Optimizing I nput/Output Using Adaptive File System Policies

Tara M. Madhyastha, Christopher L. Elford, Daniel A. Reed
Department of Computer Science
University of lllinois
Urbana, lllinois 61801

Abstract

Parallel input/output characterizationstudies and experimentswith flexible resource
managemenalgorithmsindicatethat adaptivityis crucialto file systemperformanceln

this paperwe proposean automatictechniquefor selectingand refining file system
policiesbasedon applicationaccesgatternsand executionenvironment. An automatic
classification framework allows the file systemto select appropriate caching and

prefetchingpolicies, while performancesensorsprovide feedbackusedto tune policy

parametergor the specificsystemenvironment. To illustrate the potentialperformance
improvementspossible using adaptivefile system policies, we presentresults from

experiments involving classification-based and performance-based steering.

1. Introduction

Input/outputperformancas the primary performanceottleneckof animportantclassof

scientific applications(e.g., global climate modeling and satellite image processing).
Moreover,input/outputcharacterizatiostudiessuchasCrandall[1] andSmirni[2] have
revealedthat parallel applicationsoften have complex, irregular input/output access
patternsfor which existing file systemsare not well optimized. Experiencehas shown
that a few static file systempolicies are unlikely to bridge the growing gap between
input/output and computationperformance. In this paperwe proposean automatic
techniquefor selectingand refining file systempolicies basedon application access
patterns and execution environmefmowledgeof the input/outputaccespatternallows

the file systemto selectappropriatecachingand prefetchingpolicies while the specific
execution environmentdetermineswhat policy refinementsare necessaryto further
improve performance.For example,a sequentialaccesspattern might benefit from

sequential prefetching. The available memory accksdatenciesdeterminethe quantity
of datathat shouldbe prefetchedBy beingresponsiveao both applicationdemandsand
systemenvironment,this approachcan provide better performancethan a single static
file system policy.

Adaptivefile systempolicy controlsrely on continuouslymonitoringaccesatternsand
file systemperformance.We obtain a qualitative accesspattern classificationeither
throughautomaticanalysisof the input/outputrequeststreamor via user-suppliedints.

" Supported in part by the National Science Foundation under grant NSF ASC 92-12369, by the National
Aeronautics and Space Administration under NASA Contracts NGT-51023, NAG-1-613, and USRA
5555-22 and by the Advanced Research Projects Agency under ARPA contracts DAVT63-91-C-0029,
DABT63-93-C-0040 and DABT63-94-C-0049.

We also continuouslymonitor file systemperformancesensors(e.g., cachehit ratios,
accesdatenciesandrequestqueuelengths).The valuesof thesesensorsfogetherwith

the accesgattern,areusedto selectandtune specificfile systempolicies.For example,
the file systemcan enableprefetchingwhen the accesspatternis sequentialusing the

interaccesslelaysdeterminehow much datato prefetch. Updatedperformancesensor
valuesor changingaccesatternclassificationmay resultin additionalrefinementsto

file system policies.

Theremaindeof this paperis organizedasfollows. In §2 we give a high-leveloverview

of the adaptivefile systeminfrastructure. Validation of theseconceptsrequiresan
experimentaframework; we haveimplementedadaptivefile systempolicies within a
portable,user-levelfile systemcalled the PortableParallel File System(PPFS)Huber

[3], describedn §3. Our systemhastwo major componentsin §4 we discusshow one
automatically classifies user access patterns and uses this information to select file system
policies.In §5 we describenow to usean input/outputperformancesummary generated

from sensowaluesto selectfile systempoliciesand parametershat shouldbe modified

to improve performance.Finally, §6-§7 place this work in context, summarizeour

results, and outline directions for future research.

2. Adaptive Steering

Giventhe naturalvariationin input/outputaccesatternsit is unlikely that one, static,
system-wideset of file systempolicieswill suffice to provide good performancefor a
reasonablerange of applications. Even in a configurable environment, a priori
identification of effective file systempolicies is difficult becauseapplication access
patternsare sometimesdata dependenbor simply unknown. Furthermore input/output
requirementsare a complex function of the interaction betweensystemsoftware and
executingapplicationsand may changeunpredictablyduring programexecution. We
believethat integrationof dynamic performanceinstrumentationand automaticaccess
pattern classification with configurable, malleable resource managementalgorithms
providesa solutionto this performanceoptimizationconundrumBelow, we describethe
two major components of this approach.

2.1. Classification-Based Policy Selection

Parallelfile systemresearctsuchasPattersorf4], Kotz [5], Krieger [6], and Grimshaw
[7] has demonstratedhe importanceof tuning file system policies (e.g., caching,
prefetching, writeback) to application accesspatterns. For example,accesspattern
information can be used to guide prefetching, small input/output requestscan be
aggregated and large requests can be streamed.

Oneintuitive way to providethe file systemwith accesgatterninformationis via user
supplied hints, or qualitative access pattern descriptions, for each parallel file.
Unfortunately,this approachrequiresongoing programmereffort to reconcilethe hints

with codeevolution.Inaccuratehints cancauseperformanceroblemsif the file system
selects policies that are unsuitable for the actual access pattern.

Our solutionto this dilemmais to automaticallyclassify accesgatternsduring program
execution.This approachrequiresno programmeiinterventionand is robustenoughto

handle dynamically changingor data-dependenaccesspatterns.A classifier module
observeshe application-levebccesstreamandgenerategualitativedescriptionsThese
descriptions,combinedwith quantitativeinput/outputstatistics,are usedto selectand
tune file system policies according to a system-dependent algoHihis.canbe usedin

conjunctionwith this approachto provide accesspatterninformation that cannotbe
intuited from the access stream (e.g., collective input/output).

2.2. Performance-Based Policy Selection

Although application access pattern information is a prerequisitefectingappropriate
file systempolicies, input/output performanceultimately determinesthe successof a

particularpolicy choice.Extrinsic (external)input/outputphaseghat occur when other
applicationscompetefor sharedresourcesare equally importantto file systempolicy

selection,yet are not evident from application accesspatternsalone. Using a basic
feedbacksystemasa model,we canframe parallelfile systempolicy optimizationasa

dynamicsteeringproblemthat tracksperformanceo refine file systempolicy selection.
This type of computationabkteeringframeworkhasprovenusefulin othercontexts(e.g.

Vetter [B], Wood 9], Gergeleit L0}, and Gu 11].)

In our dynamic steering framework, we monitor performance sensors that encapsulate
performanceof critical file systemfeatures,consult accesspattern dependentpolicy
selectorghat map changesn input/outputperformanceo potentialpolicy changesand
invoke systemactuatorgo effectthesepolicy changesTheresultingperformancesensor
metrics reflect the influence of our policy reconfiguration. Woempledwith automatic
accesspatterndetection,this closedloop steeringinfrastructurecan adaptfile system
policiesto matchapplicationaccesgatternsandthentunethesepoliciesto the dynamic
availability of system resources.

3. Portable Parallel File System (PPFS)

PPFSis a portableinput/outputlibrary designedas an extensibletestbedfor file system
policies[3]. A rich interfacefor applicationcontrol of dataplacementandfile system
policies makesit exceptionallywell-suitedfor our experimentsBelow we describethe

PPFS design and extensions that facilitate adaptive file system policy experiments.

3.1. PPFSDesign

Input/Output Server(s)

=3 =3

= =

Pra | Cache | Prd' Cache |
Llvvevaitl eo o il
Server Server

Cache |Pre||“”III|
Lt Liv s vaatld
(Client (Client (
User User oo User
Code Code Code

Application Client(s)

Figure 1: Basic PPFS Design

Figurel showsthe PPFScomponentandtheir interactions. Application clientsinitiate
input/output via invocation dPPFSinterfacefunctions. To openafile, the PPFSlibrary
first contacts the metadata server, which loads or creates informatiortiadinlet layout
on remote disk servers (input/output nodes). With this information, the applicasible
to issueinput/outputrequestsand specify cachingand prefetchingpoliciesfor all levels
of the system. Clientseithersatisfythe request®r forward themto servergabstractions
of input/outputdevices).Clients and serverseachhave their own cachesand prefetch
engines. Allphysical input/outputis performedthroughunderlyingUNIX file systems
on each PPFS server.

In the PPFSinput/outputmodel, files are accessedy either fixed or variable length
records,and the PPFSlibrary has an extensibleset of interfacesfor specifying file
distributions,expressingnput/outputparallelism,and tuning file systempolicies. For
example the usercanspecify how file recordsare distributedacrossinput/outputnodes,
how and where they are cached,and when and where prefetch operationsshould be
initiated.

3.2. PPFSExtensions

The original PPFS interface provides the application with a ricbfseanualfile system
policy controls and structured data access functimnghe rulesguidingtheir usearead
hoc Ideally, the file systemshould automaticallyinfer appropriatepoliciesfrom low-

level applicationaccesgatternsjesseninghe applicationprogrammingburdenandthe
likelihood of usermisconfigurationDynamicperformanceadatashouldbe usedto verify

and refine these policy decisions. Through automatic access pattern classifussabo,
selectfile systempolicies, and performance-basegolicy refinement,we automatefile

systempolicy control. This hasmotivatedtwo basicextensiongo the basePPFSdesign:
supportfor automaticaccespatternclassificationandautomaticgpolicy refinementbased
on monitoring input/output performance.

To I/O servers

}

|'|I'|
Pre,_lg

]
e
u

[

Policy configuration

r “Policy | Accessr— — —]
Selection [“patterns| Classifier |
& Access statistics

— T __
|10 Statistich

File accesses

File

- PPFS Interface
ey

Code |

Figure 2: PPFS Classification and Policy Selection Extension

We havereplacedmanual PPFSfile systemcontrolsin our extensionby an adaptive
accesspattern classification and file system policy selection mechanism. During

program execution,an input/output statisticsmodule monitors the file accessstream
(eachaccesss representedsa byte offset,reador write, andrequestize)andcomputes
the statisticsneededby the classifiermodule.PPFSusesthe classificationto selectand

tune prefetching and caching policies. Figure 2 illustrates the interaction of the

classification extensions with the original PPFS components.

R

o Sensor
Metrics
o Local
N ~ Selector
Pre | ICacheI | Table
L1111l

— Server

\J
pZ - '\ Policy
Vs Actuators Sensor
/ Metrics
/ ~ Local

[TTITTITT] [TTITTTrITT] // Select
[|Pre Prg Cache elector
/ liiv vl RN Table
| Client | Client

/ —
J— - \J
\ // o — \ / Policy
V; Policy Actuators
[/ I\je'?'sor Actuators
etrics
\
AN
~ _ Global
— Selector
Table

Figure 3: PPFS Performance Monitoring and Steering Extension

To refine policy selectionsusing performancedata, we instrumentedthe system
componentgo periodically provide sensormetrics and createdsensor-drivenselector
tablesto automatanvocationof the samenative PPFSpolicy controlsthata PPFSuser
could invoke manually. Figure 3 showshow our performancebasedpolicy selection
extension interacts with the PPFS. Dynamically computed sensor metrics (e.g.,
input/outputqueuelengths,cachehit ratios, inter-requestatencies)are routedto local
andglobal policy selectortables,wherethey index appropriatefile systempoliciesand
parameters for the system environment.

The local policy selectorcanonly changelocal policies. For example,a client selector
table may decideto increasethe client file cachespaceand the numberof recordsto
prefetchahead. It cannotchangefile systempolicies on other client nodesor on the
PPFSservers. As shownin Figure 3, sensometricsarealsoroutedto a global selector
mechanisnthat canselectpolicy parameterd$or othernodes. For example,if the write
throughputvisible to client nodesfor large writes dropsbelow a certainthreshold,the
clients may elect to disable caching, and streamdiegatly to the PPFSservers. Rather
than waiting for the individual server metrics and selectortablesto disable server
cachingandstreamdatato disks,the global selectormechanisndetectshis input/output
phase shift in the clients and invokes the policy change on the servers.

4, Automatic Classification and Policy Selection

As describedn §3, we havereplacedthe manualfile systemcontrolsin PPFSwith an
adaptive access pattern classification and pa@gctionrmechanismBelow we describe
in greater detail our classification and policy control methodology.

A file accesgatternclassificationis usefulif it describeghe input/outputfeaturesthat
are most relevantto file systemperformancejt neednot be perfectly accurate. For
example, one might classify an input/output patterfsaguential and write orilyevenif

thereareoccasionabmallfile seeksandreads- this would suffice to correctlychoosea
sequentialprefetchingpolicy. Sucha qualitative descriptionis difficult to obtain based
on heuristicsalone. Instead,one needsa generalclassificationmethodologycapableof

learning from examples.

As a first steptoward adaptivefile systempolicies, we have implementedautomatic
accesglassificationto selectfile systempolicies, adaptingto applicationrequirements.
This is only half of the completesystem;after making policy selectionswe rely upon

performancesensordata to refine policy parameters,adapting to the total system
environment. Performance-based steering is the subjgbt of

4.1. Classification Methodology

Within a parallel application,file input/outputaccesspatternscan be observedat two
levels. The first is at the local (e.g., per thread) level, and the secorttiegktbal (e.qg.,
per parallel program)level. For example,a parallelfile might be distributedacrossthe
threadsof a parallelprogramin sucha way that eachthreadappeardo be accessinghe
file locally in strides,but the interleavedaccessstreamis globally sequential.Global
classificationsare formedfrom local classificationsand input/outputstatistics.In §4.1.1
we describeour accesgatternclassificationapproachin g4.1.2we illustrate how global
classification works in a parallel application.

4.1.1. Access Pattern Classification

To accommodata variety of underlyingfile structuresandlayouts,we describeaccess
patternclassificationsassuminga byte streamfile representatiorfile accessearemade
using UNIX style read, write, and seek operations,and file accesspatterns are

determinedrom this representationThus,aninput/outputtraceof file accessemay be

represented as a stream of tuples of the form

<byte0ﬂset reques size, read/ Wl’ite>

Sequentiality

Sequentig|
1-D Strided
2-D Strided

Nondecreasing

Variably Strided
Uniform 3)
60(\\\8 éwﬂ‘\\e o Read/Write
2on 2 @
Variable ® @ &8
Request Sizes

Figure4: Access Pattern Space

Patternsobservedin eachof the time-varyingvaluesof the tuple componentdorm a
threedimensionabccesgatternspace Figure4 showscertaincategoriealongeachaxis
that can be used to influenike systempolicy selectionandlabelall pointsin theaccess
space Additional categoriesanbe addedasnecessaryo eachaxis to further refine the
access pattern space.

Many techniques can be used to classify and identify observed access patterns within the
space shown ifigure 4 Our approach is to train a feed-forward artificial neural

network as in Hinton1[2] to classify patterns. Although neural networks are expensive to
train initially, once training is complete, classification is very efficient. To train the

neural network, we represent the access pattern in a compact, normalized form by
computing input/output statistics on a small fixed number of accesses, called the
classification window. For example, representative statistics might be the number of
unique read request sizes, or a transition matrix of the probabilities that one type of
request (read/write) will follow the other.

Table1: Input/Output Trace Features

Category Category Features
Read/Write Read Only | write Only | Read-Update-Write| Read/Write Nonupdatg
Sequentiality | Sequential | 1-D Strided 2-D Strided Variably Strided
Request Sizes Uniform Variable

Table 1 showsthe featuresrecognizedby our trained neural network. Thesefeatures
correspondlirectly to planesor regionswithin the spaceshownin Figure4. The neural

network selectsone and only one featurewithin eachcategory;for example,a set of

accessexannot be both read only and write only. Neural networks are inherently
imprecise,allowing usto train a networkto identify patternsthatare “clos€ to a well-

definedpatternin a more generalway thanspecifyingheuristics.For example a pattern
might be treatedasread-onlyif thereis only onesmallwrite amongvery largereads but
read/writeif the singlewrite is the samesizeasthe reads.This allows usto train the file

system to classify new access patterns.

4.1.2. Global Access Pattern Classification

Local acces9atternclassificationis only part of a larger classificationproblem.Local

classificationsare madeper parallel programthread;however,the local accesgatterns
within a parallel program merge during execution, creating a global accesspattern.
Globalknowledgeis especiallyymportantfor tuningfile systempolicies.For examplejf

all processorsaccessa single file sequentially, one could potentially improve
performanceby employinga cachingpolicy that doesnot evict a cachedblock until

every processor has read it.

Our global classification infrastructureis basedon an accesspattern algebra. We
combinelocal classificationsand otherlocal informationto makeglobal classifications.
For example,if all local accesgatternsare readonly, the global accesgatternis read
only. The numberof processorgontributingto the global accesspatternis called the
cardinality of the classification. Generally, we attempt to ngd@bal classificationswith
cardinality p, wherep is the numberof processorsnvolved in the global input/output.
However,a global classificationinvolving a subsetof the theseprocessorss still useful
for policy selection. A partial global classificationmay evenbe preferable,if it more
accurately represents the temporal characteristics of the global access pattern.
Global accesgatternclassificationcannotbe usefulfor influencingfile systempolicies
unlesswe recognizecommonglobal accesgatternsn time to effect policy changesTo
demonstratethat this is feasible, we have examined parallel applicationsfrom the
Scalablelnput/Output(S10) applicationsuite [1,2]. Theseapplicationsexhibit a variety
of global accesgatterns,ncluding global sequential partitionedsequentialprocessors
seguentiallyaccessdisjoint partitions), and interleavedsequential(individual strided
accesyatternsare globally interleaved). The patternsare primarily read-onlyor write-
only with regularandirregularrequestsizes.All of thesepatternscanbe recognizedoy
our classification infrastructure.

One specific application area we have examinedis computationalfluid dynamics.
PRISMis a parallelimplementatiorof a 3-D numericalsimulationof the Navier-Stokes
equationsirom Hendersor[13,14]. The parallelizationis implementedby apportioning
slidesof the periodicdomainto the processorswith a combinationof spectralelements
andFouriermodesusedto investigatethe dynamicsandtransportpropertiesof turbulent
flow.

Figure5 showsa file accesgimeline for PRISM on a 64 processointel ParagonXP/S
runningOSF/1versionl.4. This codeexhibitsthreedistinctinput/outputphasesDuring

the first phase,every processormreadsthree initialization files (m16.rst, m16.reaand
m16.mor). Eachfile is accessedavith a global sequentiabccesgattern;m16.rstis also
accessewith aninterleavedsequentiabccesgattern. In the secondnput/outputphase,
nodezeroperformsinput/outputon behalfof all the nodeswriting checkpointsand data
(accesdo files m16.Rstatm16.Qstatm16.Vstat,m16.meaand m16.his). In the final

phase,the resultfile is written to disk by all processorsn an interleavedsequential
accesspattern m16.fld. Phasestwo and three occur iteratively throughout program
execution.

When accessesre adjacentand very small, local classificationwindows (the time to
maketen input/outputaccessesyre short,andwe mustobservemore windowsto detect
overlapamongprocessorand global behavior. For example,Figure 5a and Figure 5b
show local classificationtimes for a globally sequentiallyaccessednitialization file
(ml6.rea). Thereadsarevery small (mostarelessthan50 bytes)andwe reclassifythe
pattern every ten accesses. We can make a global sequentialclassification when
seguentiabccesgatternswith overlappingbyteshavebeendetectecon everyprocessor.
Despiteinitial startupasynchronicity,the slowestprocessor(number31) completesits
tenth accesdo this file at 7.79 seconds. Becausethis initialization input/outputphase
accountdor approximatelyl25 secondof executiontime, adaptingfile systempolicies
to the access pattern is fundamental to improving performance.

m16.Rstat & & & & & —
m16.Qstat o & & o O
ml6.Vstat & & & & & —
(¢D)
% M16. M ea < S S —
4
2 mM16.his -
LL
m16.fld |- 23 o & o S —
ml16.mor © -
mlG.rstt -
m1l6.reade ! ! ! ! ! ! !

1000 2000 3000 4000 5000 6000 7000 8000
Execution Time (seconds)

Figure5: PRISM: File Access Timeline

70 7 . T ;
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ Global Classificatior—
S S S S + : :
e b by by TRy PR % .
e A S A A A S o
EPRE T R S
- S N S S S S S o
) ﬁ}}I%%ﬁr}j}ﬁ@;er 1€ sof
o T T T T T I S
[S A e e 4
5 AE AL A £ Aty - z
z e I++t% I+¢+¢+}+*+ﬁ+++ 4 6 40
S {% $+) $+ {ﬁaﬁﬁﬁ* A &
R A A
1) Phh R R Rh L e o Q
0 A S S e Q -
@ FRE IR R A N AR 41 06 30
Q e T s SRS S g A i o
<] ey e e e SRR] o
= L T T
a At T T Tttt
HA A A | 20 -
et T T T P Ty
R . T A I A
R S N SR S S S -
T T T
e e R e A B 10 -
B S #%fﬁww
L I N I ++3EM
40 60 80 100 120 140 160 5 5.5 6 6.5 7 7.5 8
Execution Time (seconds) Execution Time (seconds)
(a) All Classifications (b) Detail

Figure6: PRISM: Local Processor Classification Pointsfor Global Sequential Access Pattern

4.2. Intelligent Policy Selection

A file access pattern classification as described above is platform-independent and unique
to a particularapplicationexecution.However,an optimal choiceof file systempolicies

for a particularaccesgatternis system-dependentA file systemusesthe classification

to tunefile systempoliciesfor eachinput/outputplatform. By makingpolicy decisions

to suit the applicationrequirement@ndthe systemarchitecturenot only is input/output
performanceportableover a variety of platforms,but the file systemcan provide better
performanceverarangeof applicationghanit could by enforcinga singlesystem-wide

policy. This adaptivityshouldoccurtransparentlywithout applicationhints or userlevel
optimizations.

Abstractly, PPFScontinuouslymonitors and classifiesthe input/outputrequeststream.
This classificationis passedto the file systempolicy suite for policy selectionand
configuration. For example whenthe accesgatternclassificationis sequentialthe file

systemcanassumehatfile accesswill continueto be sequentiallf the classificationis

readonly, the file systemcan prefetchaggressivelyif it is write only, a write-behind
policy might be efficient. Whenthe classificationis regularly (1-D or 2-D) strided,the
file systemcantake advantageof this informationto adjustthe cachesize and prefetch
anticipated blocks according to the access and stride sizes.

As describedin §4.1.2 we can combine local classifications to make global
classifications,which we use to adjust policies at all system levels with global
knowledge.For example,when all processorgeadthe samefile sequentially(global
seqguential)we can selecta caching policy at input/output nodesthat prefetchesfile
blocks sequentiallybut doesnot flush cacheblocks until every processohasaccessed
them.In contrastjf we detectaninterleavedsequentiaglobal pattern,eachinput/output

node could prefetchfile blocks sequentially,retainingthem only until eachhas been
accessed in its entirety once.

Figure 7 showsa simple, parameterizecgxampleof a policy selectionalgorithm that
selectsPPFSpolicies for a uniprocessotUNIX workstation.Its default behavioris to
favor small sequentiareads,typical of UNIX workloads.However,whenthe classifier
detects other accesspatterns, the algorithm adjusts policies to provide potential
performanceimprovements.Quantitativevalues for the parametersof Figure 7 (e.g.
LARGE_REQUEST)dependon the particular hardware configuration and must be
determined experimentally.

The algorithm ofigure 7is but onesimplepossibility for policy control. Richercontrol

structurescan be built upon more accuratemodelsof input/outputcosts. However,in

§4.3 we show that even this simple policy suite suffices to yield large performance
increasesover that possiblewith standardUNIX file policies. In §5 we describeour

methodologyfor tuning automaticallyselectedpolicies in responseto overall system
performance, closing the classification and performance feedback loop.

if (sequential) {

if(wite only) {
enabl e cachi ng
use MRU repl acenent policy

} else if (read only &&% average request size > LARGE REQUEST) {
di sabl e cachi ng

} else {
enabl e cachi ng
use LRU repl acenent policy

}
}

if (variably strided || 1-D strided || 2-D strided {
if (regular request sizes) {
if (average request size > SMALL REQUEST) {
di sabl e cachi ng

} else {
enabl e cachi ng
i ncrease cache size to MAX CACHE SI ZE
use LRU repl acenent policy

} else {
enabl e cachi ng
use LRU repl acenent policy

}

Figure 7: Dynamic File Policy Selection (Example)

4.3. Experimental Results

As a validation of automaticbehavioralclassificationand dynamicadaptationwe used
the enhancedPPFSto improve the input/output performanceof Pathfinder,a single

processor satellite data processing code. Pathfinflemisthe NOAA/NASA Pathfinder
AVHRR (Advanced Very High Resolution Radiometer) data processing project
describedin Agbu [15]. Pathfinderprocessingis typical of low-level satellite data
processingapplications— fourteenlarge files of AVHRR orbital dataare processedo
producea large outputdataset. It is an extremelyinput/outputintensiveapplication;
over seventypercentof Pathfinderexecutiontime is spentin UNIX input/outputsystem
calls.

4.3.1. Pathfinder

The goal of the Pathfinderprojectis to processxistingdatato createglobal, long-term
time seriesremote-sensedata setsthat can be usedto study global climate change.
Thereare four typesof PathfinderAVHRR Land datasets(daily, composite climate,
andbrowseimages);we considerthe creationof the daily datasets. Eachday, fourteen
files of AVHRR orbital data,approximatelyd2 megabytegach,in Pathfinderformatare
processedto produce an output data set that is approximately 228 megabytesin

Hierarchical Data Format (HDF) from NCSA [16]. For simplicity, we examinethe
processing of a single orbital data file.

During Pathfinderexecutionancillary datafiles andthe orbital datafile areopenedand
anorbit is processed 20scansat atime. Althoughthe orbit file is accessedequentially,
the accesspatternsfor other ancillary data files range from sequentialto irregularly
strided. The result of this processingis written to a temporaryoutput file using a
combination of sequential and two-dimensionally strided accesses. Finally, the
temporary file is re-written in HDF format to create three 8-bit and nine 16-bit layers.

Table 2 shows the relative execution times for Pathfinder using UNIX buffered
input/outputand PPFSwith adaptive policies on a Sun SPARC 670. The dynamic
adaptationof PPFSyields a speedupf approximatelyl.87 with the policies Figure 7."

The PPFS automatic classifier could detect that the ofilpiccespatternwasinitially

write only andsequentialwith largeaccessesndthatthe patternlater changedo write
only, strided,with very smallaccessesAdaptingto thefirst accesgatternphase PPFS
selectedan MRU cacheblock replacemenpolicy. In the secondphaseit enlargedthe
cache, retaining the working set of blocks.

Figure8a andFigure8b illustratethe dramaticbenefitsof dynamicpolicy adaptatiorfor
Pathfinder’s execution. Both graphs represbkasameamountof input/output;however,
in Figure 8a we usethe samestatic policies for all accesyatterns.The first clusterof
accessen eachgraphis the write only sequentiaphase Performancdor thefirst phase
is roughly equivalentusing either MRU or the default, non-adaptiveLRU replacement
policy. However, enlargingthe cachein the secondphasesubstantiallydecreaseshe
averagenrite duration. PPFSsuccessfullyretainsthe working setof blocks (the overall

' However, due to limited physical memory, we disabled caching for small, variably strided reads.

cachenhit ratio exceed$.99),while UNIX bufferedinput/outputforcesa write of 8 KB
for every one or two byte access.

10 S?uential Strided E 10F 1

==

Sequential Strided
e‘%

0.1 0.1p

0.01 0.01

Write Durations (seconds)

—~
(2]
©
c
o
[S]
[}
0
~
(2]
c
8
=
@®©
=
>
(@]
Q
)
g

0.001 E 0.001} Tt e
0.0001 [S R SR R R B 0.0001 T ‘ ‘ ‘ %
0 100 200 300 400 500 600 700 800 900 100C ¢ 50 100 150 200 250
Execution Time (seconds) Execution Time (seconds)
(a) PPFS (Non-adaptive) PPFS (Adaptive)

Figure 8: Pathfinder Write Durations (Beginning Phase)

Table 2: Pathfinder Execution Times (seconds)

Experimental System Time | User Time Total
Environment
UNIX 1578.2 1781.1 4299.3
PPFS 400.4 1270.4 2300.8

5. Performance-Based Steering

Although file systempolicy selectionis partially a function of applicationinput/output
accesgpatterns,systemperformanceultimately determinesthe successof a particular
policy choice.Performanceensorgrovidefeedbackon file systembehaviorthatcanbe
used to optimize the parameters of policy decisions.

Below, we describea complementto qualitative accesspattern classification: sensor
based, closed loop policy selection and configuratidsdescribedn §2.2 andshownin
Figure 3, our framework partitions the steeringproblem into three components.The
sensometricsin §5.1 provideinput for policy selectorsof §5.2 which, basedon system
andapplicationperformancehistory, selectpolicy parameterand activatethemvia the
policy actuators 0§5.3

5.1

To capture input/output performance data, we augmented PPFS with a set of

performancesensorsthat are periodically sampledusing the Pablo instrumentation
library of Reed[17]. Table3 showsthe currentPPFSsensometrics. We chosethese
particular metrics becausethey are inexpensiveto calculate,and we believe they are
broadenoughto reflect the performanceof malleablefile systempolicieswithin PPFS.
In practice,many metricsare strongly correlatedwith others,magnifying or validating

Performance Sensor s

Table3: PPFS Sensor Metrics

Dimension

Description

Operation Count
Operation Time

Total number of input/output requests
Mean operation service time

Read Count Number of read requests

Read Byte Count Number of bytes read

Read Time Mean read service time

Write Count Number of write requests

Write Time Mean write service time

Cache Hits Number of requests serviced by caches

Server Cache Hits
Cache Check Time

Number of requests serviced by offnode caches
Time to check local cache

Server Time
Server Queue Time
Server Queue Lengths

Time spend on input/output servers
Time spend in disk queue
Length of disk queue

Prefetch Byte Count
Prefetch Cache Check Time
Prefetch Off Node Time
Hit Miss Time

Number of bytes prefetched
Time to scan cache on prefetch initiation
Time spent offnode for prefetch operations

Time spent waiting for overlapped prefetch to comp

trends detected via other metrics.

5.2

Policy Selectors

Table4: Sample Sequential Access Selectors

Sensor Conditions

Policy Options

(poor_read_service_times) &
(many_read_requests) &
(managable_byte throughput) &
(NOT high_hit_ratio)

Increase Cache Size
Increase Prefetch Amour

(low_hit_ratio)

(NOT managable_byte throughput)

Decrease Cache Size
Disable Prefetch

Given detailed performancesensormetrics and an accesspattern classification, our
frameworktunesfile systempoliciesusingthe sensometricsastheindicesto a selector
table containingpolicy parameterdor that setof sensormetrics. The dashedines of
Figurel showtheflow of sensodatafrom PPFSmodulesto the policy selectors. Table
4 showssomesampleselectorsthat a systemmight provide, given a sequentialaccess
patternclassification. For example,if the sensormetricsindicatethat relatively small
readrequestsakea long time andthe cachehit ratio is low, we mightincreasehe cache
sizeandthe numberof blocksprefetchedo anticipatethe requeststream. If the sensors
indicatethattoo muchdatais beingrequestedo effectively cacheand prefetch,we may
disable caching and prefetching altogether to avoid thrashing the cache.

The sensorulesshownin Table4 are qualitativeratherthan quantitative. We quantify
the selectortable rules when we calibratethem with the specific sensormetricsfor a
given platform. For example,on an IBM SP/2 with 128 MB of memory per node
manageable_byte_thrupuhay calibrate to (Read_Byte Couht< 100 MB/second).
Similarly on an Intel Paragonwith only 32 MB of memory per input/outputnode,the
calibration may be (Read_Byte Count < 25 MB/second).

To createselectortablesfor a given accesgattern,we needto know how differentfile
systempoliciesperformfor this accesgattern.By executingaccesgatternbenchmarks
with a variety of policiesandundera variety of load conditions,we candevelopa setof
selectorrules suchasthoseshownin Table4. We calibratethe qualitativeruleson a
given platformby storingthe quantitativeperformancesensorwith the qualitativerules.
Our portable, dynamic steeringinfrastructurecan then adaptto a system’sresource
constraints by simply loading selector tables calibrated for that system.

5.3. Policy Actuators

After the policy selectormechanismdetermineswhat file systempolicy parameters
shouldbe used,actuatorsgprovide the mechanisnto instantiate policiesand configure
parameters.Currently, PPFSsupports actuatorghatallow dynamicreconfigurationof
cachesizes,replacement policies, and prefetchand write behind parameterson each
client and servernode. Theseactuatorsprovide a rich variety of controlsto our
dynamicsteeringinfrastructure. We havetestedthesecontrolsby interactivelysteering
applicationbehaviorbasedon a virtual reality display of the sensormetricsasin Reed

[1g].

54. Experimental Results

To demonstratethe efficacy of sensor-basedadaptive control when coupled with
behavioralassertionswe usedan input/outputbenchmarkto conducta set of simple
experimenton severalparallelarchitecturesWe had severalfundamentaloalsfor the

? Note that Read_Byte Count is a sensor metric ffaine 3

benchmarlkstudy. First, we wantedto verify thatsensometricshelp us makeimproved
PPFSpolicy decisionsWe alsowantedto determinehow long we haveto wait between
policy changes to allow the sensor metrics to settle to their new steady state values.

In our benchmarka group of tasksreadsdisjoint interleavedportionsof a sharedfile.

Taski readsall blocksi modulothe numberof tasks(e.g.,task 0 of p tasksreadsfile

blocks 0, 2p, p, ...) Betweenaccessesa processorcomputesfor a uniform random
interval with a parametricmean. We executedthis benchmarkon several parallel
architectureswith a variety of requestsizes, prefetching options, and computation
overheads for varying numbers of reader tasks.

18 T T T T T T T 18 T T T T T

1 1 Processore—
2 Processors+t - -
4 Processorst- -

\ 8 Processorsx:

16 Processors® -

=

]
=
()]
_t

)

P =
NS
(milliseconds
PR =
o N B
T T T
I I

ng

[ee]
T
—

\ Some Caghe Misses
ST

Mean Server time (milliseconds)
=
o

Mean Server Time
(o]
T

Some Cache Misses 4r \ P T
ox —— R T TR - R \ s
4. —- 7 2+ \ - I
_ Cache Hits
B g — T S - S —
2 | | | | | | | 0 | | il 1 sl 1
0O 20 40 60 80 100 120 140 160 0 20 40 60 _ 80 100 120
Elapsed Execution Time (seconds) Elapsed Execution Time (seconds)
a) Changing Interaccess Latency b) Changing Processor Count

Figure 9: Sensor Variation for Different Workloads

Figure 9 shows the effect on server requestoverhead of varying the inter-access
computationinterval and the numberof nodesreadinga file. This experimentwas

performedon an Intel ParagonXP/S using a single input/outputserver controlling a

RAID-3 disk arraywith a throughputof 3.1 MB/second.In Figure 9a, eight processors
readthefile andthe PPFSserverprefetcheonly sixteenKB aheadof the accesstream.
In Figure 9b, on the otherhand,the PPFSserverprefetche256 KB aheadand clients

wait on averagel 75 millisecondsin betweerneachaccess.The PPFSserverperformance
dependn the numberof requestsarriving at the servereachsecond. In Figure9a, the

arrival rate varie$rom 27 to 54 requestpersecond. Similarly, in Figure9b, therequest
arrival rate varies from 6 to 92 requests per second.

The sensorsraluesin Figure9 fall into threebasiccategories. As shownin the top of
Figure 9a, mostof the requestxould resultin cachemissescoupledwith long queuing

: Serverrequestoverheads the time that a requestspendson the PPFSservernode. It includescache
check time, buffer copy overhead, and disk queuing times if the request is not in the server cache.

delayswherethe servertime exceedsten milliseconds. A substantialincreasein the

amountof prefetchingis requiredto alleviatethis problem.Whensomeof the requests
resultin cachemisseswe seethatthe servertime is betweenfour andsix milliseconds.

A moderateincreasein the number of blocks prefetchedshould result in improved

performance. Finally, at the bottomfafjure &, we seehatwhenall of therequestsan

be servicedfrom the cache,the meantime spenton the PPFSserveris lessthan one

millisecond.

Table5: Benchmark Selector Rules

Sensor Conditions Policy Options
Quantitative Rules
(large_server_times) & Substantially Increase
(many_read_requests) Prefetch Amount
(moderate_server_times) & Moderately Increase
(many_read_requests) Prefetch Amount
Quantitative Calibration

(MEAN_SERVER TIME > 8 MS) & Substantially Increase
(READ_REQUEST COUNT >40) Prefetch Amount
(READ_REQUEST COUNT> 40 & Moderately Increase
(MEAN_SERVER TIME > 2 MS) & Prefetch Amount

(MEAN_SERVER TIME < 8 MS)

Basedon the figure, we candevelopthe two simple selectorrules shownin Table5 for
this benchmarkaccesgattern. Onerule detectswvhenthe prefetchparametershouldbe
increasedconsiderablywhile the other detectswhenthe prefetchparametershould be
increasedslightly. To calibratetheserulesfor the Intel Paragonwith a single RAID-3
disk array, we simply augmentthe selectortable with the appropriatesensorvaluesas
shownat the bottom of the Table5. Whenthe calibratedselectortable is usedfor an
applicationthat exhibits this accesgpattern,the steeringinfrastructurecan detectpoor
PPFS server performance and increase the prefetch parameters apprdpriately.

6. Related Work

Currentwork in parallelfile systemscenterson understandin@pplicationinput/output
requirementsand determininghow to consistentlydeliver close to peak input/output
performanceThis challengenecessitatese-examiningthe traditional interfacebetween
the file system and application.

“In Figure d, the startup transient lasts about sixty seconds before these cache misses occur regularly.
® The rules iriTable 5are examples of a subset of the needed rulgbiibenchmark.A completesetof

rules could also reducethe amountof prefetchingperformedwhen the sensorsndicate that resources

were being wasted.

Characterizatiorstudieshave revealeda large natural variation in input/outputaccess
patterns. During the past two years, our group and others have used the Pablo
input/output analysis software to study the behavior of a wide variety of parallel
applicationson the Intel ParagonXP/S [1,2] and IBM SP/2.We havedeterminedirom
theseapplicationstudiesthat high performanceapplicationsexhibit a wide variety of
input/output request patterns, with both very small and begerequessizes,readsand
writes, sequential and non-sequential access, and a variety of temporal variations.

Giventhe naturalvariationin parallelinput/outputpatternstailoring file systempolicies
to applicationrequirementganprovidebetterperformancehana uniformly imposedset
of strategies.Many studieshaveshownthis underdifferentworkloadsandenvironments
[5,6,7]. Small input/output requestsare best managedby aggregation,prefetching,
caching, and write-behind, though large requestsare better servedby streamingdata
directly to or from storagedevicesandapplicationbuffers. Thereare severalapproaches
to applicationpolicy control; thesecanbe groupedinto systemghat offer explicit policy
control (e.g. SPIN from Bershad[19], exokernelfrom Engler[20], the HurricaneFile
Systemfrom Krieger [21], and Galley from Nieuwejaar[22]), and implicit policy
control, via hints [4], expressiveuser interfaces (e.g., ELFS [7] and collective
input/outputasin del Rosario[23] andKotz [24]), or intelligentmodelingof file access
(e.g.,Fido from Palmer[25] andknowlegebasedcachingfrom Korner[26]). Fidois an
example of a predictive cache that prefetchesby using an associativememory to
recognizeaccesspatternsover time. Knowledge basedcachinghas been proposedto
enhance cache performance of remote file servers.

The secondcomponenf our researchgdynamic performancebasedsteering,hasbeen
used successfullyin many contexts. A natural analog to explicit policy control is
interactive steering, where the steering infrastructure extracts russemselinformation
from an application, presentsthis information to the user who selects system or
applicationpolicies,andactuateshesepoliciesto changeapplicationbehavior.Falconas
in Gu [27] and SciChemfrom Parker[28] are two representativeexamplesof this
interactive approach.

In contrastto interactivesteeringenvironmentsautomaticsteeringenvironmentslo not
requirecontinuinguserinvolvement.Instead,steeringdecisionsare madeautomatically
without userintervention.DIRECT [10], Falcon[29,30] and the Meta Toolkit [9] all
provide automaticsteeringinterfaces DIRECT targetsreal time applicationsa domain
wherethe primary concernis validatingthat the systemmeetsreal-timeconstraintsThis
goalis differentfrom run-time performancemprovementput the steeringinfrastructure
is similar. Automatedrun-time steeringis usedin Falconto selectdifferent mutual
exclusionlock configurationsbasedon the numberof threadsblockedon the lock [30].
The Meta Toolkit providesa frameworkfor performingdynamicsteeringand provides
specialguardsthat help to maintainmutual exclusionof critical statevariables[9] that
may be changed duriragrtuatorexecution. Whenan actuatoris invoked,the appropriate
guards are executed before the system module is modified.

7. Conclusions

The wide variety of irregularaccesatternsdisplayedby importantinput/outputbound
scientific applications suggeststhat optimizing application performancerequires a

judicious matchof resourcemanagemenpoliciesto resourcerequestpatterns.Because
the interactionsbetweendynamic, irregular applicationsand systemsoftware change
duringapplicationexecutionwe believethatthe solutionto this performanceproblemis

adaptivefile systempolicies that are controlled by user-levelaccesspatternsand by

sytem-level performance metrics.

In this paper,we describeda prototypeof an adaptivefile systemand presentedhe
resultsof experimentgdlemonstratinghe viability of this approachThis prototype,built
uponon our PPFSuser-levelparallelfile system selectsandconfiguresfile cachingand
prefetching policies using both qualitative classifications of access patterns and
performance sensor data on file system responses.

In the coming months, we plan to more tightly couple automatic accesspattern
classificationwith performancesteering.We are currentlyroundingout the prototypeby

extendingPPFSto performrun time global accesatternclassificationand enhancing
the performance-driven steering infrastructure.

References

[1] CrRANDALL, P.E.,AYDT, R.A, CHIEN, A.A., AND REED, D.A. Characterizatiorf a
Suiteof Input/OutputintensiveApplications. In Proceedingof Supercomputing®5
(Dec. 1995).

[2] SwmIrNI, E., AYDT, R.A., CHIEEN, A.A. AND REeD, D.A. /O Requirementsof
Scientific Applications: An EvolutionaryView. In Fifth International Symposium
on High Performance Distributed Computi(tP96).

[3] HUBER, J., BEFORD, C.L., REED, D.A., CHIEN, A.A., AND BLUMENTHAL, D.S. PPFS:
A High PerformancePortableParallelFile System.In Proceedingsf the 9th ACM
International Conference on Supercomputi(Barcelona, July 1995), pp. 385-394.

[4] PATTERSON R.H., GIBSON, G.A., GINTING, E., STODOLSKY, D., AND ZELENKA, J.
Informed Prefetching and Cachintn Proceeding®f the FifteenthACM Symposium
on Operating Systems Principld®ecember 1995), pp. 79-95.

[5] Kotz D., AND ELLIS, C.S. PracticalPrefetchinglechniquesor Multiprocessotfile
Systems.Journal of Distributed and Parallel Databasgs1 (January 1993), 33-51.

[6] KRIEGER O., AND StumM, M. HFS: A Flexible File Systemfor Large-Scale
Multiprocessors. In Proceedingf the 1993 DAGS/PCSymposiunfHanover,NH,
June 1993), Dartmouth Institute for Advanced Graduate Studies, pp. 6-14.

[7] GRIMSHAW, A.S., AND LoyoT, JrR., E.C. ELFS: Object-OrientedExtensibleFile
Systems. In Proceedingsof the First International Conferenceon Parallel and
Distributed Information System@®ecember 1991), p. 177.

[8] VETTER J.,AND SCHWAN, K. Modelsfor ComputationalSteering. In Proceedings
International Conferenceon Configurable Distributed SystemsAnnapolis (May
1996).

[9] Woobp, M.D. Fault-Tolerant Managemenbf Distributed ApplicationsUsing the
Reactive SystemArchitecture. PhD thesis, Cornell University, January 1992.
Available as technical report TR91-1252.

[10] GERGELEIT, M., KAISER, J.,AND STREICH, H. Direct: Towardsa DistributedObject-
Oriented Real-Time Control System. In Workshopon Concurrent Object-based
Systems(Oct. 1994).

[11] Gu, W., VETTER, J., AND SCcHWAN, K. An AnnotatedBibliography of Interactive
Program Steering. Tech. Rep. GIT-CC-94-15, College of Computing, Georgia
Institute of Technology, 1994.

[12] HINTON, G.E. ConnectionistLearning Procedures. Atrtificial Intelligence 40
(1989), 185-234.

[13] HENDERSON R.D. UnstructuredSpectralElementMethods: Parallel Algorithms
and Simulations.PhD thesis, June 1994.

[14] HENDERSON R.D., AND KARNIADAKIS, G.E. Unstructured Spectral Element
Methods For Simulatioof TurbulentFlows. Journal of ComputationaPhysics122,
2 (1995), 191-217.

[15] AcBy, P.A., AND JAMES, M.E. The NOAA/NASAPathfinderAVHRRLand Data
SetUser'sManual. GoddardDistributed Active Archive Center, NASA, Goddard
Space Flight Center, Greenbelt, 1994.

[16] NCSA. NCSA HDF, Version 2.0. University of lllinois at Urbana-Champaign,
National Center for Supercomputing Applications, Feb. 1989.

[17] REED, D.A., AYDT, R.A., NOE, R.J.,ROTH, P.C.,SHIELDS, K.A., SCHWARTZ, B.W.,
AND TAVERA, L.F. Scalable PerformanceAnalysis: The Pablo Performance
Analysis Environment. In Proceedings of the Scalable Parallel Libraries
ConferenceA. Skjellum, Ed. IEEE Computer Society, 1993, pp. 104-113.

[18] REED, D.A., SHIELDS, K.A., TAVERA, L.F., ScuLLIN, W.H., AND ELFORD, C.L.
Virtual Reality and Parallel SystemsPerformanceAnalysis. IEEE Computer(Nov.
1995), 57-67.

[19] BERSHAD, B.N., SAVAGE, S., PARDYAK, P., SIRER, E.G., Fluczynski, M.E.,
BECKER, D., EGGERS S.,AND CHAMBERS, C. Extensibility, SafetyandPerformance
in the SPIN OperatingSystem. In Proceedingsf the FifteenthACM Symposiunon
Operating Systems Principl¢®ecember 1995).

[20] ENGLER, D.R., KAASHOEK, M.F., AND JR., J.O. Exokernel:An OperatingSystem
Architecturefor Application-Level ResourceManagement. In Proceedingsof the
Fifteenth ACM Symposium on Operating Systems Princifdesember 1995).

[21] KRIEGER O. HFS: A Flexible File Systemfor Shared-MemoryMultiprocessors.
PhD thesis, University of Toronto, October 1994.

[22] NIEUWEJAAR, N., AND KOTz, D. The Galley ParallelFile System. In Proceedings
of the 10th ACM International Conferenceon Supercomputing (May 1996). To
appear.

[23] DEL ROSARIO, J.M., BORDAWEKAR, R.,AND CHOUDHARY, A. ImprovedParallell/O
via a Two-PhasdRun-TimeAccessStrategy. In IPPS'93 Workshopon Input/Output

in Parallel Computer Systems(1993), pp. 56-70. Also publishedin Computer
Architecture News 21(5), December 1993, pages 31-38.

[24] KoTz, D. Disk-directedl/O for MIMD Multiprocessorsln Proceeding®f the 1994
Symposium on Operating Systems Designlapdementation(Novemberl994),pp.
61-74. Updated as Dartmouth TR PCS-TR94-226 on November 8, 1994.

[25] PALMER, M., AND ZDONIK, S.B. Fido: A CacheThat Learnsto Fetch. In
Proceedingsof the 17th International Conferenceon Very Large Data Bases
(Barcelona, September 1991), pp. 255-262.

[26] KORNER K. Intelligent Cachingfor RemoteFile Service. In Proceedingsof the
10th International Conferenceon Distributed ComputingSystems (May 1990), pp.
220-226.

[27] Gu, W., EISENHAUER, G., KRAEMER, E., SCHWAN, K., STASKO, J.,AND VETTER, J.
Falcon: On-line Monitoring and Steeringof Large-ScaldParallelPrograms. Tech.
Rep. GIT-CC-94-21, College of Computing, Georgia Institute of Technology, 1994.

[28] PARKER, S.G., AND JoHNSON C.R. SciRun: A Scientific Programming
Environmentfor ComputationalSteering. In Proceedingsof Supercomputing95
(December 1995).

[29] GHEITH, A., MUKHERJEE B., SILVA, D., AND SCHWAN, K. Ktk: Kernel Supportfor
Configurable Objects and Invocations. Tech. Rep. GIT-CC-94-11, College of
Computing, Georgia Institute of Technology, Feb. 1994.

[30] MUKHERJEE B., AND SCHWAN, K. Improving Performanceby Use of Adaptive
Objects: Experimentationwith a Configurable Multiprocessor Thread Package.

Tech.Rep.GIT-CC-93-17,Collegeof Computing,Georgialnstitute of Technology,
Feb. 1993.

