
1 

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 1 

Algorithmic Methods 
Tricks of the Trade 

Recursion 

5A 

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 2 

Recursion 

  A recursive operation is an operation  
that is defined in terms of itself. 

Sierpinski's 
Gasket 

http://fusionanomaly.net/recursion.jpg 



2 

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 3 

Recursion 

  Every recursive definition includes two 
parts: 
  Base case (non-recursive) 

A simple case that can be done without 
solving the same problem again. 

  Recursive case(s) 
One or more cases that are “simpler” versions 
of the original problem. 
  By “simpler”, we sometimes mean “smaller” or 

“shorter” or “closer to the base case”. 

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 4 

Factorial 
  Definition:  n! = n(n-1)(n-2)…(2)(1) 
  Since (n-1)(n-2)…(2)(1) = (n-1)!  

  n! = n(n-1)!, for n > 0 
  n! = 1 for n = 0 (base case) 

  Example:  
4! = 4(3!)                                                       = 4(6) = 24 
          3! = 3(2!)                                     = 3(2) = 6           
                    2! = 2(1!)                   = 2(1) = 2  
                              1! = 1(0!) = 1(1) = 1  



3 

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 5 

Fibonacci Numbers 
  A sequence of numbers each number is the 

sum of the previous two numbers in the 
sequence, starting the sequence with 0 and 1. 

  0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, etc. 
  Let fib(n) = the nth Fibonacci number, n ≥ 0 

  fib(0) = 0   (base case) 
  fib(1) = 1   (base case) 
  fib(n) = fib(n-1) + fib(n-2), n > 1 

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 6 

Fibonacci Numbers 
fib(5) 

fib(4) fib(3) 

fib(3) fib(2) fib(2) fib(1) 

fib(2) fib(1) fib(1) fib(0) 

fib(1) fib(0) 

fib(1) fib(0) 

fib(0) = 0    
fib(1) = 1    
fib(n) = fib(n-1) + fib(n-2), n > 1 



4 

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 7 

Fibonacci Numbers 
fib(5) 

fib(4) fib(3) 

fib(3) fib(2) fib(2) fib(1) 

fib(2) fib(1) fib(1) fib(0) 

fib(1) fib(0) 

fib(1) fib(0) 

1 

2 

5 

1 0 

1 1 

2 

1 0 

1 

3 

1 0 

1 

fib(0) = 0    
fib(1) = 1    
fib(n) = fib(n-1) + fib(n-2), n > 1 

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 8 

Fibonacci Numbers in Nature 
http://www.geom.uiuc.edu/~demo5337/s97b/art.htm 
http://britton.disted.camosun.bc.ca/fibslide/jbfibslide.htm 



5 

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 9 

Recursive Sum (in Scheme) 
  Computing the sum of a list of numbers. 

 Use: (sum (list 30 28 45 12))

  Recursive Definition: 

 (define (sum numlist)


 
(if (null? numlist) 


 
 
0


 
 
(+ (first numlist)


 
 
   (sum (rest numlist)))


 
)


) 

is numlist empty? 

if yes, result is 0 

if no, result is 
the first number 
+ the sum of 
the rest of the 
numbers 

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 10 

Recursive Sum (in Scheme) 
(sum (list 30 28 45 12))

(+ 30 (sum (list 28 45 12)))

(+ 30 (+ 28 (sum (list 45 12))))

(+ 30 (+ 28 (+ 45 (sum (list 12)))))

(+ 30 (+ 28 (+ 45 (+ 12 (sum (list ))))))

(+ 30 (+ 28 (+ 45 (+ 12 0 )))) 

(+ 30 (+ 28 (+ 45 12 )))

(+ 30 (+ 28 57 ))

(+ 30 85 )

115


empty list 
(if (null? numlist) 

  0

  (+ (first numlist)

     (sum (rest numlist)))

)




6 

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 11 

Recursion in Prolog 
ancestor(X, Z) :-



parent(X, Z).

ancestor(X, Z) :-



parent(X, Y),


ancestor(Y, Z).


?- ancestor(alice, gayle).

yes


alice bob 

carol david 

ethel fred 

gayle 

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 12 

Recursion in Prolog 
ancestor(alice, gayle) :-



parent(alice, Y), ancestor(Y, gayle).

Try Y = carol.



parent(alice, carol). 
 
 
 
YES


ancestor(carol, gayle) :-  

parent(carol, gayle). 
 
 
 
NO



ancestor(carol, gayle) :-


 
parent(carol, Y'), ancestor(Y', gayle).


Try Y' = fred.


 
 
parent(carol, fred). 
 
 
YES


 
 
ancestor(fred, gayle) :-  

 
 
parent(fred, gayle). 
 
YES




7 

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 13 

Towers of Hanoi 
  A puzzle invented by  

French mathematician  
Edouard Lucas in 1883. 

  At a temple far away, priests were led to a courtyard with three 
pegs and 64 discs stacked on one peg in size order.  
  Priests are only allowed to move one disc at a time from one 

peg to another.  
  Priests may not put a larger disc on top of a smaller disc at 

any time. 
  The goal of the priests was to move all 64 discs from the 

leftmost peg to the rightmost peg. 
  According to the legend, the world would end when the priests 

finished their work.  

Towers of Hanoi with 8 discs. 

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 14 

Towers of Hanoi 

Move N discs from peg X to peg Y 
(Let Z represent the other peg.) 

a. Move N-1 discs from peg X to peg Z (if N>1).  

b. Move 1 disc from peg X to peg Y. 

c. Move N-1 discs from peg Z to peg Y (if N>1). 

extra peg Z 



8 

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 15 

Towers of Hanoi (N=3) 

a. Move 2 discs from peg A to peg B. 
  (RECURSIVE... see next slide) 

b. Move 1 disc from peg A to peg C. 

c. Move 2 discs from peg B to peg C. 
(RECURSIVE... see two slides ahead) 

A B C 

A B C 

A B C 

A B C 

Move 3 discs from peg A to peg C. 
(extra peg is B)  

extra 
peg 

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 16 

Towers of Hanoi (N=2) 

a. Move 1 disc from peg A to peg C. 

b. Move 1 disc from peg A to peg B. 

c. Move 1 disc from peg C to peg B. 

A B C 

A B C 

A B C 

A B C 

Move 2 discs from peg A to peg B. 
(extra peg is C)  

extra 
peg 



9 

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 17 

Towers of Hanoi (N=2) 

a. Move 1 disc from peg B to peg A. 

b. Move 1 disc from peg B to peg C. 

c. Move 1 disc from peg A to peg C. 

A B C 

A B C 

A B C 

A B C 

Move 2 discs from peg B to peg C. 
(extra peg is A)  

extra 
peg 

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 18 

Towers of Hanoi 

 Discs   Moves 
    1   ______ 
    2   ______ 
    3   ______ 
    4   ______ 
    5   ______ 
    ... 
    n   __________________ 

What is the  
fewest number of  
disc moves needed  
for a problem  
with n discs? 



10 

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 19 

Towers of Hanoi 

  If the priests moved a disc at a rate of 1 per 
second using the fewest number of disc 
moves, it would take the priests roughly 585 
billion years to complete this puzzle!  
  The universe is currently about 13.7 billion 

years old.  

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 20 

step 2 

step 3 

step 1 

Tree Sort Algorithm revisited 

84 

41 96 

24 

37 

50 

13 

98 

Performing Tree Sort starting a node N: 
1. If N has a left child,  

perform tree sort on left-child-of-N. 
2. Display contents of node N. 
3. If N has right child,  

perform tree sort 
on right-child-of-N. 



11 

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 21 

Dynamic Programming 

  A technique that… 
  The problem is broken into sub-problems, and 

these sub-problems are solved and the 
solutions remembered, in case they need to be 
solved again.  

  All sub-problems that might be needed are 
solved in advance and then used to build up 
solutions to larger problems.  

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 22 

Fibonacci Numbers revisited 
fib(5) 

fib(4) fib(3) 

fib(3) fib(2) 

fib(2) fib(1) 

fib(1) fib(0) 

2 

5 

1 0 

1 1 

2 1 

3 

fib(0) = 0    
fib(1) = 1    
fib(n) = fib(n-1) + fib(n-2), n > 1 

n fib(n) 

0 
1 
2 
3 
4 
5 

n fib(n) 

0 
1 1 
2 
3 
4 
5 

n fib(n) 

0 0 
1 1 
2 
3 
4 
5 

n fib(n) 

0 0 
1 1 
2 1 
3 
4 
5 

n fib(n) 

0 0 
1 1 
2 1 
3 2 
4 
5 

n fib(n) 

0 0 
1 1 
2 1 
3 2 
4 3 
5 

n fib(n) 

0 0 
1 1 
2 1 
3 2 
4 3 
5 5 

memoization 


