
Project 2 Write-up

Maria Ryskina
mryskina@cs.cmu.edu

Abstract

In this project we implemented a CKY
parser with and without coarse-to-fine
pruning and evaluated it for different con-
figurations of parameters on several sec-
tions of Penn TreeBank. We studied
how different markovization levels affect
the performance of both parsers and per-
formed error analysis.

1 Implementation details

1.1 CKY parsing
For CKY implementation we stored the scores in
two separate charts: one where the last rule ap-
plied was unary, and another one for binary. While
we go up in the chart, we first update the cells on
the current row of binary chart based on previous
row of unary chart, and then the same row of unary
chart based on the binary row that we just did:

chartB[i][j][X] = max
X→Y Z

max
k∈[i,j)

score(X → Y Z)×

× chartU[i][k][Y ] · chartU[k + 1][j][Z]

chartU[i][j][X] = max
X→Y

score(X → Y )×

× chartB[i][j][Y ]

We do that because we want the last rule applied
to be unary (in most cases it is ROOT → S).

We use the lowest level of binary chart to store
unary rules of the form tag → word. This is be-
cause we want the first rule to be applied to preter-
minals to also be unary.

We fill the both charts in bottom-to-top, alterat-
ing between them and recording back-pointers for
the chosen rules (these require two extra charts –
for unary and binary rules). To optimize for speed,
we go over all the rules by left child (or simply
child for unary rules), and only calculate the score

if the corresponding cell in the previous chart con-
tains nonzero score.

Then we recursively reconstruct the tree using
the saved back-pointers, unroll all unary rules us-
ing unary closure, and debinarize the obtained
tree.

1.2 Coarse-to-fine pruning
Here we use inside-outside algorithm using coarse
grammar (v = 1, h = 0) to collect overall proba-
bility for each cell and prune those that are too low.
For inside scores we go bottom-to-top exactly like
in CKY, but replacing maxes with sums:

alphaB[i][j][X] =
∑

X→Y Z

∑
k∈[i,j)

score(X → Y Z)×

× alphaU[i][k][Y ] · alphaU[k + 1][j][Z]

alphaU[i][j][X] =
∑
X→Y

score(X → Y )×

× alphaB[i][j][Y ]

For outside scores, we set

betaU[0][n− 1][ROOT ] = 1

and then go top-to-bottom, pushing the scores
down. Here the unary chart is the one where
we applied a unary rule going bottom-to-top, and
same for binary.

S = score(X → Y Z) · betaB[i][j][X]

betaU[i][k][Y ] += S · alphaU[k + 1][j][Z]

betaU[k + 1][j][Z] += S · alphaU[i][k][Y ]

betaB[i][j][Y ] +=

score(X → Y ) · betaU[i][j][X]

Now we store 4 charts for inside and outside
scores; now we compute the full score:

alphaU[i][j][X] · betaU[i][j][X]

alphaU[0][n− 1][ROOT ]



P R F1 EX
v = 2, h = 2 81.34 79.74 80.53 21.54
v =∞, h = 1 75.24 70.05 72.55 11.08
v = 1, h = 1 74.41 67.99 71.06 8.99
v = 0, h = 1 64.42 52.43 57.81 3.35

Table 1: CKY without pruning: average precision,
recall, F1 and exact count for different grammars.

and
alphaB[i][j][X] · betaB[i][j][X]

alphaU[0][n− 1][ROOT ]

and create unary and binary boolean mask charts
(having 0 if the corresponding score is lower than
the threshold, and 1 otherwise).

Then we perform CKY with fine grammar, with
one difference: before updating a cell, we look at
the cell of the corresponding coarse symbol in the
appropriate mask, and prune this cell if the value
is 0.

2 Experimental Evaluation

First, let us compare the performance of CKY for
different levels of grammar refinement (horizon-
tal and vertical markovization). The accuracy is
shown in Table 2. All experiments were performed
on validation set (files 2200 to 2299 of Penn
TreeBank) and full dataset (maxTrainLength =
1000, maxTestLength = 40). The best grammar
is v = 2, h = 2, and this is the one we are mainly
going to use as the fine grammar for coarse-to-fine
experiments.

Now let us see how pruning affects the perfor-
mance. Our initial hypothesis was that it is going
to speed the process up but sacrifice a few points
in accuracy. The comparison is shown in Table 2.

Accuracy goes down if we increase the thresh-
old, which is understandable: the more we prune,
the less potential parse trees we get to compare, so
increasing the threshold will decrease of F1. Pars-
ing also becomes faster, because we have to update
fewer cells.

However, we still could not beat CKY in terms
of time. This must be a defect of this particular
implementation: apparently, construction of inside
and outside charts for each sentence took too long,
and even with a great deal of pruning coarse-to-
fine was too slow. Even when we made the prun-
ing strict enough to get a significant decrease in
accuracy, it was still slower than simple CKY.

F1 Time
CKY 80.53 29.42 min

T = −50 80.53 46.29 min
T = −10 80.43 37.94 min
T = −5 75.79 34.77 min

Table 2: Perofrmance of CKY with and without
pruning (v = 2, h = 2). Threshold values re-
ported in log scale.

F1 Time
CKY 72.55 45.71 min

T = −5 71.61 51.27 min

Table 3: Perofrmance of CKY with and without
pruning (v = 1, h = ∞). Threshold values re-
ported in log scale.

We also compared results for v = 1, h = ∞
grammar: for a complex grammar the coarse pass
should be much faster than the fine pass, and then
pruning should have a positive effect on time. As
you can see in Table 2, that was not the case with
our implementation. This is most likely a result
of poor optimization in terms of speed on coarse
pass.

3 Error Analysis

In this section we will see which types of sen-
tences usually cause our parser to make mistakes.
Let us look at our best solution (CKY for v =
2, h = 2); the results for coarse-to-fine with the
same grammar are very similar.

1. Length is the first major factor. As expected,
the longer the sentence is, the harder it be-
comes for parsing. In our experiments, for all
sentences longer than 15 exact match rate is
20% or lower (measured for each length sep-
arately).

To examine this more closely, we look at the
whole validation set and calculate average ac-
curacy of CKY for sentences of any particu-
lar length. The result is shown on Figure 1.
We can see that our parser is very good with
short sentences, but as sentences grow, the
accuracy decreases.

We also show a histogram of how the num-
ber of errors made by CKY depends on sen-
tence length (Figure 1). It looks like the
parser makes the biggest number of mistakes



on sentences of length 18-25. However, this
is not really a valid measure of quality, be-
cause very long and very short sentences are
also uncommon in our dataset.

Figure 1: Average accuracy vs. sentence length

Figure 2: Number of errors vs. sentence length

2. Another measure of structural complexity of
a sentence is the occurrence of particular la-
bels in the tree. For example, CKY makes a
lot of mistakes on sentences with subordinate
clauses (i.e. the gold parse for this sentences
contains an SBAR tag). About 86% of trees
with SBAR in our validation set are parsed
incorrectly, and they constitute 47% of errors
CKY makes.

It is also hard to parse ungrammatical sen-
tence fragments. 14 out of 15 sentences with
FRAG get parsed incorrectly, although this
is just a minor fraction of our error set.

3. We also had a hypothesis that there might be
a correlation between the number of children
of ROOT in the gold parse and the error rate.
But it turns out that all the trees in our valida-
tion set start with a unary rule (in most cases,
ROOT → S or ROOT → SINV ), so this
can not have any effect.

4 Conclusion

We have built a CKY parser with ang without
coarse-to-fine and studied how different parame-
ters affect the performance. As expected, pruning
decreases accuracy of parsing, but it also turned
out to be slower than simple CKY (which is most
likely a result of lack of optimization). We have
also studied which features of sentences might
cause the parser to make mistakes.

In our experiments we tried different levels of
grammar complexity and chose the most suitable
setting. Our best solution spends about 22 min-
utes on decoding, and has an F1 score of 80.53 on
full validation dataset (84.81 in 15 seconds with
maxTrainLength = maxTestLength = 15).


