Recitation notes on Kneser-Ney

Maria Ryskina

September 10, 2017

1 Notation

- V - corpus vocabulary
- $c(x)$ - count of n-gram x in the corpus
- $N_{1+}(\bullet w) \triangleq|\{u: c(u, w)>0\}|$ - number of unique bigrams in the corpus ending in w
- $N_{1+}(w \bullet) \triangleq|\{u: c(w, u)>0\}|$ - number of unique bigrams in the corpus starting with w
- $N_{1+}(\bullet w \bullet) \triangleq|\{(u, v): c(u, w, v)>0\}|$ - number of unique trigrams in the corpus with w in the middle
- $\mathbb{1}[\cdot]$ - indicator function

2 Conditional n-gram probabilities

$$
\begin{equation*}
P\left(w \mid \operatorname{prev}_{k-1}\right)=\frac{\max \left(c^{\prime}\left(\operatorname{prev}_{k-1}, w\right)-d, 0\right)}{\sum_{v \in V} c^{\prime}\left(\operatorname{prev}_{k-1}, v\right)}+\alpha\left(\operatorname{prev}_{k-1}\right) P\left(w \mid \operatorname{prev}_{k-2}\right) \tag{1}
\end{equation*}
$$

Highest order (trigram):

$$
\begin{equation*}
P\left(w_{3} \mid w_{1} w_{2}\right)=\frac{\max \left(c^{\prime}\left(w_{1} w_{2} w_{3}\right)-d, 0\right)}{\sum_{v \in V} c^{\prime}\left(w_{1} w_{2} v\right)}+\alpha\left(w_{1} w_{2}\right) P\left(w_{3} \mid w_{2}\right) \tag{2}
\end{equation*}
$$

Lower order (bigram and unigram):

$$
\begin{gather*}
P\left(w_{3} \mid w_{2}\right)=\frac{\max \left(c^{\prime}\left(w_{2} w_{3}\right)-d, 0\right)}{\sum_{v \in V} c^{\prime}\left(w_{2} v\right)}+\alpha\left(w_{2}\right) P\left(w_{3}\right) \tag{3}\\
P\left(w_{3}\right)=\frac{c^{\prime}\left(w_{3}\right)}{\sum_{v \in V} c^{\prime}(v)} \tag{4}
\end{gather*}
$$

Remembering the definition of $c^{\prime}(x)$:

- if x is a trigram, $c^{\prime}(x)=c(x)$ (count of the trigram in the corpus)
- if x is a bigram or a unigram: $c^{\prime}(x)=N_{1+}(\bullet x)$ (number of unique words preceding x in the corpus)

We substitute it in Equations 2-4:

$$
\begin{align*}
& P\left(w_{3} \mid w_{1} w_{2}\right)=\frac{\max \left(c\left(w_{1} w_{2} w_{3}\right)-d, 0\right)}{\sum_{v \in V} c\left(w_{1} w_{2} v\right)}+\alpha\left(w_{1} w_{2}\right) P\left(w_{3} \mid w_{2}\right)= \\
&=\frac{\max \left(c\left(w_{1} w_{2} w_{3}\right)-d, 0\right)}{c\left(w_{1} w_{2}\right)}+\alpha\left(w_{1} w_{2}\right) P\left(w_{3} \mid w_{2}\right) \tag{5}\\
& P\left(w_{3} \mid w_{2}\right)=\frac{\max \left(N_{1+}\left(\bullet w_{2} w_{3}\right)-d, 0\right)}{\sum_{v \in V} N_{1+}\left(\bullet w_{2} v\right)}+\alpha\left(w_{2}\right) P\left(w_{3}\right)= \tag{6}\\
&=\frac{\max \left(N_{1+}\left(\bullet w_{2} w_{3}\right)-d, 0\right)}{N_{1+}\left(\bullet w_{2} \bullet\right)}+\alpha\left(w_{2}\right) P\left(w_{3}\right) \\
& P\left(w_{3}\right)=\frac{N_{1+}\left(\bullet w_{3}\right)}{\sum_{v \in V} N_{1+}(\bullet v)}=\frac{N_{1+}\left(\bullet w_{3}\right)}{N_{1+}(\bullet \bullet)} \tag{7}
\end{align*}
$$

Here $N_{1+}(\bullet \bullet)$ is the number of all unique bigrams.

3 Computing α

To compute α, we sum over both sides of Equations 5-6 and use the fact that $\sum_{w \in V} P\left(w_{3}=\right.$ $w \mid \ldots)=1$. For the trigram case:

$$
\begin{align*}
\sum_{w \in V} P\left(w_{3}=w \mid w_{1} w_{2}\right) & =\frac{\sum_{w \in V} \max \left(c\left(w_{1} w_{2} w\right)-d, 0\right)}{c\left(w_{1} w_{2}\right)}+\alpha\left(w_{1} w_{2}\right) \sum_{w \in V} P\left(w_{3}=w \mid w_{2}\right) \\
1 & =\frac{\sum_{w \in V} \max \left(c\left(w_{1} w_{2} w\right)-d, 0\right)}{c\left(w_{1} w_{2}\right)}+\alpha\left(w_{1} w_{2}\right) \tag{8}
\end{align*}
$$

Since $0<d<1$, we can rewrite this equation as:

$$
\begin{align*}
1 & =\frac{\sum_{w \in V} c\left(w_{1} w_{2} w\right)-d \cdot \sum_{w \in V} \mathbb{1}\left[c\left(w_{1} w_{2} w\right)>0\right]}{c\left(w_{1} w_{2}\right)}+\alpha\left(w_{1} w_{2}\right)= \\
& =\frac{\sum_{w \in V} c\left(w_{1} w_{2} w\right)-d \cdot N_{1+}\left(w_{1} w_{2} \bullet\right)}{c\left(w_{1} w_{2}\right)}+\alpha\left(w_{1} w_{2}\right)= \tag{9}\\
& =1-\frac{d \cdot N_{1+}\left(w_{1} w_{2} \bullet\right)}{c\left(w_{1} w_{2}\right)}+\alpha\left(w_{1} w_{2}\right)
\end{align*}
$$

Finally,

$$
\begin{equation*}
\alpha\left(w_{1} w_{2}\right)=d \cdot \frac{N_{1+}\left(w_{1} w_{2} \bullet\right)}{c\left(w_{1} w_{2}\right)} \tag{10}
\end{equation*}
$$

Now, doing the same for the bigram case:

$$
\begin{align*}
1 & =\frac{\sum_{w \in V} \max \left(N_{1+}\left(\bullet w_{2} w\right)-d, 0\right)}{N_{1+}\left(\bullet w_{2} \bullet\right)}+\alpha\left(w_{2}\right)= \\
& =\frac{\sum_{w \in V} N_{1+}\left(\bullet w_{2} w\right)-d \cdot \sum_{w \in V} \mathbb{1}\left[N_{1+}\left(\bullet w_{2} w\right)>0\right]}{N_{1+}\left(\bullet w_{2} \bullet\right)}+\alpha\left(w_{2}\right) \tag{11}
\end{align*}
$$

Indicator $\mathbb{1}\left[N_{1+}\left(\bullet w_{2} w\right)>0\right]$ is equal to 1 for every w for which $w_{2} w$ occurs in at least one context. That is equivalent to saying bigram $w_{2} w$ occurs at least once ${ }^{1}$, so we can replace $\mathbb{1}\left[N_{1+}\left(\bullet w_{2} w\right)>0\right]$ with $\mathbb{1}\left[c\left(w_{2} w\right)>0\right]$:

$$
\begin{equation*}
1=1-d \cdot \frac{\sum_{w \in V} \mathbb{1}\left[c\left(w_{2} w\right)>0\right]}{N_{1+}\left(\bullet w_{2} \bullet\right)}+\alpha\left(w_{2}\right)=1-d \cdot \frac{N_{1+}\left(w_{2} \bullet\right)}{N_{1+}\left(\bullet w_{2} \bullet\right)}+\alpha\left(w_{2}\right) \tag{12}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
\alpha\left(w_{2}\right)=d \cdot \frac{N_{1+}\left(w_{2} \bullet\right)}{N_{1+}\left(\bullet w_{2} \bullet\right)} \tag{13}
\end{equation*}
$$

4 Edge cases

- Our derivation until now assumed that $c\left(w_{1} w_{2}\right)>0$, otherwise the denominators turn into 0 . If the context $w_{1} w_{2}$ has never occurred before, fully back off to lower order until you get to a context with non-zero count.
- If w_{3} is a word that has not been seen before, you can return a zero probability or back off to a uniform model and return $\frac{1}{|V|}$. Usually the first option is chosen.

5 Implementation tips

- In your hashmap structures, you might want to store tables for values used for computing α and P in addition to count tables:
- for every occurring unigram w you would store $N_{1+}(\bullet w), N_{1+}(w \bullet), N_{1+}(\bullet w \bullet)$.
- for every occurring bigram $v w$ you would store $N_{1+}(v w \bullet)$ and $N_{1+}(\bullet v w)$
- To account for unknown words in translation, you can return a very small constant instead of a zero probablilty in case of a unigram not seen before.

[^0]
[^0]: ${ }^{1}$ Except for w_{2} being the START symbol, but you will not observe any trigrams with START in the middle, so you will not need to compute this probability anyway.

