
1

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 1

Algorithmic Methods
Tricks of the Trade

Recursion

5A

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 2

Recursion

  A recursive operation is an operation
that is defined in terms of itself.

Sierpinski's
Gasket

http://fusionanomaly.net/recursion.jpg

2

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 3

Recursion

  Every recursive definition includes two
parts:
  Base case (non-recursive)

A simple case that can be done without
solving the same problem again.

  Recursive case(s)
One or more cases that are “simpler” versions
of the original problem.
  By “simpler”, we sometimes mean “smaller” or

“shorter” or “closer to the base case”.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 4

Factorial
  Definition: n! = n(n-1)(n-2)…(2)(1)
  Since (n-1)(n-2)…(2)(1) = (n-1)!

  n! = n(n-1)!, for n > 0
  n! = 1 for n = 0 (base case)

  Example:
4! = 4(3!) = 4(6) = 24
 3! = 3(2!) = 3(2) = 6
 2! = 2(1!) = 2(1) = 2
 1! = 1(0!) = 1(1) = 1

3

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 5

Fibonacci Numbers
  A sequence of numbers each number is the

sum of the previous two numbers in the
sequence, starting the sequence with 0 and 1.

  0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, etc.
  Let fib(n) = the nth Fibonacci number, n ≥ 0

  fib(0) = 0 (base case)
  fib(1) = 1 (base case)
  fib(n) = fib(n-1) + fib(n-2), n > 1

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 6

Fibonacci Numbers
fib(5)

fib(4) fib(3)

fib(3) fib(2) fib(2) fib(1)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)

fib(1) fib(0)

fib(0) = 0
fib(1) = 1
fib(n) = fib(n-1) + fib(n-2), n > 1

4

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 7

Fibonacci Numbers
fib(5)

fib(4) fib(3)

fib(3) fib(2) fib(2) fib(1)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)

fib(1) fib(0)

1

2

5

1 0

1 1

2

1 0

1

3

1 0

1

fib(0) = 0
fib(1) = 1
fib(n) = fib(n-1) + fib(n-2), n > 1

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 8

Fibonacci Numbers in Nature
http://www.geom.uiuc.edu/~demo5337/s97b/art.htm
http://britton.disted.camosun.bc.ca/fibslide/jbfibslide.htm

5

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 9

Recursive Sum (in Scheme)
  Computing the sum of a list of numbers.

 Use: (sum (list 30 28 45 12))
  Recursive Definition:

 (define (sum numlist)
 (if (null? numlist)
 0
 (+ (first numlist)
 (sum (rest numlist)))
)
)

is numlist empty?

if yes, result is 0

if no, result is
the first number
+ the sum of
the rest of the
numbers

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 10

Recursive Sum (in Scheme)
(sum (list 30 28 45 12))
(+ 30 (sum (list 28 45 12)))
(+ 30 (+ 28 (sum (list 45 12))))
(+ 30 (+ 28 (+ 45 (sum (list 12)))))
(+ 30 (+ 28 (+ 45 (+ 12 (sum (list))))))
(+ 30 (+ 28 (+ 45 (+ 12 0))))
(+ 30 (+ 28 (+ 45 12)))
(+ 30 (+ 28 57))
(+ 30 85)
115

empty list
(if (null? numlist)
 0
 (+ (first numlist)
 (sum (rest numlist)))
)

6

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 11

Recursion in Prolog
ancestor(X, Z) :-

parent(X, Z).
ancestor(X, Z) :-

parent(X, Y),
ancestor(Y, Z).

?- ancestor(alice, gayle).
yes

alice bob

carol david

ethel fred

gayle

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 12

Recursion in Prolog
ancestor(alice, gayle) :-

parent(alice, Y), ancestor(Y, gayle).
Try Y = carol.

parent(alice, carol). YES
ancestor(carol, gayle) :-  
parent(carol, gayle). NO

ancestor(carol, gayle) :-
 parent(carol, Y'), ancestor(Y', gayle).
Try Y' = fred.
 parent(carol, fred). YES
 ancestor(fred, gayle) :-  
 parent(fred, gayle). YES

7

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 13

Towers of Hanoi
  A puzzle invented by

French mathematician
Edouard Lucas in 1883.

  At a temple far away, priests were led to a courtyard with three
pegs and 64 discs stacked on one peg in size order.
  Priests are only allowed to move one disc at a time from one

peg to another.
  Priests may not put a larger disc on top of a smaller disc at

any time.
  The goal of the priests was to move all 64 discs from the

leftmost peg to the rightmost peg.
  According to the legend, the world would end when the priests

finished their work.

Towers of Hanoi with 8 discs.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 14

Towers of Hanoi

Move N discs from peg X to peg Y
(Let Z represent the other peg.)

a. Move N-1 discs from peg X to peg Z (if N>1).

b. Move 1 disc from peg X to peg Y.

c. Move N-1 discs from peg Z to peg Y (if N>1).

extra peg Z

8

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 15

Towers of Hanoi (N=3)

a. Move 2 discs from peg A to peg B.
 (RECURSIVE... see next slide)

b. Move 1 disc from peg A to peg C.

c. Move 2 discs from peg B to peg C.
(RECURSIVE... see two slides ahead)

A B C

A B C

A B C

A B C

Move 3 discs from peg A to peg C.
(extra peg is B)

extra
peg

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 16

Towers of Hanoi (N=2)

a. Move 1 disc from peg A to peg C.

b. Move 1 disc from peg A to peg B.

c. Move 1 disc from peg C to peg B.

A B C

A B C

A B C

A B C

Move 2 discs from peg A to peg B.
(extra peg is C)

extra
peg

9

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 17

Towers of Hanoi (N=2)

a. Move 1 disc from peg B to peg A.

b. Move 1 disc from peg B to peg C.

c. Move 1 disc from peg A to peg C.

A B C

A B C

A B C

A B C

Move 2 discs from peg B to peg C.
(extra peg is A)

extra
peg

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 18

Towers of Hanoi

 Discs Moves
 1 ______
 2 ______
 3 ______
 4 ______
 5 ______
 ...
 n __________________

What is the
fewest number of
disc moves needed
for a problem
with n discs?

10

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 19

Towers of Hanoi

  If the priests moved a disc at a rate of 1 per
second using the fewest number of disc
moves, it would take the priests roughly 585
billion years to complete this puzzle!
  The universe is currently about 13.7 billion

years old.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 20

step 2

step 3

step 1

Tree Sort Algorithm revisited

84

41 96

24

37

50

13

98

Performing Tree Sort starting a node N:
1. If N has a left child,

perform tree sort on left-child-of-N.
2. Display contents of node N.
3. If N has right child,

perform tree sort
on right-child-of-N.

11

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 21

Dynamic Programming

  A technique that…
  The problem is broken into sub-problems, and

these sub-problems are solved and the
solutions remembered, in case they need to be
solved again.

  All sub-problems that might be needed are
solved in advance and then used to build up
solutions to larger problems.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA 22

Fibonacci Numbers revisited
fib(5)

fib(4) fib(3)

fib(3) fib(2)

fib(2) fib(1)

fib(1) fib(0)

2

5

1 0

1 1

2 1

3

fib(0) = 0
fib(1) = 1
fib(n) = fib(n-1) + fib(n-2), n > 1

n fib(n)

0
1
2
3
4
5

n fib(n)

0
1 1
2
3
4
5

n fib(n)

0 0
1 1
2
3
4
5

n fib(n)

0 0
1 1
2 1
3
4
5

n fib(n)

0 0
1 1
2 1
3 2
4
5

n fib(n)

0 0
1 1
2 1
3 2
4 3
5

n fib(n)

0 0
1 1
2 1
3 2
4 3
5 5

memoization

