Input/Output Access Pattern Classification Using Hidden Markov Models*

Tara M. Madhyastha

Daniel A. Reed

{tara,reed } @cs.uiuc.edu
Department of Computer Science
University of Illinois
Urbana, Illinois 61801

Abstract

Input/output performance on current parallel file systems
is sensitive to a good match of application access pattern
to file system capabilities. Automatic input/output access
classification can determine application access patterns at
execution time, guiding adaptive file system policies. In
this paper we examine a new method for access pattern
classification that uses hidden Markov models, trained on
access patterns from previous executions, to create a prob-
abilistic model of input/output accesses. We compare this
approach to a mneural network classification framework,
presenting performance results from parallel and sequen-
tial benchmarks and applications.

1 Introduction

Input/output is a critical bottleneck for many important
scientific applications. Omne reason is that performance
of extant parallel file systems is particularly sensitive to
file access patterns. Often the application programmer
must match application input/output requirements to the
capabilities of the file system. Because this match is so
critical, many studies have demonstrated how a file system
can exploit knowledge of application access patterns to
provide higher performance than is possible with general
file system policies [5, 12, 22].

To exploit application access pattern information, we
investigate automatic input/output access pattern classi-
fication techniques that drive adaptive file system poli-
cies. Ideally, automatic classification can reduce an appli-
cation developer’s input/output optimization effort and
increase performance portability across file systems and

*Supported in part by the National Science Foundation un-
der grant NSF ASC 92-12369 and by a joint Grand Challenge
grant with Caltech, by the National Aeronautics and Space Ad-
ministration under NASA Contracts NGT-S1399, NAG-1-613, and
USRA 5555-22 and by the Defense Advanced Research Projects
Agency under ARPA contracts DAVT63-91-C-0029, DABT63-93-
C-0040 and DABT63-94-C-0049 (SIO Initiative).

system architectures by isolating input/optimization deci-
sions within a retargetable file system infrastructure. We
have shown this approach to be successful, using an arti-
ficial neural network (ANN) based classifier [18].

This paper describes a complementary classification tech-
nique that uses hidden Markov models (HMMs) [24, 1]
for modeling input/output access patterns, using training
data from previous application executions. As we shall
see, this method offers significant advantages over ANN
access pattern classification, increasing resource utiliza-
tion and providing more precise control over caching and
prefetching, further improving performance.

The remainder of this paper is organized as follows. We
describe the access pattern classification problem in §2. In
$3, we describe hidden Markov models and how they can
be used to classify input/output access patterns. Access
patterns exist both locally and globally within the con-
text of a parallel program; we describe this distinction and
global classification in §4. We present extensions to our
Portable Parallel File System (PPFS) to support adaptive
file system policies in §5. In §6-§7, we present experimen-
tal data to evaluate HMM classification, comparing it to
neural network classification, on sequential and parallel
applications. We describe related work in §8. Finally, we
summarize our plans for future work and conclude in §9.

2 Access Pattern Classification

A file access pattern is a description of past and future
accesses (e.g., read-only, sequential, with a request size
of 8 KB). Most current file systems are optimized for a
small number of common access patterns and do not mod-
ify caching or prefetching policies when non-standard pat-
terns occur. For example, most UNIX file systems are op-
timized for sequential access patterns and perform poorly
for random accesses. By automatically recognizing access
patterns and tuning policies to these access patterns, we
can improve file system performance.

To be useful for controlling file system policies, a file
access pattern description need not be a perfect predic-
tor of future accesses. It simply needs to provide the file
system with enough information to select suitable poli-
cies. To this end, in [18] we proposed an artificial neu-
ral network (ANN) classification framework that processes
statistics calculated from a short sequence of input/output
requests and generates qualitative, categorical classifica-
tions of access patterns (e.g., strided or random, read only
or read/write). A neural network is a learning method

that is well suited to this classification problem. These
classifications in turn are used to select file system poli-
cies.

Our neural network classification framework was de-
signed to provide efficient, real-time classification through-
out program execution, and to create purely qualitative
and platform-independent classifications from a low-level
input/output access representation. Ultimately, qualita-
tive classifications are supplemented by quantitative ac-
cess statistics to guide policy control (e.g., to provide the
quantitative stride length for a qualitative strided access
pattern).

However, certain access pattern information that could
be used to improve performance is unavailable from peri-
odic observation of short sequences of input/output re-
quests. Not all access patterns are amenable to brief,
qualitative descriptions (e.g., sequential, random). For
example, an irregular read-only access pattern might be
repeatable or truly unpredictable. Metadata accesses to
structured data files often have highly irregular patterns,
but they are caused by library calls and are repeatable
across program executions. A simple qualitative classifica-
tion could specify only that an access pattern is highly ir-
regular or random, and an intelligent prefetcher might use
this knowledge to disable prefetching. However, when the
pattern has a complex, repeatable and detectable struc-
ture, a prefetcher could exploit this knowledge.

A model that allows one to calculate and express the
probability of accessing a given portion of a file in the
future, having observed some access sequence, can sup-
ply more complex access pattern information for caching
and prefetching policy decisions. While a neural network
might be trained to do this, it is not a very efficient ap-
proach. We know precisely the function that we want to
compute: the probability distribution function of future
accesses, having already observed some access sequence.
This knowledge allows us to choose a learning method
more appropriate to the problem.

To create such a model automatically, we use file ac-
cess data from previous executions to train hidden Markov
models (HMMs) [24, 1]. HMMs are commonly used in
speech recognition software, where the goal is to identify
sub-words, words, or syntax based on probabilistic mod-
els. At a very high level, access pattern classification is
similar to speech recognition, and similar techniques ap-
ply. By accurately modeling large scale access pattern
behavior, this probabilistic approach supplements quali-
tative classifications made by observing a limited number
of accesses.

3 Hidden Markov Models

A discrete-time Markov process [10] is a system that at any
time is in one of NV distinct states. At discrete times, the
system changes states, or makes a transition, according to
a set of probabilities associated with each state. Each state
corresponds to a single observable event, or an observation
symbol.

In a discrete Markov process, the observation symbol
uniquely determines the next state. A hidden Markov pro-
cess is a generalization of a discrete Markov process where
a given state may have several exiting transitions, all cor-
responding to the same observation symbol. In other
words, the “hidden” nature of a hidden Markov process
represents the fact that the observation sequence does not

uniquely determine the state sequence.

As a simple example, imagine a biased lottery where
we select a winning number by choosing a numbered ball
from one of four containers; the container is chosen ac-
cording to some specific algorithm. After selection, the
ball is replaced in the container from which it was taken.
Each day the winning number is published, but the iden-
tity of its container remains a secret. Our observation
sequence is the stream of winning lottery numbers, the
current state represents the container, and from this we
attempt to model the selection of the hidden container to
better predict winning numbers. Analogously, in the do-
main of access pattern classification, the underlying pro-
gram logic that generates the input/output pattern is not
directly observable, but we can use data from previous
executions to model this logic and predict future access
patterns.

Hidden Markov models can “learn” the hidden behav-
ior of the application that generates input/output requests
from observation of the request stream. Efficient algo-
rithms exist to train the model on observed sequences and
calculate the probability of future sequences. In §3.1 we
describe our approach to modeling input/output access
patterns using HMMs. In §3.2 we outline the HMM train-
ing process. Finally, §3.3 describes how to use HMMs for
policy control.

3.1 Modeling Input/Output Patterns

There are many possible ways to model access patterns
using hidden Markov models; the choice of model descrip-
tion is critical to its predictive ability. One must deter-
mine what application behavior corresponds to a state,
the number of states in the model, and the allowed obser-
vations. Our approach is to construct a hidden Markov
model where each state corresponds to a segment of the
file.

Segments are contiguous file regions of fixed or vari-
able size. Ideally, segment size is chosen to correspond to
an underlying file system caching unit or the application
request size. Within a segment, the access pattern is as-
sumed to be sequential. For the purposes of this paper,
we assume that a segment is the same as a fixed size file
block, and each state corresponds to a block. For exam-
ple, a 10 megabyte file has 1280 8-Kbyte file blocks, and
accesses to this file could be modeled by an HMM with
1280 states.

Observations are reads or writes that change the cur-
rent state with some probability to a new state (a new
current file block). For example, Figure 1 illustrates an
HMM that models a sequential read pattern for a file with
five blocks. Application requests can be smaller than the
block size; we process a trace of input/output requests so
that consecutive reads or consecutive writes that access
the current block do not incur reflexive transitions.

We prevent state space explosion by consolidating se-
quential accesses into a single state and pruning unlikely
transitions. In practice, we have observed HMM memory
requirements for regular access patterns to grow at most
linearly with file size. For example, the HMM for a 238
MB strided file used in the Pathfinder application (de-
scribed in 6.3) is less than 61 KB without any state space
compression.

In Figure 1, the file access pattern is deterministic. Fig-
ure 2 illustrates a pattern where there is a conditional
branch in the underlying program. Suppose that based

R1 R2 R3 R4
(1)
O—O0—O—0—®
Figure 1: Markov model describing sequential reads.

R1 R2 R3 R4

(0)—=(1 2)—=(3)—=(4

R4

Figure 2: Degenerate HMM describing two possible con-
trol paths.

on data read from block 0, the program either reads the
rest of the file sequentially or skips block 3. Trained on
previous executions, the HMM computes the probabilities
of each transition, information that can help the file sys-
tem determine if it should prefetch block 3.

In the above examples, the Markov model is completely
observable (i.e., given an observation sequence the system
can be in only one state), and the only issue for complete
specification is to determine, at each state, the probabil-
ities of a read or a write to every other file block. Thus,
the HMM is degenerate and can be expressed as a Markov
chain.

Markov chains are sufficient to model many scientific
input/output file access patterns; however, they fail when
several predictable patterns are possible for a single file.
For example, consider the case where the application may
access a file with either a sequential or a mixed sequential
and strided access pattern, depending on program input.

Figures 3a and 3b illustrate two possible models of this
behavior. The HMM in Figure 3a is a poor predictor be-
cause it does not remember the path it took to reach each
even-numbered block. Figure 3b shows a trained HMM
that accurately models the two threads of control. Before
training, all transitions are possible. We create two states
for each file block, one each in groups A and B, noting that
now many state sequences are possible given an observa-
tion sequence. At each state, an additional, unspecified
parameter determines whether a read or write to a partic-
ular file block causes transition to a state in group A or
group B.

Thus, after observing a read of blocks 1 and 2, one could
be in either state 2A or 2B, with the next access being a
read of block 3 or 4. The probabilities of the transitions
determine which of these is more likely. Figure 3 can also
be viewed as a composite of two individual HMMs; in
essence the HMM clusters sequences, as described in [26].

3.2 Training Hidden Markov Models

Each application has one hidden Markov model per file;
these models are trained online by running an application
executable that has been linked with a training module.
The HMM segment size is selected in advance based on
the underlying cache block size, and the training mod-
ule maintains counts of all block read or write transitions.
Most files involve only a single access pattern®; in this

* Characterization studies of applications from the SIO initiative
suite reveal no files that are accessed throughout an application
lifetime with more than one unique access pattern.

R4 R6

Figure 3: Two HMMs for modeling conditional access pat-
terns.

case, a degenerate HMM with one state per file block suf-
fices to model them and training is a trivial calculation.
The probabilities for each transition are calculated by di-
viding the number of occurrences of the transition by the
total number of transitions from each block, and only a
single training execution is required. All examples in this
paper utilize this training algorithm.

When a file has several significantly different access
patterns (e.g., Figure 3), the training process is more com-
plicated. Although we have not observed this to be a com-
mon in practice, HMMs elegantly model this uncertainty.
To reflect the multiple threads of control, we construct a
composite HMM from the HMMs trained on each unique
access pattern. In essence, HMM construction is a clus-
tering algorithm that assumes the number of clusters (i.e.,
unique access patterns) is known in advance, the user must
provide this. For example, for two threads of control, the
HMM structure would resemble Figure 3b. For details of
the training process see [17].

3.8 Classification and Policy Control

In earlier work we examined the utility of purely qual-
itative classifications using a neural network based clas-
sifier. Based on our ongoing characterization of scientific
application input/output patterns as part of the Scalable
I/O Initiative [3, 25, 23], we partitioned access patterns
based on three broad features: read/write mix, sequen-
tiality, and request size; see Table 1.

At periodic intervals corresponding to some number
of accesses or number of bytes accessed, the neural net-
work based classifier produced qualitative classifications
of these access pattern features. These classifications, sup-
plemented by quantitative information about input/output
requests (e.g., average request size), defined an access pat-
tern space. Regions within this space were mapped to
changes to the default caching and prefetching policies.
This classification approach proved successful in improv-
ing performance of input /output intensive applications [18].

Qualitative classifications are limited to describing a
simple set of structured access patterns. Many patterns
are complex but repeatable, such those generated by appli-

| Category | Category Features |
Read/Write Read Only | Write Only | Read-Update-Write | Read/Write Mix
Sequentiality | Sequential | 1-D Strided 2-D Strided Variably Strided
Request Sizes Uniform Variable

Table 1: File access pattern features.

Number of
Accesses
2 -
Q —
(@) e
m - -
/
2\
g /
z nique Cache Blocks

0 Cache Size Max

Figure 4: Allocating cache space.

cation calls to the NCSA hierarchical data format (HDF)
library [20]. Such input/output patterns defy simple qual-
itative classification, but they have structure that is invari-
ant across executions. Qualitative classification does not
easily lend itself to description of these more complicated
access patterns.

In contrast, hidden Markov models use data from previ-
ous executions to model access patterns probabilistically.
A trained hidden Markov model with one state per file
block learns the probability distribution function of access-
ing the next block given the current block. We have writ-
ten a library of functions that uses an HMM, together with
quantitative information computed from the input/output
accesses, to estimate the probability of observing each of
the features shown in Table 1 until the next classification.

For example, request size variability is determined heuris-
tically from examining the number of unique request sizes
in a recent window of accesses. On the other hand, the
probability of sequentiality is estimated from the HMM by
multiplying the probability of transitions between consec-
utive blocks for some number of accesses from the starting
position. If the probability exceeds some threshold (e.g.,
0.9) we adopt the corresponding policy.

HMM functionality is not limited to choosing among
qualitative categories. For example, an HMM can be used
to estimate a working set size by determining the mini-
mum number of cache blocks that can capture cyclic access
(e.g. multiple file reads, nested strided accesses). Figure 4
illustrates the heuristic. Intuitively, as the cache size in-
creases, the application will be able to access more blocks
without replacement. This is shown by the curve labeled
“Number of Accesses.” If there is locality, a small num-
ber of blocks suffices to capture the working set. The
curve labeled “Unique Cache Blocks” denotes the num-
ber of unique blocks accessed as cache size increases. The
maximum number of unique cache blocks accessed is a

good estimate for minimal cache space allocation (N cache
blocks). An HMM can be used to compute estimates
of these curves by taking the most probable transitions
through the states from any starting position within the
file and recording the total number of block accesses and
the number of unique blocks accessed for a range of hypo-
thetical cache sizes.

An HMM can also be used to control classification fre-
quency. Ideally classification need occur only when the
access pattern changes. Neural network classification pe-
riodically reclassifies an access pattern; reclassification fre-
quency is a user-specified parameter that must be carefully
chosen to balance classification overhead and responsive-
ness to pattern changes. In contrast, using an HMM, a
pattern change is possible only when the probability of
accessing the next anticipated block using the current pat-
tern falls below some specified threshold. Thus, the HMM
can be used to monitor the input/output request stream,
automatically recognizing access pattern changes.

Finally, the availability of data from previous execu-
tions can be used to make classifications for better policy
selection at file open. In parallel applications involving
many processors and large, disjoint, input/output opera-
tions, early access pattern classification and policy selec-
tion can make a significant difference in overall input/output
performance.

HMM classification offers many advantages over ANN
classification; however, the cost is the overhead of exe-
cuting the application once or more to train the HMMs.
This cost must be amortized over the performance im-
provements of subsequent program executions. For this
approach to be profitable, we need to execute an appli-
cation multiple times on the same data files (or the data
files need to have similar structure and access patterns). In
practice, this is a common mode of usage. Frequently, sci-
entists rerun applications on the same data set, changing
the algorithm slightly without changing the input/output
access pattern. Often the access pattern is identical across
different data sets.

4 Global Classification Issues

Until now, we have described modeling of a single in-
put/output access stream; this is local classification, or
classification per parallel program thread. Though suffi-
cient for controlling uniprocessor caching and prefetching
policies, local classification is but a small part of a larger
classification problem. The local access patterns within
each thread of a parallel program merge during execution,
creating a global access pattern. Global knowledge is es-
pecially important for tuning file system policies, because
coordinated access patterns cannot be detected with only
local information. For example, consider a globally in-
terleaved access pattern; each processor accesses a file by
strides but the global pattern is sequential. A sequential
prefetching policy at the input/output nodes can improve

performance.

Global classification is difficult because local informa-
tion must overlap in time and space; i.e., bytes accessed
must overlap or be disjoint and the local accesses must
occur within the same timeframe. Although we can com-
bine local information to make global classifications with-
out temporal coordination, the classification will not be
very useful in guiding file system policies. Simply put,
each processor’s local access pattern classifications must
overlap in time and space to identify the global file access
pattern at a given point in time.

We achieve temporal coordination by ensuring that lo-
cal classifications overlap in time. We represent the valid
time interval of a local classification as (ts, te), where ¢, is
the start time and t. is the end time. A global classifica-
tion is valid for (maz(t,), min(t.)) over all local classifi-
cations.

We ensure spatial coordination and determine a global
access pattern by combining local classifications accord-
ing to an access pattern algebra [19, 17]. For example, for
a global access pattern to be read only, each local access
pattern must be read only. Global classifications involv-
ing sequentiality require additional information about the
bytes accessed by each client. For example, to make a
classification of global sequential, an access pattern where
all processors access a file sequentially, we must verify that
the processors access overlapping bytes.

During execution, each processor periodically computes
a local classification; these classifications, their time win-
dows, and the byte ranges accessed are consolidated for
global classification. Our framework for implementing and
testing local and global classification and dynamic policy
selection is described below.

5 Portable Parallel File System

The Portable Parallel File System (PPFS)[8] is a portable
input/output library designed to be an extensible testbed
for file system policies. It has a rich interface for control
of data placement and file system policies that can be ma-
nipulated by the application or by an automatic classifier.

Figure 5 shows the PPFS components and their inter-
actions. Application clients initiate input/output via invo-
cation of PPF'S interface functions. To open a file, the ap-
plication first contacts the metadata server, which stores
or creates information about the file layout on remote disk
servers (input/output nodes). With this information, the
application can issue input/output requests and specify
caching and prefetching polices for all levels of the sys-
tem. Clients either satisfy the requests locally or forward
them to servers (abstractions of remote input/output de-
vices). Clients and servers each have their own caches
and prefetch engines. All “physical” input/output is per-
formed through an underlying UNIX file system.

To provide automatic policy control based on local and
global classification, we extended the basic PPFS design.
Each client has a local classification module that generates
qualitative and quantitative information used to control
local caching and prefetching policies.

To support global classification, we added a global clas-
sification server to consolidate local classifications and nec-
essary access statistics, as described in §4. When the
global server classifies an access pattern, it updates poli-

cies accordingly on the input/output servers and the clients.

Input/Output Server(s)

Policy Selection

Globd tee

Classifier

Application Client(s)

Figure 5: PPFS with global classification.

Under HMM classification, clients can also consult the
global classifier at file open for an initial global policy
based on previous execution data.

6 Local Classification Experiments

To compare ANN and HMM local classification, we
conducted a series of uniprocessor performance studies us-
ing both access pattern benchmarks and an input/output
intensive satellite data processing application. The exper-
imental platform is PPFS on a Sun SparcServer 670 run-
ning SunOS 4.1.3, with 64 MB of physical memory and a
local SCSI disk. Local classification guides policy control,
as described in §4. Table 2 shows how access patterns
are matched to policies. The average request size thresh-
olds, default cache block size (32 KB), and large and small
cache sizes were determined through experimentation and
are platform-dependent.

6.1 Dynamic Access Patterns

One of the main advantages of dynamic classification is
the ability to refine policy selections as the access pattern
changes. In this section, we describe the performance of
a benchmark that reads the first half of a 40 million byte
file sequentially and the second half pseudorandomly. For
both access patterns, the request size is 2000 bytes. We
executed this benchmark three times using PPFS, twice
with adaptive file system policies guided by neural net-
work based classification and hidden Markov model based
classification, and once with a single, default system pol-
icy.
Figure 6 shows the throughput (computed every 10 ac-
cesses) for the benchmark. The periodic dips in through-
put before the access pattern change are caused by cache
misses. When the access pattern changes from sequen-
tial to random, the policy selection of Table 2 is to dis-
able caching, reducing the byte volume of physical in-
put/output calls and improving throughput.

Because the frequency of ANN classification is a user-

| Sequentiality | Read/Write | Request Size |

Action |

Sequential ReadOnly > 8 KB disable cache
Strided/Random ReadOnly > 1.5 KB disable cache
Strided/Random ReadOnly < 1.5 KB LRU, enlarge cache

Sequential WriteOnly any MRU
Strided/Random WriteOnly > 8 KB disable cache
Strided/Random WriteOnly < 8 KB LRU, enlarge cache

Table 2: Classifications and policy control.

30000 T T T : : ‘ ‘
Sequential Random—————
HMM —~—
25000 (9§ Neural Network —+— 7
[‘ No Classification @
=)
& 20000 \\ |
g \ | 1} \\ Access Pattern Change
@ M .
X 15000 I # f' \\ 1} \\ J HMM Classification i
3 [F ';\\\ || JJ} ANN Classification
< [1]
g’lOOOOH\MHI i
<] L [
2 RN
= IR
so0we s o6y f L
] | $EEPRREERaanpaloofonnogatogg

99 99 10 1005 101 1015 102 1025 103

Number of Accesses (Thousands)

Figure 6: Adapting to a changing access pattern.

specified parameter, responsiveness of the ANN classifier
is limited by the selected classification frequency. In this
PPFS configuration, the HMM classifier is able to detect
this access pattern shift sooner than the ANN method.
The ANN classifier automatically reclassifies the pattern
every 640 KB, so it begins to reclassify the random ac-
cess pattern after reading 20316160 bytes (i.e., 31 640
KB blocks). Figure 7 illustrates the portion of the HMM
where the access pattern changes; the symbol R denotes
a read of the block indicated by the arrow. After detect-
ing a sequential access pattern, the HMM classifier com-
putes the probability that the sequential access pattern
will continue. At block 611 the probability of accessing
block 612 is 0.0, so the access pattern can no longer be
sequential. Because blocks are 32 KB, reclassification oc-
curs after reading 20021248 bytes, the last byte in the
block that marks the end of the sequential run.

6.2 Sequential File Reuse

In many cases, an application reads a file repeatedly. A
common optimization for this access pattern is to retain as
many of the file blocks in cache as possible to avoid reread-
ing them. Both ANN and HMM classifiers can recognize
sequentiality, but because it classifies access patterns on
a much larger scale, the HMM classifier can also predict
reuse of sequentially accessed blocks and determine an ap-
propriate cache size, using the method described in §3.3.

To illustrate the potential performance improvement,
consider a benchmark that reads a 20 million byte file five
times sequentially. The request size is 2000 bytes, and

Figure 7: HMM at access pattern change.

classifications occur every ten thousand accesses. Both
ANN and HMM classifiers detect that the access pattern is
read-only and sequential. The HMM classifier recognizes
that the file will be re-read (because the access pattern
is sequential and the transition from the last block is a
read of the first block) and that a cache size of 20021248
bytes (611 cache blocks of size 32 KB) can retain the file
in memory, so the cache is resized.

Figure 8 shows the throughput (computed over every
100 accesses) for the benchmark executing with both clas-
sification methods. During the initial file read, through-
put using both classification methods is roughly equiva-
lent (minor performance variations are due to system level
cache effects). After the file is read once, throughput using
both classification methods increases because the file is in
the UNIX file system cache. However, under HMM clas-
sification the file is also retained in the PPFS user-level
cache, further improving throughput.

6.3 Pathfinder

In this section we explore the performance of Pathfinder,
a typical sequential UNIX application used to process low-
level satellite data. Pathfinder is from the NOAA/NASA
Pathfinder AVHRR (Advanced Very High Resolution Ra-
diometer) data processing project. Our analysis focuses
on the generation of daily data sets, created from fourteen
files of AVHRR orbital data (approximately 42 megabytes
each) processed to produce an output data set that is ap-
proximately 228 megabytes in HDF format.

During program execution, ancillary data files and the

12000

10000
P
=
S 8000
8
m
X 6000 g
=
=2
o
£
© 4000 § HMM «-—
3 ‘ Neural Network —+—
c
'—

2000 n

0 I ! L ! I
0 1 2 3 4 5

Number of Iterations

Figure 8: Detection of file reuse.

orbital data files are opened, and each orbit is processed
sequentially. The access patterns for ancillary files range
from sequential to irregularly strided. The result of this
processing is written to a temporary output file using a
combination of sequential and two-dimensionally strided
accesses. Finally, the temporary file is re-written in HDF
format. Because they are processed in a main program
loop, we focus on the processing of only one of the fourteen
orbital data files.

One of the problems with automatic policy selection us-
ing the algorithm of Table 2 is that limited physical mem-
ory prohibits indiscriminately enlarging file caches. Two
Pathfinder files are accessed with small, strided requests;
one must decide how to allocate the available cache space
between these files. The ANN classifier cannot predict
working set sizes, so one can either allocate space to one
file, or split it evenly. The HMM classifier can generate
a working-set size prediction that one can use to allocate
cache space.

Table 3 shows the execution times for Pathfinder using
UNIX buffered input/output and PPFS using ANN and
HMM classification and different cache allocation strate-
gies. When the ANN classifier detects that the output
file is accessed with small strided accesses, the output file
cache is enlarged. Without enough memory to enlarge the
cache for small strided reads, caching is disabled for the
input file accessed with that pattern. This policy selection
achieves a speedup of approximately 1.75.

Another solution to the problem of limited cache space
is to partition space evenly between the two files. In this
example, this approach is superior, producing a two-fold
improvement in performance over the original execution
time. Using HMM classification and the cache space al-
location heuristic described in §3.3, we can estimate the
cache space needed for the input file and allocate the re-
maining memory to the output file. This strategy yields
the best performance, a speedup of 2.27.

Table 4 shows the UNIX system level input/output op-
eration counts and bytes for Pathfinder using both classi-
fication methods. PPFS with ANN classification enlarges
the file cache to 25 MB for small, strided writes, and dis-
ables caching for small variably strided reads. This con-

[Experimental Environment | Total Time |

UNIX 4299.3
PPFS (ANN) 2452.0
PPFS (ANN, split cache) 2174.4
PPFS (HMM) 1891.6

Table 3: Pathfinder execution times (seconds).

tributes to the reduction in number of bytes read while
causing an increase in the read count. The write count is
reduced by two orders of magnitude, although the total
write volume increases because of the larger cache block
size (32 KB vs. 8 KB for buffered UNIX input/output).
When the cache is evenly split, there are fewer physical
reads, but the additional block replacements necessitated
by reducing the cache space available to the output file
increase the number of writes and the read and write vol-
ume.

With the usage prediction provided by the HMM classi-
fication, 4 MB is allocated to the input file and the remain-
ing 21 MB to the output file. The number and volume of
writes is identical to that obtained by allocating the entire
25 MB cache to the output file, so write performance has
not been sacrificed by increasing the input file cache. How-
ever, the number of physical reads decreases, and due to
block replacements, the total read volume is only slightly
greater than when input file caching is disabled.

7 Global Classification Experiments

The experiments in the previous section exercised local
classification and policy control. Local classification is
only part of a larger classification problem; as described
in §4, an important factor in parallel input/output per-
formance is exploiting characteristics of the combined, or
global input/output access stream, by making a global
classification.

To ensure good performance, parallel file systems some-
times require that the application specify global access
pattern information. Global classification can automati-
cally recognize global access patterns. To demonstrate the
potential performance improvement from global classifica-
tion, below we show results from two typical parallel appli-
cations from the Scalable I/O Initiative application suite
and a benchmark representing complex array access. Our
experimental platform is the Intel Paragon, using PPFS
to perform physical input/output using PFS[9].

PFS is a parallel file system that stripes data over
disks on input/output nodes using a default 64 KB stripe
size. In normal usage, applications provide access pat-
tern information by specifying PFS modes. Using global
classification, we automatically select an optimal PFS in-
put/output mode for a file access pattern and compare
performance to the default mode.

The PFS modes we manipulate below are M_UNIX (the
default, atomic UNIX style input/output), M_ASYNC (which
does not preserve input/output atomicity) and M_GLOBAL
(for global access patterns, where all processors read the
same file bytes).

Experimental Read Write Lseek

Environment Count | Bytes Count | Bytes Count
UNIX 3,030,382 | 2.48247e+10 | 4,077,265 | 625,698,239 | 10,961,293
PPFS (ANN) 3,669,087 | 1,098,883,277 27,102 | 888,014,784 | 3,640,123
PPFS (ANN, split cache) 58,582 | 1,595,272,028 41,562 | 1,361,840,064 71,307
PPFS (HMM) 44,134 | 1,121,577,820 27,102 | 888,014,784 43,279

Table 4: Pathfinder operatation counts and bytes accessed.

300 T T T T T T

HMM ~—
Neural Network &
No classification +— _|

Throughput (K bytes/second)

t=a . e VAR S
16 32 48 64 80 96 112 128 144 160 176 192
Kbytes Read

Figure 9: PRISM initialization file throughput.

7.1 PRISM

PRISM, a computational fluid dynamics code, is a paral-
lel implementation of a 3-D numerical simulation of the
Navier-Stokes equations [6, 7]. The parallelization is by
apportioning the periodic domain to the processors, with a
combination of spectral elements and Fourier modes used
to investigate the dynamics and transport properties of
turbulent flow. We focus on the first phase, in which every
processor reads three initialization files. In an undercon-
figured input/output system, this kind of workload (global
sequential access) causes a bottleneck at the input/output
servers that are overrun with identical requests from each
processor. To create such a bottleneck, we ran PRISM on
16 processors of an Intel Paragon running OSF/1 1.4 with
one input/output node.

Figure 9 shows total throughput, calculated per 8 KB
block, for access to one initialization file using the default
M_UNIX PFS input/output mode (no classification) and
using HMM and ANN classification to select the optimal
mode M_GLOBAL. Throughput using the default mode
M_UNIX is very poor, because in the PFS implementation
of this mode seeks are serialized.

The ANN classifier improves performance by recogniz-
ing, after the first ten accesses, that the access pattern
on each processor is sequential and read-only. It sends
this information (along with the byte ranges accessed)
to the global classifier. The global classifier determines
from the sequential classifications and overlapping byte
streams that the pattern is global sequential, and recom-

mends each processor select mode M_GLOBAL. Because
the PFS call to reset the input/output mode is synchro-
nizing, and it must be issued when all processors are at the
same file position, there is some synchronization overhead
for a policy change. This accounts for the low through-
put at the first measurement under the new policy. The
policy change occurs approximately two seconds into in-
put/output execution.

In contrast, the HMM classifier can query the global
classifier for a recommended mode at file open. The global
classifier computes an initial policy recommendation based
on the individual processor HMMs and sends this recom-
mendation (use of mode M_GLOBAL) to processors upon
file open. While the initial ANN classifications could be
saved between executions to similarly provide policy rec-
ommendations, they would also be based on previous ex-
ecution data, and organization of potential multiple file
access patterns would have to be supported externally.

After selecting mode M_GLOBAL, the overall file through-

put under both classifiers is the same. Periodic dips in
throughput occur because this mode requires input/output
requests to be synchronized among the sixteen processors.
Therefore, should one processor creep ahead of the others,
it must stall until they synchronize, causing abnormally
large read request times.

7.2 QCRD

QCRD [28, 14] is a quantum chemical reaction dynamics
code used to study elementary chemical reactions. Paral-
lelization is accomplished by data decomposition; all pro-
cessors execute the same code on different portions of the
global matrices. The matrices are large enough to ne-
cessitate an out-of-core solution; the chosen data decom-
position results in strided and cyclic input/output access
patterns.

We limit our analysis to the first phase of QCRD. In
this phase, 64 processors coordinate to write 13 global out-
put matrices, each with a global interleaved access pattern
(the interleaving of the individual processors’ strided ac-
cesses is sequential). We executed this application on a 64
node partition of a 512 node Intel Paragon XP/S. Output
was to a parallel file system with 16 input/output nodes.

When using the default mode M_UNIX, input/output
operation time accounts for 10.6 percent of the total execu-
tion time. Selecting mode M_ASYNC, which does not pre-
serve UNIX file sharing semantics, reduces input/output
time to less than one percent of overall execution time.

Figure 10 shows the throughput, calculated every 64
KB, for one of the output matrices. Throughput using
mode M_UNIX (no classification) is poor because in the
PFS implementation of this mode, seeks are synchronized
and are very expensive. The ANN classifier switches to
mode M_ASYNC approximately halfway through execu-

120 T T T
T NoClassification -o—
Neural Network —+
100 HMM =
+
a
8 + 4
~
e I
L
< 60 11 o
g E f* ++ o, ++E+D
= R & | i e o
o £ 7 | B g it &
%407DDDD 0% o loomt e e gl
) o3 pod
o Qo0 | o oy |@ %ED TS jfin) ty O
= Og o n® "o B
[& o o
205 New 1/0 Mode]

0
0 1000 2000 3000 4000 5000 6000
KB Written

Figure 10: QCRD phase one throughput.

tion, dramatically improving throughput. The lag be-
tween the policy change and the performance improve-
ment is due to synchronization overhead incurred by re-
setting the input/output mode. The HMM classifier can
obtain a better initial default policy from the global clas-
sifier at file open, improving performance throughout the
file lifetime.

In this application, the ability to make an informed
initial policy selection based on previous execution infor-
mation and a trained HMM significantly improves overall
input/output performance, as seen in Table 5. The neural
network classifier needs to observe some number of ac-
cesses (ten in this implementation) to recognize a global
interleaved access pattern. Because of this delay, a clas-
sification and the ensuing global policy change cannot be
made until half of the file is already written. Thus, total
input/output time is slightly more than half of the time
without classification. By using data from previous execu-
tions to determine the optimal PFS mode at file open, the
HMM classifier reduces input/output time by an order of
magnitude.

7.3 Complex Global Access Patterns

We have emphasized that HMM classification is able to
classify a wider range of access patterns than is possible
by ANN classification. This makes it particularly useful
for guiding a prefetcher; at every access it can generate the
probability of the most likely block to be accessed next.

In this experiment we consider a benchmark based on
file access patterns exhibited by applications from Caltech
for global climate modeling and modeling of the earth’s
interior [16]. These applications read and write data from
a two or three dimensional grid, partitioning data in blocks
of contiguous particles among the processors.

Figure 11 shows an example of such a partitioning on
a two dimensional grid; each numbered block contains
cs® elements allocated to the processor with that number.
Processors simultaneously read their allocated chunks in
segments of the particle size. Therefore, each processor
exhibits a one-dimensionally strided access pattern. Glob-
ally, they coordinate to read the entire file, but the global
access pattern is not interleaved sequential nor is it parti-

< (CS>

12 13 | 14 15

Figure 11: Block-block matrix partitioning.

tioned sequential; it is a mix of these that is unrecognizable
as any predefined global pattern. The programmer cannot
simply optimize this input/output pattern by changing the
file layout so the matrix is accessed globally sequentially,
because the allocations of particles to processors might
change and can be quite complex./

Prefetching can improve read performance by overlap-
ping input/output latency with computation, but prefetch-
ing must correspond to the access pattern. Because HMMs
can be trained to recognize any arbitrary repeatable access
patterns, the locally trained HMMs are useful for guiding
prefetching.

To demonstrate this capability, our benchmark distributes

a 64 x 64 matrix of 64 KB blocks across 64 processors ac-
cording to the the block-block distribution shown in Fig-
ure 11. Each processor reads a block in row major or-
der, and “computes” for 100 ms before continuing to the
next block. The input file is striped on 12 input/output
nodes, each controlling a Seagate drive. PPFS implements
prefetching by using asynchronous PFS reads to initiate
fetches for some number of blocks in advance of the ac-
cess stream (the prefetch depth). Table 6 shows the in-
put/output times for PFS operations for this benchmark.
Prefetching one block ahead is not enough to keep up with
the request stream, and has no significant effect on over-
all execution time. However, prefetching four blocks ahead
significantly reduces read time and improves performance.

8 Related Work

Because performance of parallel input/output systems is
extremely sensitive to access pattern characteristics, tai-
loring file system policies to application requirements is a
natural approach to improving performance. One system-
independent way of specifying application requirements is
to provide hints (possibly inaccurate access information)
to guide a proactive file system. Patterson et al demon-
strate the success of providing hints to guide prefetching
of files that will be accessed in the future [22, 27]. This ap-
proach is portable, but requires the application program-
mer to describe the application input/output behavior.
We view access pattern classification as a potential way
to automatically provide these hints.

tUltimately an application of this kind will prove an excellent
candidate for testing the efficacy of HMMs trained on multiple ac-
cess patterns.

[Experimental Environment | Write Time | Seek Time | Total |
PPFS (no classification) 3468.92 0.64 | 3469.56
PPFS (ANN) 1896.06 0.35 | 1896.41
PPFS (HMM) 172.98 0.11 | 173.09

Table 5: QCRD input/output times (seconds) for a single output file.

[Experimental Environment | Read [Seek [I/O Wait | Execution Time]

PPFS (prefetch disabled) 266.47 0.21 N/A 23.14
PPFS (prefetch depth=1) 11.74 0.21 142.05 24.67
PPFS (prefetch depth=4) 14.58 | 22.35 6.85 13.43

Table 6: Input/output times for prefetching according to a block-block distribution (seconds).

Many groups have explored intelligent techniques to
construct higher level models of file access automatically.
Kotz has examined automatic detection of global sequen-
tiality to guide non-sequential prefetching within a file [12].

Exploitation of relationships between files has also been
a significant research topic. Fido is an example of a predic-
tive cache that prefetches by using an associative memory
to recognize access patterns over time [21]. Knowledge
based caching has been proposed to enhance cache per-
formance of remote file servers [11]. Some approaches use
probabilistic methods to create models of user behavior to
guide prefetching [15, 4, 13]. This work is similar in spirit
to our HMM classification methodology. The difficulty
with modeling user behavior probabilistically is that re-
cently accessed files are more likely to be re-accessed than
frequently accessed files. Access patterns within files are
usually highly regular.

9 Conclusions and Future Work

We have shown that hidden Markov models can be used
for modeling input/output access patterns, using training
data from previous application executions. Experiments
with benchmarks and sequential and parallel applications
demonstrate that this approach offers more precise control
over caching and prefetching policies than neural network
access pattern classification, an approach that classifies
patterns based on periodic inspection of a small window
of accesses.

HMM-based classification is extensible and has many
potential applications. For example, to ensure that in-
put/output classifications are platform independent, we
do not include time as a parameter in input/output traces.
However, the interaccess delay is important information
when deciding how far ahead to prefetch, or which files
value cache blocks more highly. We are currently investi-
gating modeling interaccess delay to augment HMM-based
spatial classification. Second, there is a natural correla-
tion between ordered hints as described in the SIO low-
level API [2] and HMM classifications; we are investigat-
ing using HMMs to supply these hints automatically in
the next-generation PPFS II.

Acknowledgments
We wish to thank J. Michael Lake for his helpful discus-

sions and for suggesting the use of hidden Markov models.
Evgenia Smirni also provided many useful comments and
suggestions.

Some data presented here were obtained from code ex-
ecutions on the Intel Paragon XP/S at the Caltech Center
for Advanced Computing Research.

References

[1] CHARNIAK, E. Statistical Language Learning. The
MIT Press, 1993.

[2] CoRrBETT, P., ProsT, J.-P., DEMETRIOU, C., GIB-
soN, G., RiepeL, E., ZeLeka, J., CHEN, Y.,
Fevten, E., Li, K., HARTMAN, J., PETERSON,
L., BeErsHaD, B., WoLmaN, A., AND AvDT, R.
Proposal for a Common Parallel File System Pro-
gramming Interface Version 1.0, 1996. Available at
http://www.cs.arizona.edu/sio.

[3] CranDALL, P. E., AvypT, R. A., CHIEN, A. A,
AND REED, D. A. Characterization of a Suite of In-
put/Output Intensive Applications. In Proceedings of
Supercomputing '95 (Dec. 1995).

[4] GRIFFIOEN, J., AND APPLETON, R. Reducing File
System Latency Using a Predictive Approach. In
Proceedings of USENIX Summer Technical Confer-
ence (June 1994), pp. 197-207.

[5] GriMsHAW, A. S., AND LovoT, Jr., E. C. ELFS:
Object-oriented Extensible File Systems. In Proceed-
ings of the First International Conference on Paral-
lel and Distributed Information Systems (December
1991), p. 177.

[6] HENDERSON, R. D. Unstructured Spectral Element
Methods: Parallel Algorithms and Simulations. PhD

thesis, Princeton University, June 1994.

[7] HEnDERSON, R. D., AND KARNIADAKIS, G. E. Un-
structured Spectral Element Methods for Simula-
tion of Turbulent Flows. Journal of Computational
Physics 122, 2 (1995), 191-217.

(8]

[10]

[11]

[12]

[13]

[14]

18]

[16]

18]

[19]

20]

(21]

HuBer, J., ELForDp, C. L., REeED, D. A., CHIEN,
A. A., ANnD BrumENTHAL, D. S. PPFS: A High
Performance Portable Parallel File System. In Pro-
ceedings of the 9th ACM International Conference on
Supercomputing (Barcelona, July 1995), pp. 385-394.

Paragon XP/S Product Overview. Intel Corporation,
1991.

KLEINROCK, L. Queueing Systems, Vol. 1, Theory.
John Wiley, 1975.

KORNER, K. Intelligent Caching for Remote File Ser-
vice. In Proceedings of the 10th International Confer-
ence on Distributed Computing Systems (May 1990),
pp. 220-226.

Kotz, D., aND ErLis, C. S. Practical Prefetching
Techniques for Multiprocessor File Systems. Journal
of Distributed and Parallel Databases 1, 1 (January
1993), 33-51.

KRrOEGER, T. M., AND LoNg, D. D. E. Predicting
File-System Actions From Prior Events. In Proceed-
ings of the USENIX 1996 Annual Technical Confer-
ence (Jan. 1996), pp. 319-328.

KUPPERMANN, A., AND Wu, Y.-S. M. The Quanti-
tative Prediction and Lifetime of a Pronounced Reac-
tive Scattering Resonance. Chemical Physics Letters
241 (1995), 229-240.

Le1, H., anD DucHaMP, D. An Analytical Ap-
proach to File Prefetching. In Proceedings of the
USENIX 1997 Annual Technical Conference (Jan.
1997), pp. 275-288.

L1, P. ESS Grand Challenge Projects: The Earth’s
Interior Modeling and the Global Climate Modeling.
In HPCC ANNUAL REPORT (1995). available at
http://olympic.jpl.nasa.gov/PERSONNEL/wangp/
ping96one.html.

MapHYASTHA, T. M. Automatic Classification of
Input/Output Access Patterns. Tech. Rep., Univer-
sity of Illinois at Urbana-Champaign, Department of
Computer Science, Aug. 1997.

MapnayYAasTHA, T. M., AND REED, D. A. Intelligent,
Adaptive File System Policy Selection. In Proceedings
of the Sizth Symposium on the Frontiers of Massively
Parallel Computation (1996), pp. 172-179.

MapnayvasTtHA, T. M., AND REED, D. A. Exploiting
Global Access Pattern Classification. In Proceedings
of §C’97 (November 1997).

NCSA. NCSA HDF, Version 2.0. University of Illi-
nois at Urbana-Champaign, National Center for Su-
percomputing Applications, Feb. 1989.

PaLMER, M., AND ZDONIK, S. B. Fido: A Cache
That Learns to Fetch. In Proceedings of the 17th
International Conference on Very Large Data Bases
(Barcelona, September 1991), pp. 255-262.

(22]

(23]

(24]

28]

(26]

27]

28]

ParTtERSON, R. H., GiBsoN, G. A., GINTING,
E., StopoLsky, D., AND ZELENKA, J. Informed
Prefetching and Caching. In Proceedings of the Fif-
teenth ACM Symposium on Operating Systems Prin-
ciples (December 1995), pp. 79-95.

PooL, J. T. Scalable I/O Initia-
tive. California Institute of Technology, Available at
http://www.ccsf.caltech.edu/SI0/, 1996.

RABINER, L. R. A Tutorial on Hidden Markov Mod-
els and Selected Applications in Speech Recognition.
Proceedings of the IEEE 77, 2 (1989).

Smirni, E., AypT, R. A., CHIEN, A. A., AND REED,
D. A. I/O Requirements of Scientific Applications:
An Evolutionary View. In Fifth International Sym-
posium on High Performance Distributed Computing
(1996), pp. 49-59.

SmyTH, P. Clustering Sequences with Hidden
Markov Models. In Advances in Neural Information
Processing 9. MIT Press, to appear.

TomkiNs, A., PaTTERsoN, R. H., AND GIBSON,
G. Informed Multi-Process Prefetching and Caching.
In Proceedings of the ACM International Conference
on Measurement and Modeling of Computer Systems
(June 1997).

Wu, Y.-S. M., Cuccaro, S. A., Hrpes, P. G., AND
KUPPERMANN, A. Quantum Chemical Reaction Dy-
namics on a Highly Parallel Supercomputer. Theo-
retica Chimica Acta 79 (1991), 225-239.

