
Loop Invariants

 Showing a loop is correct:
0. Start with an expression for the loop invariant.
1. Show that the invariant is true when the loop begins

execution.
2. Show the invariant is true at the start and end of each

iteration of the loop.
3. Show that the invariant and the loop condition

together imply the answer is correct.
4. Show that the exit condition of the loop must

eventually become true (so loop terminates).

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 14

Loop Invariant

C

BODY OF
LOOP

yes

no

1. Show invariant is
true just before loop
begins.

2. For each iteration,
show that if the invariant
is true just before the body of
the loop is executed, it will be
true just after the body of the
loop is executed.

3. Since C is also true after
the loop exits, show that the
invariant AND exit condition C
imply that the loop computes
the desired function.

4. Show that the
loop must eventually
terminate.

8

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 15

Loop Invariant Example
Computing sum of 1+2+...+n, n > 0

1. Let sum = 1.
2. Let i = 2.
3. While i < n do the following:

a. Add i to sum.
b. Add 1 to i.

4. Output sum.

Loop invariant: sum = 1 + ... + (i – 1) = Σ
z = 1

i – 1

z

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 16

Loop Invariant Example
Computing sum of 1+2+...+n, n > 0

1. Let sum = 1.
2. Let i = 2.
3. While i < n do the following:

a. Add i to sum.
b. Add 1 to i.

4. Output sum.

1
IS INVARIANT TRUE
RIGHT BEFORE THE
LOOP BEGINS?

We assert sum = 1 and i = 2
after step 2 in the algorithm.

Σ
z = 1

2 – 1

z1 =Σ
z = 1

i – 1

zsum = Σ
z = 1

1

z1 = 1 = 1

9

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 17

Loop Invariant Example
Computing sum of 1+2+...+n, n > 0

1. Let sum = 1.
2. Let i = 2.
3. While i < n do the following:

a. Add i to sum.
b. Add 1 to i.

4. Output sum.

2 FOR ANY ITERATION, IF
INVARIANT IS TRUE BEFORE
BODY BEGINS, IS IT TRUE
AFTER BODY ENDS?

Add i to sum

Add 1 to i

Σ
z = 1

i – 1

zsum =

Σ
z = 1

i – 1

zsum =

Σ
z = 1

i – 1

z + i =sum = Σ
z = 1

i

z

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 18

Loop Invariant Example
Computing sum of 1+2+...+n, n > 0

1 i

sum

1 i

sum

1 i

sum

Add i to sum

Add 1 to i

Σ
z = 1

i – 1

zsum =

Σ
z = 1

i – 1

zsum =

Σ
z = 1

i – 1

z + i =sum = Σ
z = 1

i

z

10

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 19

Loop Invariant Example
Computing sum of 1+2+...+n, n > 0

1. Let sum = 1.
2. Let i = 2.
3. While i < n do the following:

a. Add i to sum.
b. Add 1 to i.

4. Output sum.
3

AFTER LOOP EXITS,
INVARIANT IS TRUE
AND EXIT CONDITION
IS TRUE. DOES THIS
IMPLY THE DESIRED
COMPUTATION?

AND i = n + 1
EXIT CONDITION

Σ
z = 1

i – 1

zsum = Σ
z = 1

(n+1) – 1

z =sum = Σ
z = 1

n

z

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 20

Loop Invariant Example
Computing sum of 1+2+...+n, n > 0

1. Let sum = 1.
2. Let i = 2.
3. While i < n do the following:

a. Add i to sum.
b. Add 1 to i.

4. Output sum.

4
DOES THIS LOOP
EVENTUALLY
TERMINATE TO
YIELD THE DESIRED
COMPUTATION?

ARGUMENT:
i starts at 2. After each iteration, i increases by 1.
Since n is positive, i will eventually have to be greater than n, causing
the loop to terminate. (Specifically, i = n+1 when the loop terminates.)

11

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 21

Loop Invariant Example #2
Computing 2n, n > 0

1. Input n, an integer where n > 0.
2. Set i = 1.
3. Set f = 2.
4. While i ≠ n do the following:

a. Add 1 to i.
b. Multiply f by 2.

5. Output f. Invariant: f = 2i

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 22

Loop Invariant Example #2
Computing 2n, n > 0

1 IS THE INVARIANT TRUE
RIGHT BEFORE THE
LOOP BEGINS?

12

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 23

Loop Invariant Example #2
Computing 2n, n > 0

2 FOR ANY ITERATION, IF THE INVARIANT IS TRUE
BEFORE BODY BEGINS, IS IT TRUE AFTER BODY ENDS?

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 24

Loop Invariant Example #2
Computing 2n, n > 0

3
AFTER THE LOOP EXITS, THE INVARIANT IS TRUE
AND THE EXIT CONDITION IS TRUE. DOES THIS
IMPLY THE DESIRED COMPUTATION?

13

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 25

Loop Invariant Example #2
Computing 2n, n > 0

4 DOES THIS LOOP EVENTUALLY TERMINATE?

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 26

Verification using Induction
 Induction is used when there are an infinite

number of conditions to check.
 Start with an assertion that you wish to prove is

true about the computation.
 Show inductive assertion is obviously true for

a simple base case.
 Then assuming assertion is true for one

case, prove that the assertion is true for the
next case.

14

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 27

Induction Example
Towers of Hanoi

Assertion: The number of moves required to
move N discs is 2N-1.

 Simple base case:
When N=1, the number of moves is clearly 1
so the assertion is valid since for N=1,
the formula for the number of moves
gives 21 - 1 = 1.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 28

Induction Example
Towers of Hanoi (cont'd)

 Inductive case:
Using the assertion, assume the number of moves for
N-1 discs is 2N-1 - 1.
Then using our algorithm for N discs,
 We move N-1 discs to the extra peg
 We move the largest disc
 We move N-1 discs from the extra peg
Total number of moves for N discs
= (2N-1 - 1) + 1 + (2N-1 - 1) = 2(2N-1) - 1 = 2N - 1.
This is our assumption, so if the formula works for N-1,
it also works for N.

15

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 29

Rationale behind Induction
 The base step says the assertion is true for N=1.
 The inductive step says that if the assertion is

true for some N-1, it will also be true for N.
 Since it's true for N=1, the inductive step says it's true

for N=2.
 Since it's true for N=2, the inductive step says it's true

for N=3.
 etc.

 Thus, we can show the assertion is true for all N
in just two steps.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 30

Induction Example #2

 Using induction, prove that the sum of the
integers from 1 to n is n(n+1)/2 for all n > 0.

 Simple Base Case:

16

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 31

Induction Example #2

 Inductive Case:

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 32

Quotations on Correctness

 "Testing proves a programmer’s failure. Debugging
is the programmer’s vindication." Boris Beizer

 "Beware of bugs in the above code; I have only
proved it correct, not tried it." Donald Knuth

 "Program testing can be used to show the presence
of bugs, but never to show their absence."
Edsger Dijkstra

 "It's not a bug. It's an undocumented feature."
Anonymous

