Conditional Random Fields

11-711 recitation

Maria Ryskina

Example task: NER

```
PER PER O
Michael Bloomberg,
O O ORG ORG O
founder of Bloomberg L.P.,
O O LOC LOC
lives in New York
```

$$x$$
 input New York \mathcal{Y} candidate set {O PER, O ORG, ...} $y \in \mathcal{Y}$ candidate label O PER $f(x,y)$ feature function [1 0 0 0 1 ... 0] y^* true ("gold") label LOC LOC

Model form:

$$P(y|x,w) = \frac{\exp(w^{\top}f(x,y))}{\sum_{y' \in \mathcal{Y}} \exp(w^{\top}f(x,y'))} \propto \exp(w^{\top}f(x,y))$$

$$\{x^{(1)}, \dots x^{(N)}\}\$$

 $\{y^{*(1)}, \dots y^{*(N)}\}\$

training instances gold outputs

Learning: maximizing likelihood for gold outputs

$$L(w) = \log \prod_{k=1}^{N} P(y^{*(k)}|x^{(k)}, w) = \sum_{k=1}^{N} \log \left(\frac{\exp(w^{\top} f(x^{(k)}, y^{*(k)}))}{\sum_{y'} \exp(w^{\top} f(x^{(k)}, y'))} \right)$$

$$\{x^{(1)}, \dots x^{(N)}\}$$

 $\{y^{*(1)}, \dots y^{*(N)}\}$

training instances gold outputs

Learning: maximizing likelihood for gold outputs

$$L(w) = \log \prod_{k=1}^{N} P(y^{*(k)}|x^{(k)}, w) = \sum_{k=1}^{N} \log \left(\frac{\exp(w^{\top} f(x^{(k)}, y^{*(k)}))}{\sum_{y'} \exp(w^{\top} f(x^{(k)}, y'))} \right)$$

$$L(w) = \sum_{k=1}^{N} \left(w^{\top} f(x^{(k)}, y^{*(k)}) - \log \sum_{y'} \exp(w^{\top} f(x^{(k)}, y')) \right)$$

$$L(w) = \sum_{k=1}^{N} \left(w^{\top} f(x^{(k)}, y^{*(k)}) - \log \sum_{y' \in \mathcal{Y}} \exp(w^{\top} f(x^{(k)}, y')) \right)$$

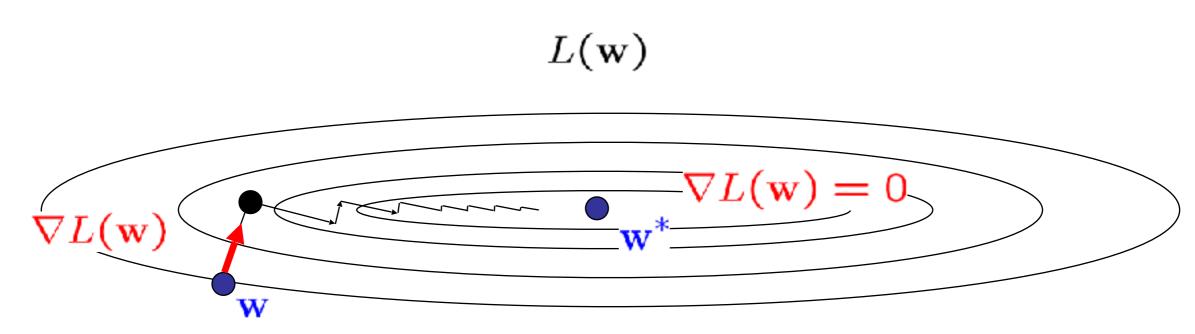
$$\frac{\partial L(w)}{\partial w} = \sum_{k=1}^{N} \left(f(x^{(k)}, y^{*(k)}) - \sum_{y' \in \mathcal{Y}} P(y'|x^{(k)}, w) f(x^{(k)}, y') \right)$$

Count of features under target labels

Expected count of features under model predicted label distribution

Gradient Ascent

The maxent objective is an unconstrained optimization problem



Gradient Ascent

- Basic idea: move uphill from current guess
- Gradient ascent / descent follows the gradient incrementally
- At local optimum, derivative vector is zero
- Will converge if step sizes are small enough, but not efficient
- All we need is to be able to evaluate the function and its derivative

Prediction:

$$\hat{y} = \arg\max_{y \in \mathcal{Y}} P(y|x, w)$$

$$\hat{y} = \arg\max_{y \in \mathcal{Y}} (w^{\top} f(x, y))$$

If y is a sequence, \mathcal{Y} grows exponentially!

Structured output space

$$x = \{x_1, \dots x_n\}$$
 input (sequential) $y = \{y_1, \dots y_n\}$ candidates (sequential)

Computation issues arise:

- sum over output space in training
- argmax over output space in decoding

Structured output space

$$x = \{x_1, \dots x_n\}$$
 input (sequential) $y = \{y_1, \dots y_n\}$ candidates (sequential)

Computation issues arise:

- sum over output space in training ← Forward-backward
- argmax over output space in decoding ← Viterbi

Solution: dynamic programming

Factorization assumption

To be able to use DP, we have to assume:

$$f(x,y) = \sum_{t=1}^{n+1} f(x, y_t, y_{t-1})$$
 $y_0 = \text{START}$
 $y_{n+1} = \text{STOP}$

Abuse of notation! $f(x, y_t, y_{t-1}) \triangleq f(x, y_t, y_{t-1}, t)$

CRF model form:

$$P(y|x,w) = \frac{1}{Z(w)} \exp\left(w^{\top} \sum_{t=1}^{n+1} f(x, y_t, y_{t-1})\right)$$

CRF vs. HMM

CRF:
$$P(y|x,w) \propto \exp\left(w^{\top} \sum_{t=1}^{n+1} f(x,y_t,y_{t-1})\right)$$

Compare to HMM:

$$P(x,y) = P(x_1|y_1)P(y_1) \cdot \prod_{t=2}^{n} P(y_t|y_{t-1})P(x_t|y_t)$$

- CRF is discriminative Conditional objective means no modeling P(x)
- CRF is more expressive
 Models dependence between each state and full sequence

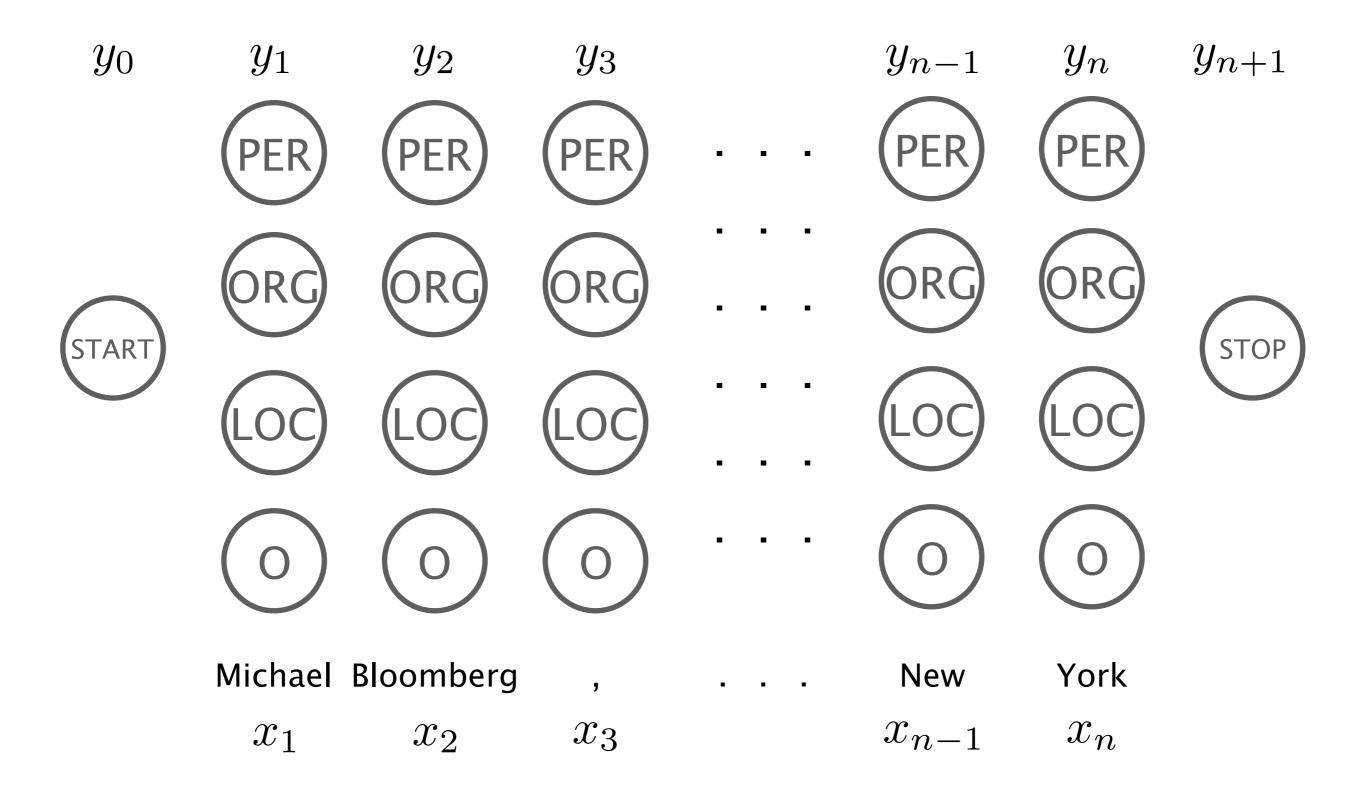
Computing gradients

$$\frac{\partial L(w)}{\partial w} = \sum_{k=1}^{N} \left(\sum_{t=1}^{n+1} f(x^{(k)}, y_t^{*(k)}, y_{t-1}^{*(k)}) - \sum_{y' \in \mathcal{Y}} P(y'|x^{(k)}, w) \sum_{t=1}^{n+1} f(x^{(k)}, y_t', y_{t-1}') \right)$$

$$\downarrow \downarrow$$

$$\frac{\partial L(w)}{\partial w} = \sum_{k=1}^{N} \left(\sum_{t=1}^{n+1} f(x^{(k)}, y_t^{*(k)}, y_{t-1}^{*(k)}) - \sum_{t=1}^{n+1} \sum_{t=1}^{N} P(y_t = s, y_{t-1} = s' | x^{(k)}, w) f(x^{(k)}, y_t = s, y_{t-1} = s') \right)$$

Dynamic programming



Forward pass

$$y_0 \quad y_1 \quad y_2 \quad y_3 \qquad y_{n-1} \quad y_n \quad y_{n+1}$$

$$PER \quad PER \quad PE$$

Backward pass

$$y_0 \qquad y_1 \qquad y_2 \qquad y_3 \qquad \qquad y_{n-1} \qquad y_n \qquad y_{n+1}$$

$$PER \qquad PER \qquad$$

Computing marginals

$$P(y_t = s, y_{t-1} = s' | x, w) = \frac{\alpha_{t-1}(s') \exp(w^{\top} f(x, y_t = s, y_{t-1} = s')) \beta_t(s)}{\alpha_{n+1}(\text{STOP})}$$

Computing marginals

$$y_0$$
 y_1
 y_2
 y_3
 y_{n-1}
 y_n
 y_{n+1}

 PER
 PER

$$P(y_t = s | x, w) = \frac{\alpha_t(s)\beta_t(s)}{\alpha_{n+1}(STOP)}$$

Questions?