Algorithms for NLP

Speech Inference

Taylor Berg-Kirkpatrick – CMU

Slides: Dan Klein – UC Berkeley
Due date postponed: now due Tuesday 9/27 at 11:59pm

Will be using blackboard for jar and write-up submission
 - We will test as soon as this is set up
 - Invites will be sent to everyone (will announce)

Extra jar submission of your best system
 - No spot-checks for extra jar... feel free to use approximations

Instructions for submission will be added to website

If using open-address w/ long keys, try this hash:
 - `int hash = ((int) (key ^ (key >>> 32)) * 3875239);`
Project Grading

- **Late days: 5 total, use whenever**
 - But no credit for late submissions when you run out of late days!
 - (Be careful!)

- **Grading: Projects out of 10**
 - 6 Points: Successfully implemented what we asked
 - 2 Points: Submitted a reasonable write-up
 - 1 Point: Write-up is written clearly
 - 1 Point: Substantially exceeded minimum metrics
 - Extra Credit: Did non-trivial extension to project
Why these Peaks?

- **Articulation process:**
 - The vocal cord vibrations create harmonics
 - The mouth is an amplifier
 - Depending on shape of mouth, some harmonics are amplified more than others
Feature Extraction

- A frame (25 ms wide) extracted every 10 ms

Feature extraction for each frame:
1) DFT (spectrum)
2) Log (prod -> sum)
3) another DFT (lowpass)
Deconvolution / Lifting

\[\log(e) + \log(f) = \log(s) \]
Speech Model

Words

Sound types

Acoustic observations
HMMs for Continuous Observations

- Before: discrete set of observations
- Now: feature vectors are real-valued
- Solution 1: discretization
- Solution 2: continuous emissions
 - Gaussians
 - Multivariate Gaussians
 - Mixtures of multivariate Gaussians
- A state is progressive
 - Context independent subphone (~3 per phone)
 - Context dependent phone (triphones)
 - State tying of CD phone
GMMs

- **Summary:** each state has an emission distribution $P(x|s)$ (likelihood function) parameterized by:
 - M mixture weights
 - M mean vectors of dimensionality D
 - Either M covariance matrices of DxD or M Dx1 diagonal variance vectors

- **Like soft vector quantization after all**
 - Think of the mixture means as being learned codebook entries
 - Think of the Gaussian densities as a learned codebook distance function
 - Think of the mixture of Gaussians like a multinomial over codes
 - (Even more true given shared Gaussian inventories, cf next week)
State Model
State Transition Diagrams

- Bayes Net: HMM as a Graphical Model

- State Transition Diagram: Markov Model as a Weighted FSA
ASR Lexicon

Figure: J & M
Lexical State Structure

Word Model

Observation Sequence (spectral feature vectors)

Figure: J & M
Adding an LM

Figure from Huang et al page 618
State Space

- State space must include:
 - Current word (|V| on order of 20K+)
 - Index within current word (|L| on order of 5)
 - E.g. (lec[t]ure) (though not in orthography!)

- Acoustic probabilities only depend on phone type
 - E.g. P(x|lec[t]ure) = P(x|t)

- From a state sequence, can read a word sequence
State Refinement
Phones Aren’t Homogeneous
Need to Use Subphones

Figure: J & M
A Word with Subphones

Figure: J & M
Modeling phonetic context
“Need” with triphone models
Lots of Triphones

- Possible triphones: 50x50x50=125,000

- How many triphone types actually occur?

- 20K word WSJ Task (from Bryan Pellom)
 - Word internal models: need 14,300 triphones
 - Cross word models: need 54,400 triphones

- Need to generalize models, tie triphones
State Tying / Clustering

- [Young, Odell, Woodland 1994]
- How do we decide which triphones to cluster together?
- Use phonetic features (or ‘broad phonetic classes’)
 - Stop
 - Nasal
 - Fricative
 - Sibilant
 - Vowel
 - lateral

Initial set of untied states

L-Nasal? y n

R-Liquid? y n

L-Fricative? y n

R-m? y n

Tie states in each leaf node

Figure: J & M
FSA for Lexicon + Bigram LM

Figure from Huang et al page 618
State Space

- Full state space

(LM context, lexicon index, subphone)

- Details:
 - LM context is the past n-1 words
 - Lexicon index is a phone position within a word (or a trie of the lexicon)
 - Subphone is begin, middle, or end
 - E.g. (after the, lec[t-mid]ure)

- Acoustic model depends on clustered phone context
 - But this doesn’t grow the state space
Decoding
Inference Tasks

Most likely word sequence:
\[d \quad - \quad ae \quad - \quad d \]

Most likely state sequence:
\[d_1-d_6-d_6-d_4-ae_5-ae_2-ae_3-ae_0-d_2-d_2-d_3-d_7-d_5 \]
$\phi_t(s_{t-1}, s_t) = P(a_t|s_t)P(s_t|s_{t-1})$

$P(a, s) = \prod_t P(a_t|s_t)P(s_t|s_{t-1})$

$= \prod_t \phi_t(s_{i-1}, s_i)$

Figure: Enrique Benimeli
Naïve Viterbi

\[v_t(s_t) = \max_{s_{t-1}} v_{t-1}(s_{t-1}) \phi_t(s_{t-1}, s_t) \]
Beam Search

- Problem: trellis is too big to compute $v(s)$ vectors
- Idea: most states are terrible, keep $v(s)$ only for top states at each time
- Important: still dynamic programming; collapse equiv states
At each time step

- Start: Beam (collection) \(v_t \) of hypotheses \(s \) at time \(t \)
- For each \(s \) in \(v_t \)
 - Compute all extensions \(s' \) at time \(t+1 \)
 - Score \(s' \) from \(s \)
 - Put \(s' \) in \(v_{t+1} \) replacing existing \(s' \) if better
- Advance to \(t+1 \)

Beams are priority queues of fixed size* \(k \) (e.g. 30) and retain only the top \(k \) hypotheses
Beam Search

<table>
<thead>
<tr>
<th>lect[t-beg]ure</th>
<th>t = 1</th>
<th>t = 2</th>
<th>t = 3</th>
<th>t = 4</th>
<th>t = 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>d[o-end]g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ca[t-beg]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r[a-mid]t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a[c-mid]orn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Prefix Trie Encodings

- Problem: many partial-word states are indistinguishable
- Solution: encode word production as a prefix trie (with pushed weights)

A specific instance of minimizing weighted FSAs [Mohri, 94]

Example: Aubert, 02
Imagine you have a unigram language model

When does a hypothesis get “charged” for cost of a word?
- In naïve lexicon FSA, can charge when word is begun
- In naïve prefix trie, don’t know word until the end
- ... but you can charge partially as you complete it
Emission Caching

- Problem: scoring all the $P(x|s)$ values is too slow
- Idea: many states share tied emission models, so cache them
LM Reweighting

- Noisy channel suggests
 \[P(x|w)P(w) \]

- In practice, want to boost LM
 \[P(x|w)P(w)^\alpha \]

- Also, good to have a “word bonus” to offset LM costs
 \[P(x|w)P(w)^\alpha |w|^\beta \]

- The needs for these tweaks are both consequences of broken independence assumptions in the model, so won’t easily get fixed within the probabilistic framework
Training
What Needs to be Learned?

- **Emissions:** $P(x \mid \text{phone class})$
 - X is MFCC-valued

- **Transitions:** $P(\text{state} \mid \text{prev state})$
 - If between words, this is $P(\text{word} \mid \text{history})$
 - If inside words, this is $P(\text{advance} \mid \text{phone class})$
 - (Really a hierarchical model)
Estimation from Aligned Data

- What if each time step was labeled with its (context-dependent sub) phone?

![Diagram of phoneme sequence]

- Can estimate \(P(x|/ae/) \) as empirical mean and (co-)variance of \(x\)'s with label /ae/

- Problem: Don’t know alignment at the frame and phone level
Forced Alignment

- What if the acoustic model $P(x|\text{phone})$ was known?
 - ... and also the correct sequences of words / phones

- Can predict the best alignment of frames to phones

 “speech lab”

- Called “forced alignment”
Forced Alignment

- Create a new state space that forces the hidden variables to transition through phones in the (known) order

![Diagram of state transitions](image)

- Still have uncertainty about durations

- In this HMM, all the parameters are known
 - Transitions determined by known utterance
 - Emissions assumed to be known
 - Minor detail: self-loop probabilities

- Just run Viterbi (or approximations) to get the best alignment
EM for Alignment

- Input: acoustic sequences with word-level transcriptions
- We don’t know either the emission model or the frame alignments
- Expectation Maximization (Hard EM for now)
 - Alternating optimization
 - Impute completions for unlabeled variables (here, the states at each time step)
 - Re-estimate model parameters (here, Gaussian means, variances, mixture ids)
 - Repeat
 - One of the earliest uses of EM!
Soft EM

- **Hard EM uses the best single completion**
 - Here, single best alignment
 - Not always representative
 - Certainly bad when your parameters are initialized and the alignments are all tied
 - Uses the count of various configurations (e.g. how many tokens of /ae/ have self-loops)

- **What we’d really like is to know the fraction of paths that include a given completion**
 - E.g. 0.32 of the paths align this frame to /p/, 0.21 align it to /ee/, etc.
 - Formally want to know the expected count of configurations
 - Key quantity: $P(s_t \mid x)$
Computing Marginals

\[P(s_t|x) = \frac{P(s_t, x)}{P(x)} \]

= sum of all paths through s at t

sum of all paths
Forward Scores

\[v_t(s_t) = \max_{s_{t-1}} v_{t-1}(s_{t-1}) \phi_t(s_{t-1}, s_t) \]

\[\alpha_t(s_t) = \sum_{s_{t-1}} \alpha_{t-1}(s_{t-1}) \phi_t(s_{t-1}, s_t) \]
Backward Scores

\[\beta_t(s_t) = \sum_{s_{t+1}} \beta_{t+1}(s_{t+1}) \phi_t(s_t, s_{t+1}) \]
Total Scores

\[P(s_t, x) = \alpha_t(s_t)\beta_t(s_t) \]

\[P(x) = \sum_{s_t} \alpha_t(s_t)\beta_t(s_t) \]

\[= \alpha_T(\text{stop}) \]

\[= \beta_0(\text{start}) \]
Computing fractional (expected) counts

- Compute forward / backward probabilities
- For each position, compute marginal posteriors
- Accumulate expectations
- Re-estimate parameters (e.g. means, variances, self-loop probabilities) from ratios of these expected counts
Staged Training and State Tying

- **Creating CD phones:**
 - Start with monophone, do EM training
 - Clone Gaussians into triphones
 - Build decision tree and cluster Gaussians
 - Clone and train mixtures (GMMs)

- **General idea:**
 - Introduce complexity gradually
 - Interleave constraint with flexibility