Semantics and First-Order Predicate Calculus

11-711 Algorithms for NLP

28 November 2017
(With thanks to Noah Smith)

Key Challenge of Meaning

- We actually say very little - much more is left unsaid, because it's assumed to be widely known.
- Examples:
- Reading newspaper stories
- Using restaurant menus
- Learning to use a new piece of software

Meaning Representation Languages

- Symbolic representation that does two jobs:
- Conveys the meaning of a sentence
- Represents (some part of) the world
- We're assuming a very literal, context-independent, inference-free version of meaning!
- Semantics vs. linguists' "pragmatics"
- "Meaning representation" vs some philosophers' use of the term "semantics".
- Today we'll use first-order logic. Also called First-Order Predicate Calculus. Logical form.

A MRL Should Be Able To ...

- Verify a query against a knowledge base: Do CMU students follow politics?
- Eliminate ambiguity: CMU students enjoy visiting Senators.
- Cope with vagueness: Sally heard the news.
- Cope with many ways of expressing the same meaning (canonical forms): The candidate evaded the question vs. The question was evaded by the candidate.
- Draw conclusions based on the knowledge base: Who could become the 45th president?
- Represent all of the meanings we care about

Model-Theoretic Semantics

- Model: a simplified representation of (some part of) the world: objects, properties, relations (domain).
- Non-logical vocabulary
- Each element denotes (maps to) a well-defined part of the model
- Such a mapping is called an interpretation

A Model

- Domain: Noah, Karen, Rebecca, Frederick, Green Mango, Casbah, Udipi, Thai, Mediterranean, Indian
- Properties: Green Mango and Udipi are crowded; Casbah is expensive
- Relations: Karen likes Green Mango, Frederick likes Casbah, everyone likes Udipi, Green Mango serves Thai, Casbah serves Mediterranean, and Udipi serves Indian
- n, k, r, f, g, c, u, t, m, i
- Crowded = \{g, u\}
- Expensive = \{c\}
- Likes $=\{(\mathrm{k}, \mathrm{g}),(\mathrm{f}, \mathrm{c}),(\mathrm{n}, \mathrm{u}),(\mathrm{k}, \mathrm{u}),(\mathrm{r}, \mathrm{u}),(\mathrm{f}, \mathrm{u})\}$
- Serves $=\{(\mathrm{g}, \mathrm{t}),(\mathrm{c}, \mathrm{m}),(\mathrm{u}, \mathrm{i})\}$

Some English

- Karen likes Green Mango and Frederick likes Casbah.
- Noah and Rebecca like the same restaurants.
- Noah likes expensive restaurants.
- Not everybody likes Green Mango.
- What we want is to be able to represent these statements in a way that lets us compare them to our model.
- Truth-conditional semantics: need operators and their meanings, given a particular model.

First-Order Logic

- Terms refer to elements of the domain: constants, functions, and variables
- Noah, SpouseOf(Karen), X
- Predicates are used to refer to sets and relations; predicate applied to a term is a Proposition
- Expensive(Casbah)
- Serves(Casbah, Mediterranean)
- Logical connectives (operators):

$$
\wedge \text { (and), } \vee \text { (or), } \neg \text { (not) } \Rightarrow \text { (implies) }, \ldots
$$

- Quantifiers ...

Quantifiers in FOL

- Two ways to use variables:
- refer to one anonymous object from the domain (existential; \exists; "there exists")
- refer to all objects in the domain (universal; \forall; "for all")
- A restaurant near CMU serves Indian food
$\exists x$ Restaurant(x) \wedge Near(x, CMU) \wedge Serves(x, Indian)
- All expensive restaurants are far from campus $\forall x$ Restaurant $(x) \wedge$ Expensive $(x) \Rightarrow \neg \operatorname{Near}(x, C M U)$

Inference

- Big idea: extend the knowledge base, or check some proposition against the knowledge base.
- Forward chaining with modus ponens: given a and $a \Rightarrow$ β, we know β.
- Backward chaining takes a query β and looks for propositions α and $\alpha \Rightarrow \beta$ that would prove β.
- Not the same as backward reasoning (abduction).
- Used by Prolog
- Both are sound, neither is complete by itself.

Inference example

- Starting with these facts:

Restaurant(Udipi)
$\forall x$ Restaurant $(x) \Rightarrow$ Likes(Noah, x)

- We can "turn a crank" and get this new fact:

Likes(Noah, Udipi)

FOL: Meta-theory

- Well-defined set-theoretic semantics
- Sound: can't prove false things
- Complete: can prove everything that logically follows from a set of axioms (e.g., with "resolution theorem prover")
- Well-behaved, well-understood
- Mission accomplished?

FOL: But there are also "Issues"

- "Meanings" of sentences are truth values.
- Only first-order (no quantifying over predicates [which the book does without comment]).
- Not very good for "fluents" (time-varying things, realvalued quantities, etc.)
- Brittle: anything follows from any contradiction(!)
- Goedel incompleteness: "This statement has no proof"!
- (Finite axiom sets are incomplete w.r.t. the real world.)
- So: Most systems use its descriptive apparatus (with extensions) but not its inference mechanisms.

First-Order Worlds, Then and Now

- Interest in this topic (in NLP) waned during the 1990s and 2000s.
- It has come back, with the rise of semi-structured databases like Wikipedia.
- Lay contributors to these databases may be helping us to solve the knowledge acquisition problem.
- Also, lots of research on using NLP, information extraction, and machine learning to grow and improve knowledge bases from free text data.
- "Read the Web" project here at CMU.
- And: Semantic embedding/NN/vector approaches.

Lots More To Say About MRLs!

- See chapter 17 for more about:
- Representing events and states in FOL
- Dealing with optional arguments (e.g., "eat")
- Representing time
- Non-FOL approaches to meaning

Connecting Syntax and Semantics

Semantic Analysis

- Goal: transform a NL statement into MRL (today, FOL).
- Sometimes called "semantic parsing."
- As described earlier, this is the literal, contextindependent, inference-free meaning of the statement

"Literal, context-independent, inference-free" semantics

- Example: The ball is red
- Assigning a specific, grounded meaning involves deciding which ball is meant
- Would have to resolve indexical terms including pronouns, normal NPs, etc.
- Logical form allows compact representation of such indexical terms (vs. listing all members of the set)
- To retrieve a specific meaning, we combine LF with a particular context or situation (set of objects and relations)
- So LF is a function that maps an initial discourse situation into a new discourse situation (from situation semantics)

Compositionality

- The meaning of an NL phrase is determined by combining the meaning of its sub-parts.
- There are obvious exceptions ("hot dog," "straw man," "New York," etc.).
- Note: your book uses an event-based FOL representation, but l'm using a simpler one without events.
- Big idea: start with parse tree, build semantics on top using FOL with λ-expressions.

Extension: Lambda Notation

- A way of making anonymous functions.
- λx. (some expression mentioning x)
- Example: $\lambda x . N e a r(x, C M U)$
- Trickier example: $\lambda x . \lambda y$.Serves(y, x)
- Lambda reduction: substitute for the variable.
- (λx.Near(x, CMU))(LulusNoodles) becomes Near(LulusNoodles, CMU)

Lambda reduction: order matters!

- $\boldsymbol{\lambda} \mathbf{x} . \boldsymbol{\lambda y}$.Serves(y, x) (Bill)(Jane) becomes λy.Serves(y, Bill)(Jane) Then λy.Serves(y, Bill) (Jane) becomes Serves(Jane, Bill)
- $\boldsymbol{\lambda} \mathbf{y} . \boldsymbol{\lambda} \mathbf{x}$.Serves(y, x) (Bill)(Jane) becomes λx.Serves(Bill, x)(Jane) Then λx.Serves(Bill, x) (Jane) becomes Serves(Bill, Jane)

An Example

- Noah likes expensive restaurants.
- $\forall x$ Restaurant(x) \wedge Expensive $(x) \Rightarrow$ Likes(Noah, $x)$

An Example

- Noah likes expensive restaurants.
- $\forall x$ Restaurant $(\mathrm{x}) \wedge$ Expensive $(\mathrm{x}) \Rightarrow$ Likes(Noah, x$)$

An Example

- Noah likes expensive restaurants.
- $\forall x$ Restaurant $(x) \wedge$ Expensive $(\mathrm{x}) \Rightarrow$ Likes(Noah, x$)$

An Example

- Noah likes expensive restaurants.
- $\forall x$ Restaurant $(x) \wedge$ Expensive $(\mathrm{x}) \Rightarrow$ Likes(Noah, x$)$

An Example

- Noah likes expensive restaurants.
- $\forall x$ Restaurant $(x) \wedge$ Expensive $(x) \Rightarrow$ Likes(Noah, $x)$

An Example

- Noah likes expensive restaurants.
- $\forall x$ Restaurant $(x) \wedge$ Expensive $(x) \Rightarrow$ Likes(Noah, $x)$

An Example

- Noah likes expensive restaurants.
- $\forall x$ Restaurant $(x) \wedge$ Expensive $(x) \Rightarrow$ Likes(Noah, $x)$

An Example

- Noah likes expensive restaurants.
- $\forall x$ Restaurant $(x) \wedge$ Expensive $(x) \Rightarrow$ Likes(Noah, $x)$

An Example

- Noah likes expensive restaurants.
- $\forall x$ Restaurant $(x) \wedge$ Expensive $(\mathrm{x}) \Rightarrow$ Likes(Noah, x$)$

Alternative (Following SLP)

- Noah likes expensive restaurants.
- $\forall x$ Restaurant $(x) \wedge$ Expensive $(x) \Rightarrow$ Likes(Noah, $x)$

$$
S \rightarrow \text { NP VP \{ NP.sem(VP.sem) }\}
$$

Quantifier Scope Ambiguity


```
S -> NP VP { NP.sem(VP.sem) }
NP }->\mathrm{ Det NN { Det.sem(NN.sem) }
VP }->\mathrm{ VBZ NP { VBZ.sem(NP.sem) }
```



```
Det }->\textrm{a}{\lambdam.\lambdan. \exists\textrm{xm}(\textrm{x})\wedge\textrm{n}(\textrm{x})
NN }->\mathrm{ man { \v.Man(v) }
NN }->\mathrm{ woman { \y.Woman(y) }
VBZ }->\mathrm{ loves { \h. .kk.h( }\lambda\textrm{w}.\operatorname{Loves(k, w)) }
```

- Every man loves a woman.
- $\forall \mathrm{u} \operatorname{Man}(\mathrm{u}) \Rightarrow \exists \mathrm{x} \operatorname{Woman}(\mathrm{x}) \wedge \operatorname{Loves}(\mathrm{u}, \mathrm{x})$

This Isn't Quite Right!

- "Every man loves a woman" really is ambiguous.
- $\forall u \operatorname{Man}(u) \Rightarrow \exists x \operatorname{Woman}(x) \wedge \operatorname{Loves}(u, x)$
- $\exists x \operatorname{Woman}(x) \wedge \forall u \operatorname{Man}(u) \Rightarrow \operatorname{Loves}(u, x)$
- This gives only one of the two meanings.
- Extra ambiguity on top of syntactic ambiguity
- One approach is to delay the quantifier processing until the end, then permit any ordering.

Quantifier Scope

- A seat was available for every customer.
- A toll-free number was available for every customer.
- A secretary called each director.
- A letter was sent to each customer.
- Every man loves a woman who works at the candy store.
- Every 5 minutes a man gets knocked down and he's not too happy about it.

What Else?

- Chapter 18 discusses how you can get this to work for other parts of English (e.g., prepositional phrases).
- Remember attribute-value structures for parsing with more complex things than simple symbols?
- You can extend those with semantics as well.
- No time for ...
- Statistical models for semantics
- Parsing algorithms augmented with semantics
- Handling idioms

Generalized Quantifiers

- In FOL, we only have universal and existential quantifiers
- One formal extension is type-restriction of the quantified variable: Everyone likes Udipi:

$$
\begin{aligned}
& \forall \mathrm{x} \text { Person }(\mathrm{x}) \Rightarrow \text { Likes }(\mathrm{x}, \text { Udipi) becomes } \\
& \forall \mathrm{x} \mid \text { Person }(\mathrm{x}) \text {.Likes }(\mathrm{x}, \text { Udipi) }
\end{aligned}
$$

- English and other languages have a much larger set of quantifiers: all, some, most, many, a few, the, ...
- These have the same form as the original FOL quantifiers with type restrictions:
<quant><var>|<restriction>.<body>

Generalized Quantifier examples

- Most dogs bark

Most $\mathrm{x} \mid \operatorname{Dog}(\mathrm{x})$. Barks(x)

- Most barking things are dogs

Most x | Barks(x) . Dog(x)

- The dog barks

The $\mathrm{x} \mid \operatorname{Dog}(\mathrm{x}) . \operatorname{Barks}(\mathrm{x})$

- The happy dog barks

The $\mathrm{x} \mid(\operatorname{Happy}(\mathrm{x}) \wedge \operatorname{Dog}(\mathrm{x}))$. $\operatorname{Barks}(\mathrm{x})$

- Interpretation and inference using these are harder...

Speech Acts

- Mood of a sentence indicates relation between speaker and the concept (proposition) defined by the LF
- There can be operators that represent these relations:
- ASSERT: the proposition is proposed as a fact
- YN-QUERY: the truth of the proposition is queried
- COMMAND: the proposition describes a requested action
- WH-QUERY: the proposition describes an object to be identified

ASSERT (Declarative mood)

- The man eats a peach

ASSERT(The $\mathrm{x} \mid \operatorname{Man}(\mathrm{x}) .(\mathrm{A} y \mid \operatorname{Peach}(\mathrm{y}) . \operatorname{Eat}(\mathrm{x}, \mathrm{y})))$

YN-QUERY (Interrogative mood)

- Does the man eat a peach?

YN-QUERY(The x | Man(x) . (A y | Peach(y) . Eat(x,y)))

COMMAND (Imperative mood)

- Eat a peach, (man).

COMMAND(A y | Peach(y) . Eat(*HEARER*, y))

WH-QUERY

-What did the man eat?
WH-QUERY(The x | Man(x) . (WH y | Thing(y) . Eat(x,y)))

- One of a whole set of new quantifiers for wh-questions:
- What: WH x|Thing(x)
- Which dog: WH x|Dog(x)
- Who: WH x|Person(x)
- How many men: HOW-MANY x | Man(x)

Other complications

- Relative clauses are propositions embedded in an NP
- Restrictive versus non-restrictive: the dog that barked all night vs. the dog, which barked all night
- Modal verbs: non-transparency for truth of subordinate clause: Sue thinks that John loves Sandy
- Tense/Aspect
- Plurality
- Etc.

