Feature Structures and Unification Grammars

11-711 Algorithms for NLP
15 November 2016 – Part II
Linguistic features

• (Linguistic “features” vs. ML “features”.)
• Human languages usually include agreement constraints; in English, e.g., subject/verb
 – I often swim
 – He often swims
 – They often swim
• Could have a separate category for each minor type: N1s, N1p, ..., N3s, N3p, ...
 – Each with its own set of grammar rules!
A day without features...

- NP1s → Det-s N1s
- NP1p → Det-p N1p
 ...
- NP3s → Det-s N3s
- NP3p → Det-p N3p
 ...
- S1s → NP1s VP1s
- S1p → NP1p VP1p
- S3s → NP3s VP3s
- S3p → NP3p VP3p
Linguistic features

• *Could* have a separate category for each minor type: N1s, N1p, ... , N3s, N3p, ...
 – *Each* with its own set of grammar rules!

• Much better: represent these regularities using independent *features*: number, gender, person, ...

• Features are typically introduced by lexicon; checked and propagated by constraint equations attached to grammar rules
Feature Structures (FSs)

Having multiple orthogonal features with values leads naturally to **Feature Structures:**

\[
[\text{Det} \\
 [\text{root}: a] \\
 [\text{number}: sg]]
\]

A feature structure’s values can in turn be FSs:

\[
[NP \\
 [\text{agreement}: [[\text{number}: sg] \\
 [\text{person}: 3rd]]]]
\]

Feature Path: <NP agreement person>
Adding constraints to CFG rules

- \(S \rightarrow NP \ VP \)
 \(<NP \text{ number}> = <VP \text{ number}>\)
- \(NP \rightarrow \text{Det} \ Nominal \)
 \(<NP \text{ head}> = <\text{Nominal head}>\)
 \(<\text{Det head agree}> = <\text{Nominal head agree}>\)
FSs from lexicon, constrs. from rules

Lexicon entry:

[Det
 [root: a]
 [number: sg]]

Rule with constraints:

NP → Det Nominal

<NP number> = <Det number>
<NP number> = <Nominal number>

• Combine to get result:

[NP [Det
 [root: a]
 [number: sg]]
 [Nominal [number: sg] ...]
 [number: sg]]
Similar issue with VP types

Another place where grammar rules could explode:

Jack laughed

\[VP \rightarrow \text{Verb} \quad \text{for many specific verbs} \]

Jack found a key

\[VP \rightarrow \text{Verb} \ \text{NP} \quad \text{for many specific verbs} \]

Jack gave Sue the paper

\[VP \rightarrow \text{Verb} \ \text{NP} \ \text{NP} \quad \text{for many specific verbs} \]
Verb Subcategorization

Verbs have sets of allowed args. Could have many sets of VP rules. Instead, have a SUBCAT feature, marking sets of allowed arguments:

```
+none -- Jack laughed
+np -- Jack found a key
+np+np -- Jack gave Sue the paper
+vp:inf -- Jack wants to fly
+np+vp:inf -- Jack told the man to go
+vp:ing -- Jack keeps hoping for the best
+np+vp:ing -- Jack caught Sam looking at his desk
+np+vp:base -- Jack watched Sam look at his desk
+np+pp:to -- Jack gave the key to the man

+pp:loc -- Jack is at the store
+np+pp:loc -- Jack put the box in the corner
+pp:mot -- Jack went to the store
+np+pp:mot -- Jack took the hat to the party
+adjp -- Jack is happy
+np+adjp -- Jack kept the dinner hot
+sfor -- Jack believed that the world was flat
+sfor -- Jack hoped for the man to win a prize
```

50-100 possible frames for English; a single verb can have several.

(Notation from James Allen “Natural Language Understanding”)
Frames for “ask”
(in J+M notation)

<table>
<thead>
<tr>
<th>Subcat</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quo</td>
<td>asked ([Quo \text{ “What was it like?”}])</td>
</tr>
<tr>
<td>NP</td>
<td>asking ([NP \text{ a question}])</td>
</tr>
<tr>
<td>Swh</td>
<td>asked ([Swh \text{ what trades you’re interested in}])</td>
</tr>
<tr>
<td>Sto</td>
<td>ask ([Sto \text{ him to tell you}])</td>
</tr>
<tr>
<td>PP</td>
<td>that means asking ([PP \text{ at home}])</td>
</tr>
<tr>
<td>Vto</td>
<td>asked ([Vto \text{ to see a girl called Evelyn}])</td>
</tr>
<tr>
<td>NP Sif</td>
<td>asked ([NP \text{ him}] [Sif \text{ whether he could make}])</td>
</tr>
<tr>
<td>NP NP</td>
<td>asked ([NP \text{ myself}] [NP \text{ a question}])</td>
</tr>
<tr>
<td>NP Swh</td>
<td>asked ([NP \text{ him}] [Swh \text{ why he took time off}])</td>
</tr>
</tbody>
</table>
Adding transitivity constraint

- $S \rightarrow NP \ VP$

 $<NP\ number> = <VP\ number>$

- $NP \rightarrow \text{Det Nominal}$

 $<NP\ head> = <\text{Nominal}\ head>$
 $<\text{Det head agree}> = <\text{Nominal head agree}>$

- $VP \rightarrow \text{Verb} \ NP$

 $<VP\ head> = <\text{Verb}\ head>$
 $<VP\ head\ subcat> = +np \quad (\text{which means transitive})$
Applying a verb subcat feature

Lexicon entry:

[Verb
 [root: found]
 [head: find]
 [subcat: +np]]

• Combine to get result:

[VP [Verb
 [root: found]
 [head: find]
 [subcat: +np]]
[NP ...]
 [head: [find [subcat: +np]]]]

Rule with constraints:

VP → Verb NP
<VP head> = <Verb head>
<VP head subcat> = +np
Relation to LFG constraint notation

- \(VP \rightarrow \text{Verb} \quad \text{NP} \)
 \(<\text{VP head}> = <\text{Verb head}>\)
 \(<\text{VP head subcat}> = +\text{np}\)

 from JM book is the same as the LFG expression

- \(VP \rightarrow \text{Verb} \quad \text{NP} \)
 \((↑\text{head}) = (↓\text{head})\)
 \((↑\text{head subcat}) = +\text{np}\)
Unification

• Merging FSs (and failing if not possible) is called **Unification**

• Simple FS examples:

 \[\text{[number sg]} \sqcup \text{[number sg]} = \text{[number sg]} \]
 \[\text{[number sg]} \sqcup \text{[number pl]} \text{ **FAILS**} \]
 \[\text{[number sg]} \sqcup \text{[number []]} = \text{[number sg]} \]
 \[\text{[number sg]} \sqcup \text{[person 3rd]} = \text{[number sg, person 3rd]} \]
Recap: applying constraints

Lexicon entry:

[Det
 [root: a]
 [number: sg]]

Rule with constraints:

NP → Det Nominal

<NP number> = <Det number>
<NP number> = <Nominal number>

• Combine to get result:

[NP [Det
 [root: a]
 [number: sg]]
[Nominal [number: sg] ...]
[number: sg]]
Turning constraint eqns. into FS

Lexicon entry:

[Det
 [root: a]
 [number: sg]]

- Combine to get result:

 [NP [Det
 [root: a]
 [number: sg]]
 [Nominal [number: sg]
 ...
 [number: sg]]]

Rule with constraints:

NP → Det Nominal

\(<\text{NP number}\> = <\text{Det number}>\)
\(<\text{NP number}\> = <\text{Nominal number}>\)

becomes:

[NP [Det [number: (1)]]
 [Nominal
 [number: (1)]
 ...
 [number: (1)]]]
Another example

This (oversimplified) rule:

\[S \to NP \ VP \]

\[<S \text{ subject}> = NP \]

\[<S \text{ agreement}> = <S \text{ subject agreement}> \]

turns into this DAG:

[S [subject (1)
 [agreement (2)]]
[agreement (2)]
[agreement (2)]
[NP (1)]
[VP]
Unification example without “EQ“

[agreement [number sg],
 subject [agreement [number sg]]]
⊔[subject [agreement [person 3rd, number sg]]]
= [agreement [number sg],
 subject [agreement [person 3rd, number sg]]]

• <agreement number> is equal to <subject agreement number>, but not EQ
Unification example with “EQ“

[agreement (1), subject [agreement (1)]]

⊔ [subject [agreement [person 3rd, number sg]] = [agreement (1), subject [agreement (1) [person 3rd, number sg]]]

• <agreement number> is <subject agreement number> (EQ), so they are equal
Representing FSs as DAGs

• Taking feature paths seriously
• May be easier to think about than numbered cross-references in text
• [cat NP, agreement [number sg, person 3rd]]
Re-entrant FS as DAGs

- [cat S, head [agreement (1) [number sg, person 3rd], subject [agreement (1)]]]
Seems tricky. Why bother?

• Unification allows the systems that use it to handle many complex phenomena in “simple” elegant ways:
 – There seems to be a dog in the yard.
 – There seem to be dogs in the yard

• Unification makes this work smoothly.
 – Make the Subjects of the clauses EQ:
 <VP subj> = <VP COMP subj>
 [VP [subj: (1)] [COMP [subj: (1)]]]
 – (Ask Lori Levin for LFG details.)
Real Unification-Based Parsing

- $X_0 \rightarrow X_1 X_2$

 $<X_0 \text{ cat}> = S$, $<X_1 \text{ cat}> = \text{NP}$, $<X_2 \text{ cat}> = \text{VP}$

 $<X_1 \text{ head agree}> = <X_2 \text{ head agree}>$

 $<X_0 \text{ head}> = <X_2 \text{ head}>$

- $X_0 \rightarrow X_1 \text{ and } X_2$

 $<X_1 \text{ cat}> = <X_2 \text{ cat}>$, $<X_0 \text{ cat}> = <X_1 \text{ cat}>$

- $X_0 \rightarrow X_1 X_2$

 $<X_1 \text{ orth}> = \text{how}$, $<X_2 \text{ sem}> = <\text{SCALAR}>$
Complexity

• Earley modification: “search the chart for states whose DAGs unify with the DAG of the completed state”. Plus a lot of copying.

• Unification parsing is “quite expensive”.
 – NP-Complete in some versions.
 – Early AWB paper on Turing Equivalence(!)

• So maybe too powerful?
 (like GoTo or Call-by-Name?)
 – Add restrictions to make it tractable:
 • Tomita’s Pseudo-unification (Tomabechi too)
 • Gerald Penn work on tractable HPSG: ALE
Formalities: subsumption

- Less specific FS1 **subsumes** more specific FS2
 \[\text{FS1} \sqsubseteq \text{FS2} \quad \text{(Inverse is FS2 extends FS1)} \]
- Subsumption relation forms a **semilattice**, at the top: []

\[
\begin{align*}
&\text{[number sg]} \quad \text{[person 3]} \quad \text{[number pl]} \\
&\text{[number sg, person 3]} \\
\end{align*}
\]

- Unification defined wrt semilattice:
 \[F \sqcup G = H \quad \text{s.t.} \quad F \sqsubseteq H \text{ and } G \sqsubseteq H \]
 H is the Most General Unifier (MGU)
Hierarchical Types

Hierarchical types allow *values* to unify too (or not):
Hierarchical subcat frames

Many verbs share *subcat* frames, some with more arguments specified than others:
Questions?
Subcategorization

<table>
<thead>
<tr>
<th>Noun Phrase Types</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>There</td>
<td>nonreferential there</td>
<td>There is still much to learn</td>
</tr>
<tr>
<td>It</td>
<td>nonreferential it</td>
<td>It was evident that my ideas</td>
</tr>
<tr>
<td>NP</td>
<td>noun phrase</td>
<td>As he was relating his story</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Preposition Phrase Types</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PP</td>
<td>preposition phrase</td>
<td>couch their message in terms</td>
</tr>
<tr>
<td>PPing</td>
<td>gerundive PP</td>
<td>censured him for not having intervened</td>
</tr>
<tr>
<td>PPpart</td>
<td>particle</td>
<td>turn it off</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verb Phrase Types</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VPbrst</td>
<td>bare stem VP</td>
<td>she could discuss it</td>
</tr>
<tr>
<td>VPto</td>
<td>to-marked infin. VP</td>
<td>Why do you want to know?</td>
</tr>
<tr>
<td>VPwh</td>
<td>wh-VP</td>
<td>it is worth considering how to write</td>
</tr>
<tr>
<td>VPing</td>
<td>gerundive VP</td>
<td>I would consider using it</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Complement Clause Types</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sfin</td>
<td>finite clause</td>
<td>maintain that the situation was unsatisfactory</td>
</tr>
<tr>
<td>Swh</td>
<td>wh-clause</td>
<td>it tells us where we are</td>
</tr>
<tr>
<td>Sif</td>
<td>whether/if clause</td>
<td>ask whether Aristophanes is depicting a</td>
</tr>
<tr>
<td>Sing</td>
<td>gerundive clause</td>
<td>see some attention being given</td>
</tr>
<tr>
<td>Sto</td>
<td>to-marked clause</td>
<td>know themselves to be relatively unhealthy</td>
</tr>
<tr>
<td>Sfrom</td>
<td>for-to clause</td>
<td>She was waiting for him to make some reply</td>
</tr>
<tr>
<td>Sbrst</td>
<td>bare stem clause</td>
<td>commanded that his sermons be published</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Types</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AjP</td>
<td>adjective phrase</td>
<td>thought it possible</td>
</tr>
<tr>
<td>Quo</td>
<td>quotes</td>
<td>asked “What was it like?”</td>
</tr>
</tbody>
</table>
• (Add an example full parse “he runs”)
 – After “another example” slide?
• Get from F15(?) Recitation notes??