
A Brief History Of Computing

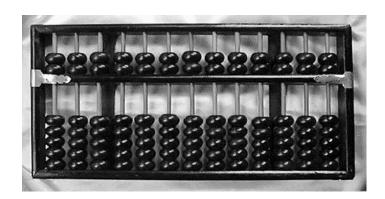
1A

The need for computing emerges

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

1

What is computation?


- Computation (n.) The act or process of computing.
- Computing (n.) the procedure of calculating; determining something by mathematical or logical methods.
- Computer science (n.) the branch of engineering science that studies (with the aid of computers) computable processes and structures

Source: www.thefreedictionary.com

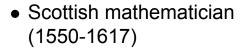
15-105 Principles of Computation, Carnegie Mellon University - CORTINA

The Abacus (Chinese)

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

3

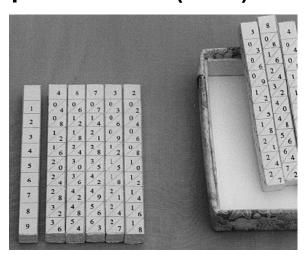
The Abacus


- Earliest archaeological evidence of a Greek abacus used around the 5th century BC.
- Earliest documents illustrating the use of the Chinese abacus (suan pan) from the 13th century AD.
- Other abacus forms:

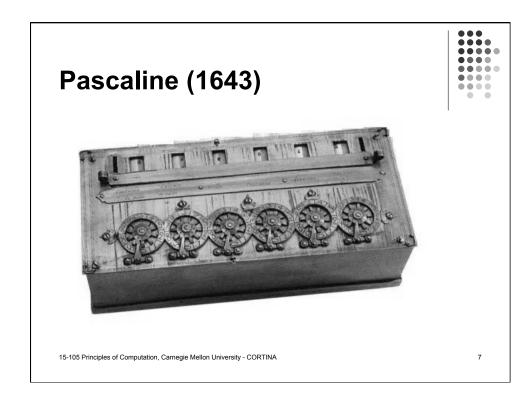
Soroban (Japan), Choreb (Afghanistan), Schoty (or stchoty) (Russia)

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

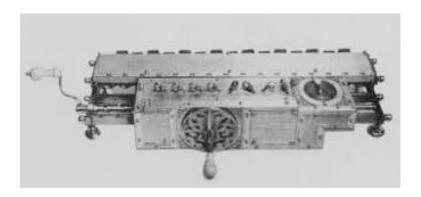
John Napier


- Invented Napier's Bones, used to perform multiplication using only addition.
 - (http://nrich.maths.org.uk/public/viewer.php?obj_id=1132)
- Napier is also the inventor of logarithms.
- Napier's bones were very successful and were widely used in Europe until mid 1960's.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

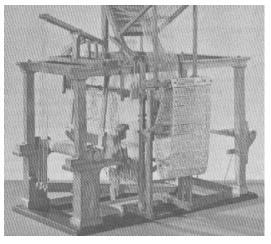

5

Napier's Bones (1617)



15-105 Principles of Computation, Carnegie Mellon University - CORTINA

Leibniz' machine (1674)



15-105 Principles of Computation, Carnegie Mellon University - CORTINA

Jacquard's Loom (1805)

Developed by Joseph-Marie Jacquard. The loom was controlled by a loop of punched cards. Holes in the punched cards determined how the knitting proceeded, yielding very complex weaves at a much faster rate.

from
Columbia University
Computing History
http://www.columbia.edu/
acis/history/jacquard.html

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

9

Charles Babbage

- Known as the "(grand)father of computing"
- Mathematician, industrialist, philosopher, politician
- Difference Engine (1822)
 - Babbage's first computational machine was based on the method of finite differences.
- Analytical Engine (1834-1836)
 - Babbage's more general "computer"
 - Never built, but its design is considered to be the foundation of modern computing

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

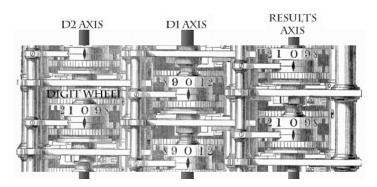
Method of Finite Differences

- $f(x) = x^2 + x + 1$
- First order difference $\Delta f(x)$ = $f(x+1) - f(x) = (x+1)^2 + (x+1) + 1 - (x^2 + x + 1) = 2x + 2$
- Second order difference $\Delta^2 f(x)$ = $\Delta f(x+1) - \Delta f(x) = 2(x+1) + 2 - (2x+2) = 2$
- Given: f(0) = 1, $\Delta f(0) = 2$, $\Delta^2 f(0) = 2$ (note: all $\Delta^2 f(x) = 2$)
 - $\Delta f(1) = \Delta f(0) + \Delta^2 f(0) = 2 + 2 = 4$ $f(1) = f(0) + \Delta f(0) = 1 + 2 = 3$ $(f(1) = 1^2 + 1 + 1 = 3)$
 - $\Delta f(2) = \Delta f(1) + \Delta^2 f(1) = 4 + 2 = 6$ $f(2) = f(1) + \Delta f(1) = 3 + 4 = 7$ $(f(2) = 2^2 + 2 + 1 = 7)$

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

4.4

Method of Finite Differences


- $f(x) = x^2 + x + 1$
- $\Delta f(x) = 2x + 2$

Х	$\Delta^2 f(x)$	Δf(x)	f(x)
0	2	2	1
1	2	4	3
2	2	6	7
3	2		

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

Babbage's Difference Engine

http://www.culture.com.au/brain_proj/CONTENT/BABBAGE.HTM

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

13

Babbage's Difference Engine

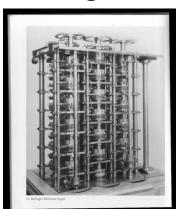


Photo of the 1832 Fragment of a Difference Engine

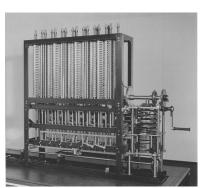


photo of Babbage Difference Engine No. 2 constructed in 1991

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

Ada Lovelace

- 1815-1852
- Daughter of poet Lord Byron
- Translated Menabrea's Sketch of the Analytical Engine to English
 - Quadrupled its length by adding lengthy notes and detailed mathematical explanations
- Referred to as the world's first programmer
 - First weaver of coded instructions on punched cards, based on a language that was compatible with the Analytical Engine.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

15

Herman Hollerith & The Hollerith Census Machine

- 1880 U.S. Census
 - The amount of data that needed to be analyzed was growing so quickly due to immigration
 - Required almost a decade to compute 1880 Census
- In 1882, Hollerith investigated a suggestion by Dr. John Shaw Billings, head of the division of Vital Statistics for the Census Bureau
 - "There ought to be some mechanical way of [tabulating Census data], something on the principle of the Jacquard loom, whereby holes in a card regulate the pattern to be woven."

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

Hollerith's Census Machine

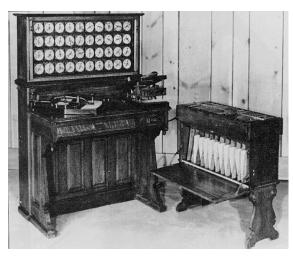


Photo: IBM

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

17

Hollerith's Census Machine

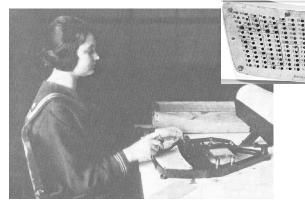


Photo of Pantographic Card Punch plate: from US Library of Congress

Photo from 1920 Census: Austrian, Geoffrey, Herman Hollerith: Forgotten Giant of Information Processing, Columbia University Press (1982).

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

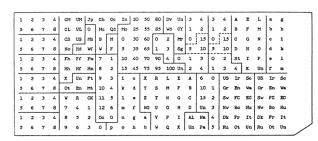


Photo of a punch card for the Hollerith machine, from *John McPherson, Computer Engineer*, an oral history conducted in 1992 by William Aspray, IEEE History Center, Rutgers University, New Brunswick, NJ, USA.

- The entire 1890 census data was processed in 3 months vs. the expected 2 years if counted by hand.
- Total population of the U.S.: 62,622,250

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

19

The Birth of IBM

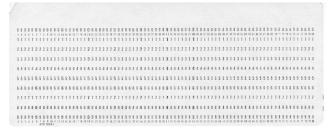
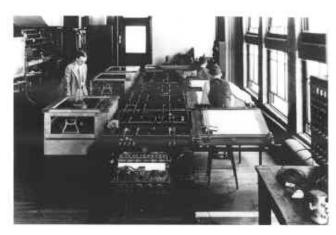


Photo of a modern punch card used from 1928 until the 1970s.

 Hollerith forms the Tabulating Machine Company in 1896 which eventually becomes IBM in 1924 through a merger and several name changes.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA


- Designed by Vannevar Bush starting in the 1920s and completed in the early 1930s.
- Rockefeller Differential Analyzer completed in 1942 at MIT
 - Massive machine
 - 100-ton machine
 - 2000 vacuum tubes
 - 150 motors
 - Fell into secrecy during World War II
 - Emerging after WWII, the Differential Analyzer was already obsolete, being replaced by digital computers like ENIAC

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

21

Differential Analyzer

The Differential Analyzer (MIT Museum)

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

Harvard Mark I

IBM Automatic Sequence Controlled Calculator

- IBM funded the construction under the permission of Thomas J. Watson, head of IBM

Aiken

- Constructed out of switches, relays, rotating shafts and clutches
- Sounded like a "roomful of ladies knitting"
- Contained more than 750,000 components
 - over 50 feet long
 - 8 feet tall
 - weighed approximately 5 tons

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

23

Harvard Mark I

IBM Automatic Sequence Controlled Calculator

Harvard Mark I (IBM Archives)

In 1947, how many electronic digital computers did Aiken predict would be required to satisfy the computing needs of the entire U.S.?

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

