

- A recursive operation is an operation that is defined in terms of itself.

http://fusionanomaly.net/recursion.jpg

Recursion

- Every recursive definition includes two parts:
- Base case (non-recursive)

A simple case that can be done without solving the same problem again.

- Recursive case(s)

One or more cases that are "simpler" versions of the original problem.

- By "simpler", we sometimes mean "smaller" or "shorter" or "closer to the base case".

Factorial

- Definition: $\mathrm{n}!=\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) \ldots(2)(1)$
- Since $(n-1)(n-2) \ldots(2)(1)=(n-1)!$
- $n!=n(n-1)!$, for $n>0$
- $n!=1$ for $n=0$ (base case)
- Example:

$$
\begin{aligned}
& 4!=4(3!) \quad=4(6)=24 \\
& 3!=3(2!)=6 \\
& 2!=2(1!) \quad=2(1)=2 \\
& 1!=1(0!)=1(1)=1
\end{aligned}
$$

Fibonacci Numbers

- A sequence of numbers each number is the sum of the previous two numbers in the sequence, starting the sequence with 0 and 1.
- $0,1,1,2,3,5,8,13,21,34,55,89$, etc.
- Let fib(n) $=$ the $\mathrm{n}^{\text {th }}$ Fibonacci number, $\mathrm{n} \geq 0$
- $\mathrm{fib}(0)=0$
(base case)
- fib(1) $=1$ (base case)
- $\mathrm{fib}(\mathrm{n})=\mathrm{fib}(\mathrm{n}-1)+\mathrm{fib}(\mathrm{n}-2), \mathrm{n}>1$

Fibonacci Numbers

Fibonacci Numbers in Nature

http://britton.disted.camosun.bc.ca/fibslide/jbfibslide.htm
http://www.geom.uiuc.edu/~demo5337/s97b/art.htm

Recursive Sum (in Scheme)

- Computing the sum of a list of numbers.

$$
\text { Use: (sum (list } 302845 \text { 12)) }
$$

- Recursive Definition:
(define (sum numlist)
(if (null? numlist) \longleftarrow is numlist empty?

)

Recursion in Prolog

```
ancestor(alice, gayle) :-
```

 parent(alice, \(Y\)), ancestor(Y, gayle).
 Try $\mathbf{Y}=$ carol.
parent(alice, carol).
YES
ancestor (carol, gayle) :-
parent (carol, gayle).
NO
ancestor (carol, gayle) :-
parent(carol, $\left.Y^{\prime}\right)$, ancestor(Y', gayle).
Try $\mathbf{Y}^{\prime}=\mathbf{f r e d .}$
parent(carol, fred). YES
ancestor(fred, gayle) :-
parent(fred, gayle). YES

Towers of Hanoi

- A puzzle invented by French mathematician Edouard Lucas in 1883.
- At a temple far away, priests were led to a courtyard with three pegs and 64 discs stacked on one peg in size order.
- Priests are only allowed to move one disc at a time from one peg to another.
- Priests may not put a larger disc on top of a smaller disc at any time.
- The goal of the priests was to move all 64 discs from the leftmost peg to the rightmost peg.
- According to the legend, the world would end when the priests finished their work.

Towers of Hanoi

-

Move \mathbf{N} discs from peg X to peg Y (Let Z represent the other peg.)

a. Move $\mathrm{N}-1$ discs from peg X to peg Z (if $\mathrm{N}>1$).
b. Move 1 disc from peg X to peg Y .

extra peg Z
c. Move $\mathrm{N}-1$ discs from peg Z to peg Y (if $\mathrm{N}>1$).

Towers of Hanoi ($\mathrm{N}=3$)

Move 3 discs from peg A to peg C (extra peg is B)
a. Move 2 discs from peg A to peg B. (RECURSIVE... see pext slide)
b. Move 1 disc from peg A to peg C.
c. Move 2 discs from peg B to peg C.
(RECURSIVE... see two slides ahead)

Move 2 discs from peg A to peg B. (extra peg is C)
a. Move 1 disc from peg A to peg C.
b. Move 1 disc from peg A to peg B.
c. Move 1 disc from peg C to peg B

Towers of Hanoi ($\mathrm{N}=2$)

Move 2 discs from peg B to peg C. (extra peg is A)
a. Move 1 disc from peg B topeg A.

c. Move 1 disc from peg A to peg C.

Towers of Hanoi

Discs	Moves	
1		What is the
2		
3		fewest number of
4		disc moves needed
5		with n discs?
\ldots		
n		

Towers of Hanoi

- If the priests moved a disc at a rate of 1 per second using the fewest number of disc moves, it would take the priests roughly 585 billion years to complete this puzzle!
- The universe is currently about 13.7 billion years old.

Tree Sort Algorithm revisited

Performing Tree Sort starting a node \mathbf{N} :

1. If N has a left child, perform tree sort on left-child-of-N.
2. Display contents of node N .
3. If N has right child, perform tree sort on right-child-of-N.

Dynamic Programming

- A technique that...
- The problem is broken into sub-problems, and these sub-problems are solved and the solutions remembered, in case they need to be solved again.
- All sub-problems that might be needed are solved in advance and then used to build up solutions to larger problems.

