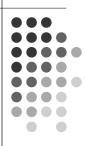
Computational Goals Correctness & Efficiency

6A

Correctness



15-105 Principles of Computation, Carnegie Mellon University - CORTINA

Software Errors

- Software errors consist of:
 - syntax errors (incorrect use of computer language)
 - runtime errors (invalid execution condition)
 - logical errors (incorrect computation/algorithm)
 - race conditions (more on this later)
- Modern software applications contain a huge amount of computer instructions (lines of code):
 - Mozilla (web browser): over 2 million
 - Red Hat Linux 7.1: over 30 million
 - Windows XP: over 40 million

Source: www.dwheeler.com (2002)

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

First Computer Bug?

- Grace Hopper's team was working on the Harvard Mark II.
- In September 1945, a moth became trapped between the points of a relay in the system.
- The moth was removed and taped into the log with the following analysis:
 "First actual case

of bug being found."

www.jamesshuggins.com

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

3

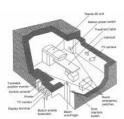
Famous Software Errors

- Mariner I (1962)
 - The omission of a hyphen in coded computer instructions transmitted incorrect guidance signals to the spacecraft.
 - The program went automatically into a series of unnecessary course correction signals which threw spacecraft off course.
 - Spacecraft was destroyed 6 seconds before it would separate from its booster.
 - Cost: approx. \$80 million

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

Famous Software Errors

- Therac-25 (1985-1987)
 - Medical linear accelerator used to destroy tumors.
 - Software-only control to deliver specific doses to patient (approximately 200 rad).
 - Race condition software error caused machine to emit a dosage of about 15,000-20,000 rad.
 - Cost: At least 6 cases of radiation overdose, leading to 3 deaths. (Lawsuits settled out of court.)



15-105 Principles of Computation, Carnegie Mellon University - CORTINA

5

Famous Software Errors

- AT&T Software Bug (1990)
 - A switching node fails, sending a "out of service" message to neighboring nodes to reroute voice traffic.
 - The software running the switch was a misplaced "break" statement in C code.
 - The surrounding nodes also crashed and repeated the process to more and more nodes in the phone network.
 - Cost: 9 hours without long-distance service for an estimated 60 million people, and at least \$60 million in lost revenue.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

Famous Software Errors

- Patriot Missile Failure (1991)
 - During the Gulf War, an American Patriot Missile battery in Saudi Arabia failed to track and intercept an incoming Iraqi Scud missile.
 - Cause of failure: Inaccurate recording of time, causing the patriot missile to miscalculate the intercept point and veer past the incoming scud.
 - Cost: Death of 28 soldiers and injury of 100 other people

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

7

Famous Software Errors

- Denver Airport (1994)
 - New automated baggage handling system was to be deployed with the opening of Denver's new airport.
 - Software errors caused a delay of 11 months.
 - Conveyors belts were jammed, carts were loaded with bags even though they were full, timing was not synchronized between carts and conveyors, causing bags to lodge underneath carts, ...
 - Costs: \$1 million per day to the city of Denver (original project estimate: \$234 million)

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

- Ariane 5 (1996)
 - Launched by the European Space Agency
 - Went out of control shortly after takeoff and exploded 40 seconds into flight
 - Cause of failure: data conversion software error in the inertial reference system
 - Project cost: over \$7 billion

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

9

Famous Software Errors

- Y2K Bug (2000)
 - Software written in the 1960s and 1970s represented years with 2 digits (e.g. 1975 would be stored as 75) to conserve expensive memory cells.
 - This software was still in use in the late 1990s, causing a panic in the software industry and throughout government, predicting doomsday scenarios.
 - Cost: Governments and businesses spent an estimated \$500 Billion to repair Y2K bugs before the year 2000.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

- Software bugs cost the U.S. economy approximately \$59.5 billion annually (in a NIST 2002 report).
- Half of these costs are borne by software users.
- More than half of the discovered software errors are reported post-sale by the consumer/user.
- \$22.2 billion can be saved by improving software testing and correctness methods.

Source: www.nist.gov/public_affairs/releases/n02-10.htm

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

11

Verification

- Techniques have been developed for program verification for limited situations.
- To prove partial correctness, we can attach assertions to specific points in the software.
 - An <u>assertion</u> is a statement that should be true if the software reaches this point.
 - An assertion in the body of a loop is called an invariant.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

Showing Correctness: Loop Invariants

- Showing a loop is correct:
 - 0. Start with an expression for the loop invariant.
 - 1. Show that the invariant is true when the loop begins execution.
 - 2. Show the invariant is true at the start and end of each iteration of the loop.
 - 3. Show that the invariant and the loop condition together imply the answer is correct.
 - Show that the exit condition of the loop must eventually become true (so loop terminates).

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

13

Loop Invariant 1. Show invariant is true just before loop begins. yes C 2. For each iteration, no show that if the invariant is true just before the body of **BODY OF** the loop is executed, it will be LOOP true just after the body of the loop is executed. 3. Since C is also true after the loop exits, show that the 4. Show that the invariant AND exit condition C loop must eventually imply that the loop computes terminate. the desired function. 15-105 Principles of Computation, Carnegie Mellon University - CORTINA

Loop Invariant Example

Computing sum of 1+2+...+n, n > 0

- 1. Let sum = 1.
- 2. Let i = 2.
- 3. While $i \le n$ do the following:
 - a. Add i to sum.
 - b. Add 1 to i.
- 4. Output sum.

Loop invariant: $sum = 1 + ... + (i - 1) = \sum_{z=1}^{i-1} z$

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

15

Loop Invariant Example

Computing sum of 1+2+...+n, n > 0

- 1. Let sum = 1.
- 2. Let i = 2.

- 3. While $i \le n$ do the following:
 - a. Add i to sum.
 - b. Add 1 to i.

IS INVARIANT TRUE RIGHT BEFORE THE LOOP BEGINS?

4. Output sum. We assert sum = 1 and i = 2 after step 2 in the algorithm.

$$sum = \sum_{z=1}^{i-1} z \implies 1 = \sum_{z=1}^{2-1} z \implies 1 = \sum_{z=1}^{1} z \implies 1 = 1$$

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

Loop Invariant Example

Computing sum of 1+2+...+n, n > 0

- 1. Let sum = 1.
- 2. Let i = 2.

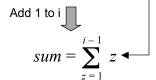
$$sum = \sum_{z=1}^{i-1} z \blacktriangleleft$$

- 3. While $i \le n$ do the following:
 - a. Add i to sum.
 - b. Add 1 to i.
- 4. Output sum.
- FOR ANY ITERATION, IF INVARIANT IS TRUE BEFORE **BODY BEGINS. IS IT TRUE**

AFTER BODY ENDS?

$$sum = \sum_{z=1}^{i-1} z + i = \sum_{z=1}^{i} z$$

Add i to sum



15-105 Principles of Computation, Carnegie Mellon University - CORTINA

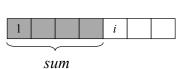
17

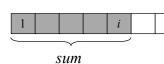
Loop Invariant Example

Computing sum of 1+2+...+n, n > 0

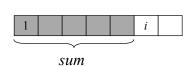
$$sum = \sum_{z=1}^{i-1} z$$

Add i to sum





$$sum = \sum_{z=1}^{i-1} z$$

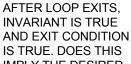


15-105 Principles of Computation, Carnegie Mellon University - CORTINA

Loop Invariant Example

Computing sum of 1+2+...+n, n > 0

- 1. Let sum = 1.
- 2. Let i = 2.
- 3. While $i \le n$ do the following:
 - a. Add i to sum.
 - b. Add 1 to i.
- 4. Output sum.



IMPLY THE DESIRED COMPUTATION?

$$sum = \sum_{z=1}^{i-1} z \quad AND \underbrace{i=n+1}_{i=n+1} \quad sum = \sum_{z=1}^{(n+1)-1} z = \sum_{z=1}^{n} z$$
EXIT CONDITION

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

19

Loop Invariant Example

Computing sum of 1+2+...+n, n > 0

- 1. Let sum = 1.
- 2. Let i = 2.
- 3. While $i \le n$ do the following:
 - a. Add i to sum.
 - b. Add 1 to i.

4. Output sum.

DOES THIS LOOP EVENTUALLY TERMINATE TO YIELD THE DESIRED COMPUTATION?

ADOLINAENT

ARGUMENT:

i starts at 2. After each iteration, i increases by 1.

Since n is positive, i will eventually have to be greater than n, causing the loop to terminate. (Specifically, i = n+1 when the loop terminates.)

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

Loop Invariant Example #2

Computing 2^n , n > 0

- 1. Input n, an integer where n > 0.
- 2. Set i = 1.
- 3. Set f = 2.
- 4. While $i \neq n$ do the following:
 - a. Add 1 to i.
 - b. Multiply f by 2.
- 5. Output f.

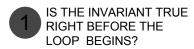
Invariant: $f = 2^i$

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

21

Loop Invariant Example #2

Computing 2^n , n > 0



15-105 Principles of Computation, Carnegie Mellon University - CORTINA

Loop Invariant Example #2

Computing 2^n , n > 0

FOR ANY ITERATION, IF THE INVARIANT IS TRUE BEFORE BODY BEGINS, IS IT TRUE AFTER BODY ENDS?

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

23

Loop Invariant Example #2

Computing 2^n , n > 0

AFTER THE LOOP EXITS, THE INVARIANT IS TRUE AND THE EXIT CONDITION IS TRUE. DOES THIS IMPLY THE DESIRED COMPUTATION?

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

Loop Invariant Example #2

Computing 2^n , n > 0

DOES THIS LOOP EVENTUALLY TERMINATE?

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

25

Verification using Induction

- Induction is used when there are an infinite number of conditions to check.
- Start with an assertion that you wish to prove is true about the computation.
 - Show inductive assertion is obviously true for a simple base case.
 - Then assuming assertion is true for one case, prove that the assertion is true for the next case.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

Induction Example

Towers of Hanoi

Assertion: The number of moves required to move N discs is $2^{N}-1$.

Simple base case:

When N=1, the number of moves is clearly 1 so the assertion is valid since for N=1, the formula for the number of moves gives $2^1 - 1 = 1$.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

27

Induction Example

Towers of Hanoi (cont'd)

Inductive case:

Using the assertion, <u>assume</u> the number of moves for N-1 discs is $2^{N-1} - 1$.

Then using our algorithm for N discs,

- We move N-1 discs to the extra peg
- We move the largest disc
- We move N-1 discs from the extra peg

Total number of moves for N discs

$$= (2^{N-1} - 1) + 1 + (2^{N-1} - 1) = 2(2^{N-1}) - 1 = 2^{N} - 1.$$

This is our assumption, so if the formula works for N-1, it also works for N.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

Rationale behind Induction

- The base step says the assertion is true for N=1.
- The inductive step says that if the assertion is true for some N-1, it will also be true for N.
 - Since it's true for N=1, the inductive step says it's true for N=2.
 - Since it's true for N=2, the inductive step says it's true for N=3.
 - etc.
- Thus, we can show the assertion is true for all N in just two steps.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

29

Induction Example #2

- Using induction, prove that the sum of the integers from 1 to n is n(n+1)/2 for all n > 0.
- Simple Base Case:

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

Inductive Case:

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

31

Quotations on Correctness

- "Testing proves a programmer's failure. Debugging is the programmer's vindication." Boris Beizer
- "Beware of bugs in the above code; I have only proved it correct, not tried it." Donald Knuth
- "Program testing can be used to show the presence of bugs, but never to show their absence."
 Edsger Dijkstra
- "It's not a bug. It's an undocumented feature."
 Anonymous

15-105 Principles of Computation, Carnegie Mellon University - CORTINA