Exploiting Global Input/Output Access Pattern Classification*

Tara M. Madhyastha

Daniel A. Reed

{tara,reed }@cs.uiuc.edu
Department of Computer Science
University of Illinois

Urbana, Illinois 61801

1 Introduction

Despite continued innovations in disk design, in-
put/output performance has not kept pace with
concurrent increases in processor speeds. For
input/output intensive applications, only paral-
lel input/output can ameliorate the resulting in-
put/output bottleneck. In a parallel file sys-
tem, multiple application tasks concurrently ac-
cess common files that are distributed across mul-
tiple disks. Each task has its own, local, access
pattern, and the interleaving of these local pat-
terns forms a global access pattern.

To minimize the execution time of an in-
put/output dominated parallel application, a
parallel file system must exploit not only the indi-
vidual local access streams but also their aggre-
gate, global properties. Although some current
parallel file systems provide interfaces to express
global access pattern information, application in-
put/output characterization studies have repeat-
edly shown that application developers are often
unaware of the detailed input/output behavior
of their codes, particularly when input/output
requests are mediated by input/output libraries
(e.g., like HDF [17]).

To provide the requisite local and global access
pattern information and to remove the intellec-
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tual burden of such specification from the appli-
cation developer, we have developed a suite of au-
tomatic access pattern classification techniques
that combine local input/output access patterns
to create global ones. The file system classi-
fies access patterns either dynamically through-
out program execution, or at file open using in-
formation from previous program executions. It
then uses the global classification to select file
system policies that optimize the per file parallel
input/output performance of the application as
a whole.

The remainder of this paper is organized as fol-
lows. In §2 we motivate the need for global clas-
sification information to improve input/output
performance. We describe local and global classi-
fication in detail in §3. Evaluation of global clas-
sification requires an experimental framework,
described in §4. We present our experimental
results in §5. Finally, §6-§7 place this work in
context and summarize our results.

2 Access Pattern Classification
Rationale

In previous work we showed the performance
benefits of using local access pattern classification
to tune file system policies [16] for sequential ap-
plications. In a parallel file system, the complex-
ities of efficiently servicing concurrent, related,
input/output request streams make exploitation
of global behavior even more important to overall
performance. Global access pattern information
can be used to select globally optimal file system
policies that cannot be determined from local ac-
cess patterns.



For example, consider a global interleaved ac-
cess pattern where local strided access patterns
interleave during execution to create a sequential
pattern. If the file is striped (the default declus-
tering strategy used by most commercial paral-
lel file systems) and request size is smaller than
the stripe unit, the same stripe unit will be re-
read multiple times as the processors coordinate
to access the file. Caching this stripe unit can po-
tentially prevent many unnecessary disk accesses,
and prefetching the file sequentially can improve
throughput.

Application programming interfaces (APIs)
for current commercial and experimental file
systems provide limited support for application
specification of global access patterns. In Intel’s
PFS [8] the programmer can select one of five
modes that describe common global access pat-
terns. MPI-IO [23], a proposed high-level API for
parallel input/output, allows a developer to spec-
ify arbitrarily complex access patterns. IBM’s
PIOFS also provides an interface to describe file
views. To provide this same functionality, while
not requiring the application developer to specify
the access pattern, we have developed real-time
access pattern classification techniques that can
dynamically identify local and global access pat-
terns and choose appropriate file access modes
and policies.

3 Access Pattern Classification

Abstractly, an access pattern is a qualitative
statement describing future file accesses that can
be used to select and tune file system policies.
Applications often have qualitative, recognizable
input/output access patterns (e.g., ‘read-only se-
quential with large request sizes,” or ‘write-only
strided.’) File systems are normally optimized
for certain common access patterns, and perfor-
mance is poor when other access patterns occur.
For example, sequential prefetching is a poor pol-
icy when a file is accessed randomly.

Within a parallel application, there are two
levels at which input/output access patterns can
be observed. The first is at the local level (e.g.,
per parallel program thread), and the second is
at the global level (e.g., per parallel program).
For example, the threads of a parallel program
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Figure 1: Access pattern space.

might access a parallel file in such a way that
each thread appears to be accessing the file lo-
cally in strides, but the interleaved access stream
is globally sequential.

3.1 Local Access Patterns

An input/output trace of file accesses from a sin-
gle processor may be represented as a stream of
tuples of the form

< byte offset, request size, read /write > .

Based on this portable input/output represen-
tation and our ongoing characterization of scien-
tific application input/output patterns as part of
the Scalable I/O Initiative [2, 22, 20], we par-
titioned access patterns based on three broad
features: read/write mix, sequentiality, and re-
quest size. Figure 1 shows an access pattern
space described by these axes; each point in the
three-dimensional space represents a unique ac-
cess pattern. Many functions can be computed
on the trace tuple components to yield identifi-
able access patterns in the access pattern space.
However, access patterns that are predictive and
can be used to influence file system policy selec-
tion are the most interesting to identify. Fig-
ure 1 shows certain categories meeting these cri-
teria along each axis that can be used to label
all points in the access pattern space. Additional
categories can be added as necessary to each axis
to further refine the access pattern space.
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The set of classifications on each axis C =
a,b,...is a partially ordered set < C, C>, where
C is the relationship “is a less precise predictor.”
For example, a classification of “Read/Write” is a
less precise predictor than either a “Read Only”
or “Write Only” classification. Figure 2 shows
the Hasse diagrams for local classifications. Each
category of local classifications forms a lattice,
because every pair of elements a,b € C has a
greatest lower bound and a least upper bound.
The greatest lower bound, or meet operator is de-
noted by a®b and the least upper bound, or join,
by a®b. For example, if there are two access pat-
terns, read only and write only, from Figure 2 the
greatest lower bound of the two is a read/write
access pattern. The least upper bound of the
two classifications is the access pattern trace, or
the precise description of the accesses themselves,
which would be a perfect predictor.

3.2 Local Classification Methodology

Many techniques can be used to classify and iden-
tify observed patterns using the lattice model.
One simple approach is to apply heuristics to the
sequences of input/output requests generated by
an application and attempt to locate the pattern
in the access space. Unfortunately such an ap-
proach is not easily extensible.

We have investigated more sophisticated clas-
sification approaches that “learn” to classify ac-
cess patterns. One approach is to train a feed-
forward artificial neural network [6] (ANN) to
classify patterns. We provide the neural network
with examples of access patterns and their cor-
responding classifications; once trained, the net-
work can correctly classify new access patterns.

Another approach is to represent a file as a
collection of blocks, and construct a probabilistic
model of transitions between blocks from previ-
ous execution traces using an extended Markov
model, or hidden Markov model (HMM) [21, 1].
With such a model, classification is performed
by computing the probability of detecting cer-
tain features based on previous execution infor-
mation. A detailed description of classification
methodologies is beyond the scope of this paper;
for more details, see [15].

These two classification approaches are com-
plementary. Artificial neural network (ANN)
classification detects access patterns automati-
cally throughout execution without any execu-
tion history. HMM classification can recognize
a wider range of access patterns and features
that occur on a long time scale (e.g., file reuse),
but to be useful, the HMM must be trained on
previous application executions. Most impor-
tantly, HMMs can provide classifications at file
open based on previous execution information,
while neural network classification must observe
some window of accesses before detecting local
and global patterns.

3.3 Global Classification

Local classification is powerful tool for tuning file
system policies in a sequential file system [16].
However, local classification is a small part of a
global classification problem. As we noted ear-
lier, local access patterns within the parallel pro-
gram merge during program execution to create a
global access pattern; it is essential to recognize
qualitative patterns within the interleavings of
the local input/output requests. In a parallel file
system, the complexities of efficiently servicing
concurrent, related input/output request streams
make exploitation of global behavior critical to
overall performance. Global access pattern infor-



mation is necessary to select file system policies
to optimize total system throughput that cannot
be determined from local access patterns.

For example, consider a global sequential ac-
cess pattern for a small initialization file (i.e.,
each processor reads the file individually). If a
parallel file system stripes file blocks across disks
and the request size is smaller than the stripe
size, all input/output requests will be serviced by
a single disk, causing a bottleneck. A better pol-
icy choice is to read the file once, providing each
processor with its own local copy. However, this
bottleneck cannot be determined without knowl-
edge of the global access pattern, the data distri-
bution, and the request size.

3.4 Global Classification Methodology

Our global classification infrastructure is based
on an access pattern temporal algebra. We com-
bine local classifications and other local data to
make global classifications. However, merging
this information is difficult because local infor-
mation must be coordinated in time and space to
identify the global file access pattern at a given
point in time.

Local and global classifications are valid dur-
ing a specific time interval corresponding to
the duration between the first and last accesses
within the observation period. We represent
the valid time interval of a local classification
as (ts,le), where t, is the start time and t. is
the end time. A global classification is valid for
(maz(ts), min(t.)) over all p local classifications.
If maz(t,) > min(t.), the local classifications do
not all overlap, so we cannot make a global clas-
sification with cardinality p.

When this happens, it implies that the local
classification windows are too small and are stag-
gered in time or that multiple access patterns are
present. In the first case, it is difficult to predict
a priori an appropriate duration of local classi-
fication windows to ensure a global classification
window, because it is dependent upon the dy-
namic input/output rates of the individual pro-
cessors. These rates change between and during
program executions, varying with input data and
system configuration.

If the local classifications overlap in time, a

global access pattern classification is determined
by a combination of local classifications. In ad-
dition, to identify global sequentiality, quantita-
tive information about the input/output access
stream is used to “correlate” the local classifi-
cations within the global file context. For ex-
ample, if every local access pattern is sequential,
the beginning and end of every sequential stream
is used to determine whether the global pattern
is global sequential (every process reads the entire
file sequentially) or partitioned sequential (the en-
tire file is read in disjoint, sequential segments).

Each category of the classification (i.e., each
axis of Figure 1) except for sequentiality can be
determined as the meet of the local classifications
for that category. For example, the read/write
global classifications are straightforward; if each
local access pattern is read only, the global ac-
cess pattern is read only. If the local access pat-
terns collectively involve reading and writing, the
strongest global classification is read/write.

Global classifications involving sequentiality
require additional information about the bytes
accessed by each client. As an example, we for-
mulate a classification for a global interleaved
sequential access pattern below, assuming a
nonzero range (maz(t,;), min(t.)).

Interleaved sequential Processors each access
the entire file in strided patterns which in-
terleave to form a global sequential pattern.

Figure 3 shows byte ranges accessed by each
of four processors during an interleaved se-
quential access pattern. We view the access
pattern through a time window; the white
regions are accesses used to make a global
classification and the shaded accesses have
not yet occurred.

We make this classification under the follow-
ing conditions:

e maz(t,) < min(t.)

o ®L = 1-D strided

e N bytes accessed = §)

e If we merge the input/output requests
from the different processors by file po-

sition, there should be at least p con-
tiguous requests, where p is the number
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Figure 3: Global interleaved sequential classifica-
tion.

of processors involved in the classifica-
tion). In Figure 3, the first 5 requests
are contiguous, satisfying this require-
ment.

4 Portable Parallel File System

The Portable Parallel File System (PPFS)[7] is a
portable input/output library designed to be an
extensible testbed for file system policies. It has
a rich interface for control of data placement and
file system policies that can be manipulated by
the application or by an automatic classifier.

Figure 4 shows the PPFS components and
their interactions. Application clients in-
voke PPFS interface functions to initiate in-
put/output. To open a file, the application first
contacts the metadata server, which stores or
creates information about the file layout on re-
mote disk servers (input/output nodes). With
this information, the application can issue in-
put/output requests and specify caching and
prefetching polices for all levels of the system.
Clients either satisfy the requests locally or for-
ward them to servers (abstractions of remote in-
put/output devices). Clients and servers each
have their own caches and prefetch engines. All
“physical” input/output is performed through an
underlying UNIX file system.

To provide automatic policy control based on
local and global classification, we extended the
basic PPFS design. Processors access files using
a UNIX style read/write interface with individ-
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Figure 4: PPFS with global classification.

ual file pointers. Each client has a local classifica-
tion module that generates qualitative and quan-
titative information used to control local caching
and prefetching policies from input/output ac-
cess streams.

To support global classification, we added a
global classification server to consolidate local
classifications and necessary access statistics, as
described in §3.3. When the global server clas-
sifies an access pattern, it updates policies ac-
cordingly on the input/output servers and the
clients. Depending on the selected local classifi-
cation method, clients can also consult the global
classifier at file open for an initial global policy
based on previous execution data.

5 Global Classification Experiments

To demonstrate the performance improvements
from global classification, we show results from
benchmarks and parallel applications from the
Scalable I/O Initiative application suite on the
Intel Paragon XP/S. We used PPFS as an in-
termediary between the application requests and
the underlying Intel PFS file system [8].

PFS is a parallel file system that stripes data
over disks on input/output nodes using a default
64 KB stripe size. In normal usage, applications
provide access pattern information by specify-



ing PFS modes and have limited control over in-
put/output node buffering. In our hybrid system,
our access pattern classification toolkit identifies
access patterns and automatically chooses appro-
priate PFS file modes.

The PFS modes we manipulate below are
M_UNIX (the default, atomic UNIX style in-
put/output), M_LRECORD (efficient access for in-
terleaved sequential accesses), M_ASYNC (which
does not preserve input/output atomicity) and
M_GLOBAL (for global access patterns, where
all processors read the same file bytes). De-
spite recommendations for matching PFS mode
to pattern, the choice of “optimal” Intel mode
depends upon other factors, such as request size,
input/output configuration, and the number of
processors doing input/output.

PFS also supports buffering on the in-
put/output nodes. The default buffering strat-
egy, intended for requests larger than 64 KB, is to
disable buffering. However, buffering can be en-
abled on a per file basis to improve performance
for smaller input/output requests.

Using global classification, we automatically
select optimal PFS input/output modes and
buffering strategies and compare performance to
the default mode. Our motivation for this ap-
proach is not to optimize PFS performance, but
rather to demonstrate the feasibility and im-
portance of timely access pattern detection in
conjunction with the well-defined set of policies.
Emerging APIs like high-level MPI-1O interface
and the Scalable I/O low-level interface provide
a much richer set of controls, enabling a larger
set of future optimizations using access pattern
classifications.

5.1 Access Pattern Benchmarks

To explore the responsiveness and overhead of
our automatic classification framework, we con-
ducted a series of parallel experiments to au-
tomatically classify global sequential and global
interleaved access patterns. PPFS selects PFS
mode M_GLOBAL when the global access pat-
tern is read only global sequential, and mode
M_RECORD when the global access pattern is
read only interleaved sequential. We vary the re-
quest size and number of processors. The PFS
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configuration has 16 input/output nodes, each
controlling a 4 GB Seagate disk.

Figures 5 and 6 show the speedups obtained by
using the PPFS library and classification frame-
work to automatically select an appropriate PFS
mode during execution, as compared to the de-
fault mode M_UNIX. The input file sizes are 120
MB for the interleaved access pattern and 20
MB for the global sequential access pattern, large
enough to ensure time to classify the global ac-
cess pattern.

In general, when a file system is given informa-
tion that an access pattern is global interleaved
sequential, it can parallelize accesses, prefetch
file data sequentially, and utilize cache space
more effectively. In PFS, mode M_RECORD im-
proves performance of interleaved input/output
access patterns by guaranteeing that processors
will read fixed length records stored in node or-
der, allowing the file system to parallelize ac-
cesses and optimize for interleaved sequential file
access.

In file systems that decluster file blocks, global
sequential access patterns often perform poorly
because processors contend for the same disk.
Using a global sequential classification, we can
select PFS M_GLOBAL, which alleviates this

bottleneck by synchronizing requests across all
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sification to select M_GLOBAL vs. M_UNIX).

processors and having one processor perform in-
put/output on behalf of all.

Figure 7 shows dynamic throughput, com-
puted over windows of length 0.5 seconds, for the
global interleaved sequential benchmark running
under PPFS with automatic classification, com-
pared to the sustained throughput obtained from
PFS with modes M_RECORD and M_UNIX. Af-
ter the global classifier obtains local classifica-
tions from the individual processors, it combines
them to form a global classification of interleaved
sequential, and updates the local processes with
the new policy selection (M_RECORD). Because
of the underlying PFS implementation, the new
mode cannot be selected immediately; all pro-
cessors must synchronize at the same position
in the file to change the mode. Our PPFS im-
plementation synchronizes at the next classifica-
tion point (every ten accesses) to change the in-
put/output mode. Once M_RECORD is selected,
PPFS throughput increases to that obtained by
the native PFS less the overhead of PPFS library
calls.

5.2 QCRD

QCRD [24, 14] is a quantum chemical reaction
dynamics code used to study elementary chem-
The code uses the method of
symmetrical hyperspherical coordinates and lo-

ical reactions.
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Figure 7: Global interleaved access pattern, 16
processors, 8 KB request size.

cal hyperspherical surface functions to solve the
Schrédinger equation for the cross sections of the
scattering of an atom by a diatomic molecule.
Parallelization is accomplished by data decom-
position; all processors execute the same code
on different portions of the global matrices. The
matrices are large enough to necessitate an out-
of-core solution; the chosen data decomposition
results in strided and cyclic input/output access
patterns.

QCRD has five qualitatively similar phases; we
limit our analysis to the second phase of QCRD,
using a moderately sized data set. In phase two,
64 processors collectively read 13 matrices (writ-
ten in phase one). All processors read the first
2412 bytes of each matrix and coordinate to read
the remainder with a global interleaved sequen-
tial access pattern; most matrices are read twice
without reopening. The output of this phase is
12 smaller matrices, written using a global inter-
leaved access pattern.

Because of the initial global reads, mode
M_ASYNC, which has performance comparable
to mode M_RECORD, is the best mode for all
file access patterns. Furthermore, because the
request sizes are small (2400 KB), enabling I/0
server buffering further improves performance.

We executed this application on a 64 node par-
tition of a 512 node Intel Paragon XP/S. Output
was to a parallel file system with 16 input/output
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Figure 8: QCRD phase two throughput.

nodes, each controlling a 4 GB Seagate disk.

Figure 8 shows the total throughput, calcu-
lated every 128 KB, for one of the input matrices.
Using the two classification methods described in
§3.2, the artificial neural network (ANN) and hid-
den Markov model (HMM) classifications, we ob-
tain classifications for each file and change poli-
cies as soon as the classification is available. Us-
ing ANN classification, each processor must lo-
cally classify a window of ten accesses before the
global classifier can determine that the pattern is
globally interleaved. Using HMM -classification,
the global classification determined from previ-
ous execution data is available at file open.

Throughput using mode M_UNIX (no classi-
fication) is poor because file operations are se-
rialized. The ANN classifier switches to mode
M_ASYNC approximately halfway through exe-
cution, dramatically improving throughput. The
lag between the policy change and the perfor-
mance improvement is due to the synchronization
overhead of resetting the input/output mode.
The HMM classifier can obtain a better initial de-
fault policy from the global classifier at file open,
improving performance throughout the file life-
time. However, throughput even with improved
initial policies dips briefly midway through file
lifetime, corresponding to when the file is re-
wound and reread.

Table 1 shows the input/output and execution
times for this phase of QCRD. The most substan-

tial performance improvement comes from recog-
nizing that the global file access pattern is in-
terleaved and selecting mode M_ASYNC. A sec-
ondary performance improvement is possible us-
ing the observation that the global average re-
quest size is small. A global interleaved sequen-
tial pattern with requests smaller than the stripe
unit size will benefit from caching at the in-
put/output nodes, because several processors will
request disjoint segments from the same block.
However, for large interleaved requests, the in-
put/output server cache may begin thrashing,
degrading input/output performance, making in-
put/output server buffering a poor policy choice.

Early classification, exploiting the fact that in-
put/output access patterns in this application are
the same across program executions, affords the
best performance. There are too few accesses to
each output file to classify their patterns using
our implementation of ANN classification, and
the ability to select the optimal policies for the
input files when they are opened, rather than
during execution, reduces total read time by an
order of magnitude.

5.3 PRISM

PRISM, a computational fluid dynamics code, is
a parallel implementation of a 3-D numerical sim-
ulation of the Navier-Stokes equations [4, 5]. The
parallelization is by apportioning the periodic do-
main to the processors, with a combination of
spectral elements and Fourier modes used to in-
vestigate the dynamics and transport properties
of turbulent flow. We focus on the first phase, in
which every processor reads three initialization
files.

This kind of workload (global sequential ac-
cess) causes a bottleneck at the input/output
servers, which are overrun with identical requests
Because PFS files are
striped across the available input/output nodes,

from each processor.

increasing the number of disks does not paral-
lelize input/output and does not improve per-
formance. Because this bottleneck is prominent
even in very small configurations, we present re-
sults from executing PRISM with a small dataset
on 16 processors of an Intel Paragon XP/S with
one input/output node controlling a single RAID.



Classification ‘ PFS Mode ‘ Buffering ‘ Read Time | Write Time | Execution Time

None M_UNIX Off 51810.79 4908.84 1144.42
ANN M_ASYNC Off 42717.46 5664.19 996.148
ANN M_ASYNC On 34503.84 5150.02 858.35
HMM M_ASYNC Off 2478.51 433.31 284.20
HMM M_ASYNC On 1558.31 286.05 263.92

Table 1: QCRD phase 2 input/output times (seconds).

We focus our analysis on one initialization file
that is read twice sequentially during startup
by each processor. ANN and HMM classifica-
tion classify the access pattern as global sequen-
tial. There are two optimizations PPFS supports
given this classification.

The first possible policy selection is to se-
lect PFS mode M_GLOBAL, which synchroniz-
ing processors making identical input/output re-
quests, internally issuing only one request for all
processors and broadcasting the result to the oth-
ers. Because the initialization file is read using
UNIX buffered input/output, the input/output
request size is 8 KB and synchronization occurs
at every global read.

Another common global optimization to im-
prove read performance of small initialization
files is to have one processor read the entire file
when it is opened and broadcast it to the oth-
ers. We implemented this policy in conjunction
with a local default policy selection of caching
with 2 64 KB blocks, sufficient to retain the
127394 byte file. The block size is selected for
input/output efficiency (it is the PFS stripe unit
size). User-level buffering eliminates the synchro-
nization overhead of M_GLOBAL and provides
the best performance, however, this optimization
can be selected only if the classification is known
at file open.

Figure 9 shows average per processor through-
put, calculated per 8 KB block, for access to
one initialization file using the default M_UNIX
PFS input/output mode (no classification), us-
ing HMM and ANN classification to select mode
M_GLOBAL, and using HMM classification to
enable caching and have processor zero read the
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Figure 9: PRISM initialization file throughput.

file and broadcast it to the other processors.

Throughput using the default mode M_UNIX
is very poor; in the PFS implementation of this
mode nodes may not read the file in parallel. The
ANN classifier improves performance by recog-
nizing, after the first ten accesses, that the ac-
cess pattern on each processor is sequential and
read-only. It sends this information (along with
the byte ranges accessed) to the global classifier.
The global classifier determines from the sequen-
tial classifications and overlapping byte streams
that the pattern is global sequential, and recom-
mends each processor select mode M_GLOBAL.
Because the call to reset the input/output mode
is synchronizing, and it must be issued when all
processors are at the same file position, there
is some synchronization overhead for a policy
change. This accounts for the low throughput at



‘ Experimental Environment ‘ Open Time | Read Time | Total
PPFS (no classification) 129.185 430.242 | 559.427
PPFS (ANN) 25.019 339.892 | 364.911
PPFS (HMM-M_GLOBAL) 28.315 263.363 | 291.678
PPFS (HMM-Caching) 238.56 8.416 | 246.976

Table 2: PRISM input/output times (seconds) for one initialization file.

the first measurement under the new policy. The
policy change occurs approximately two seconds
into input/output execution.

In contrast, the HMM classifier queries the
global classifier for a recommended mode at file
open. The global classifier computes an initial
policy recommendation based on the classifica-
tions of previous executions. We use this classi-
fication to select mode M_GLOBAL or have one
processor read the file and broadcast it to the
others. Throughput is greatest using the second
approach.

Table 2 shows the total input/output times for
the four experiments. There is a large variance in
the total open time because the open call is syn-
chronizing. However, when HMM classification is
used to select a policy of reading and broadcast-
ing the initialization file, the open time reflects
this significant overhead.

6 Related Work

Given the natural variation in parallel in-
put/output patterns revealed by input/output
characterization studies [22], tailoring file system
policies to application requirements can provide
better performance than a uniformly imposed set
of strategies. Many studies have shown this un-
der different workloads and environments [11, 13,
3]. For example, small input/output requests
are best managed by aggregation, prefetching,
caching, and write-behind, though large requests
are better served by streaming data directly to
or from storage devices and application buffers.

Although applications with predictable re-
source demands can explicitly control prefetch-
ing or caching policies, this can result in poor
overall resource management. The performance
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of an application policy selection depends upon
the total system environment, information un-
available to the application. For example, ag-
gressive prefetching when another application re-
quires a large percentage of the cache space might
cause thrashing, degrading performance for both
applications. Furthermore, file system optimiza-
tions are system and architecture dependent. A
programmer must have a detailed understand-
ing of both the application input/output char-
acteristics and the architecture to tune the file
system; an optimal selection of policies may be
data-dependent or simply unknown.

A portable approach, supported by flexible file
systems, is to utilize an application program-
ming interface that encapsulates access pattern
information. Collective input/output [10] is one
such interface, as are input/output modes in Intel
PFS [8]. A similar approach is to use application
hints to guide a proactive file system. Patterson
et al demonstrate the success of providing hints
to guide prefetching and caching of files that will
be accessed in the future [19].

Instead of requiring the application to spec-
ify hints, access patterns, or efficient file system
policies, many have looked at the possibility of
using intelligent techniques to construct higher
level models of file access automatically. Kotz
has studied detecting more complicated access
patterns that are used to guide non-sequential
prefetching within a file [12]. Fido is an exam-
ple of a predictive cache that prefetches by using
an associative memory to recognize access pat-
terns over time [18]. Knowledge based caching
has been proposed to enhance cache performance
of remote file servers [9]. Our work uses trained
neural networks and statistical models to classify



global access patterns, and can be trained to rec-
ognize new patterns as the need arises.

7 Conclusions

Global access pattern information is critical to
optimizing input/output performance of paral-
lel applications. Recognizing this, many file sys-
tems allow the application to specify global ac-
This information allows the file
system to select corresponding file system poli-
cies that improve input /output performance. Be-
cause manual access pattern specification places
a burden on the application programmer, we have
proposed a method for automatic classification of
global access patterns. Experiments with paral-
lel benchmarks and applications demonstrate the
ability of global classification to improve perfor-
mance by automatically selecting appropriate file
system policies.

cess patterns.
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