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Abstract

Electroencephalography (EEG)-based communication for situations in
which normal speech may not be uttered has been investigated several
times. Recently, experiments showed that besides giving simple com-
mands i. e. to a computer, the recognition of actual unspoken words may
also be feasible.

Wavelet-based signal processing has been employed increasingly often
for all kinds of signals. The development of the Fast Wavelet Transform
(FWT) as a counterpart to the Fast Fourier Transform has made this
preprocessing usable with all kinds of environments, computing hardware
and time constraints.

This research is dedicated to investigate the potential of the Wavelet
Transform for EEG signal preprocessing for the recognition of words. I
could show that while the FWT does not seem suitable for this task, the
Double-Tree Complex Wavelet Transform, a relatively easy variation of
the FWT, improves word recognition accuracy considerably.

The second part of this work deals with the question whether Wavelet
methods are suitable for speech recognition via electromyographic signals
generated by the articulatory muscles. In these experiments, a phoneme-
based speech recognition was attempted. Again, I could show that the
Wavelet Transform may be successfully applied in this field and outper-
forms pure spectral features.

2



Acknowledgements

I would like to thank my advisor Dr. Tanja Schultz for supporting my work with
her advice and for giving me the opportunity to work on this intriguing field of
research both in Karlsruhe and in Pittsburgh.

My work on EEG speech recognition would not have been possible with-
out the foundations laid by Marek Wester and Jan Calliess, who not only in-
vestigated this topic before me, but also created the signal recordings I used.
Similarly, my EMG work is based on the previous work by Szu-Chen Jou.

Jan Calliess and Szu-Chen Jou initiated me into the secrets of the JANUS
Speech Recognition Toolkit and often helped me out when problems occured.
Special thanks to them!

This research was partly funded by the Baden-Württemberg-Stipendium
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German Summary

Diese Studienarbeit befasst sich mit der Anwendung verschiedener Varianten
der Wavelet-Transformation (WT) auf elektroenzephalographische (EEG) und
elektromyographische (EMG) Signale zum Zwecke der Spracherkennung. In der
EEG-Erkennung habe ich Aufnahmen sowohl von gesprochener als auch von
nur “gedachter” Sprache zugrundegelegt. Im Fall der EMG-Erkennung beruh-
te meine Arbeit auf einem aus 500 Äußerungen bestehenden Datensatz verbal
ausgesprochener Sprache.

Der Hauptteil dieser Arbeit betrifft die Erkennung von ganzen Worten an-
hand von EEG-Aufnahmen. In den Sektionen 1 und 3 gebe ich eine Einführung
in die biologischen Grundlagen der Elektroenzephalographie und die Metho-
dik der Datengewinnung. In Kapitel 2 gehe ich detailliert auf die Wavelet-
Transformation ein. Es werden sowohl die mathematischen Grundlagen ent-
wickelt als auch die konkrete Anwendung in der Signalverarbeitung im allge-
meinen und in meinen Experimenten im speziellen aufgezeigt.

Das Resultat der Experimente findet sich in Kapitel 4. Es erweist sich, dass
die Double-Tree Complex Wavelet Transform, eine spezielle redundante Vari-
ante der diskretisierten Wavelet-Transformation, die Erkennungsraten für alle
Aufnahmen deutlich verbessert.

Der zugrundeliegende Datensatz umfasst Aufnahmen verschiedener Typen:
Dies betrifft zunächst die Aussprachemodalität (gesprochene oder nur gedachte
Worte), aber insbesondere auch die Anordnung der Worte bei der Aufnahme.
Dabei gab es die folgenden Varianten (siehe Sektion 3.1):

• Im blockweisen Modus wurden alle Samples eines Wortes am Stück auf-
genommen, ehe zum nächsten Wort übergegangen wurde.

• Im sequentiellen Modus hingegen wurden der Reihe nach alle Worte je
einmal aufgenommen, und diese Sequenz wurde mehrfach wiederholt.

Eine zentrale Erkenntnis der Arbeit [3] ist es, dass diese Modalitäten und
Aussprachetypen zu höchst unterschiedlichen Ergebnissen führen. In meiner Ar-
beit zeige ich auf, wie meine Experimente diese These unterstützen und was sich
aus der Zerlegung des Eingangssignals in Bestandteile verschiedener Größenord-
nungen (“Skalen”), die die Wavelet- Transformation bietet, schließen lässt.

In Kapitel 5 wird die Anwendung Wavelet-basierter Vorverarbeitungsmetho-
den auf EMG-Aufnahmen beschrieben. Das Hauptresultat dieses Abschnittes
ist es, dass die Redundante Diskrete Wavelet-Transformation unter den hier
getesteten Varianten der WT die besten Ergebnisse liefert und – korrekt an-
gewendet – weitaus bessere Erkennungsergebnisse liefert als die gewöhnliche
Fourier-Transformation.

Mit komplizierteren Wavelet-basierten Vorverarbeitungsmethoden erreiche
ich eine maximale Erkennungsrate von 66,50%, was weniger als zwei Prozent-
punkte von der optimalen Erkennungsrate von 68% in [8] abweicht. Wenngleich
ich jene Ergebnisse nicht übertreffen konnte, zeigt meine Arbeit aber trotzdem
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auf, welche Aspekte der Vorverarbeitung die Erkennungsrate beeinflussen. Eine
besondere Rolle kommt dabei dem Kontext eines Feature-Vektors zu.

Die Anhänge umfassen eine Anleitung zur Benutzung der EEG-Klassifika-
tionsumgebung, wie sie an der CMU verwendet werden kann und wie sie von
mir und meinen Vorgängern erweitert und angepasst wurde (Sektion A), sowie
eine tabellarische Auflistung aller Ergebnisse meiner Experimente.
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1 Introduction

1.1 Motivation

Speech recognition provides a natural form for the communication with com-
puters. However, there are a lot of situations in which recognition of audible
speech is unfeasible or impossible.

Such situations include quiet places or environments like meetings (during
which the need for outside communication may easily arise), but also noisy en-
vironments (where normal speech recognition may be all but impossible) and
places where uttering speech is physically impossible. Another focus are phys-
ically disabled persons who can not utter ordinary speech. For such persons,
achievements have been made by the use of electroencephalographic (EEG) data
to give basic commands to a computer [2], but recognition of actual speech has
not yet reached a productive level.

Another motivation for research on EEG-based speech recognition is obvi-
ously the desire to enhance the understanding of the human brain. The func-
tionality of the human brain is one of the most intriguing aspects of biological,
medical and also philosophical research. As of now, there is no model which
describes a “thought” in a brain. EEG speech recognition may provide a way
to advance this knowledge.

Of course, the possibility to “read” brainwaves presents various ways for mis-
chief. Thoughts have always been considered the most private part of a person’s
life, and gaining access to them can be considered as crossing a dangerous line
of technique.

For the foreseeable future, however, recognizing random thoughts does not
seem probable. First of all, the recording of EEG is bound to a direct contact of
the recording device to the subject’s head. Also, even if this is given, it seems
very unlikely that the multitude of thoughts of a person may be classified.
All current efforts are directed at recognizing a limited “vocabulary” of brain
activity. In our case, these are spoken and unspoken words, in other cases,
mental disposition (e. g. [5]), or illnesses affecting the brain in medical research.
Finally, as long as there is no mathematical model which describes the formation
of speech in the human brain for all persons in general, our recognition task can
not be performed without the collaboration of the subject.

Nonetheless, I explicitly declare that I do not intend my research to serve
as a lever for invading a person’s brain against its will. It should be used solely
to gain insight into the work of the human brain to promote knowledge and to
increase the quality of life for mankind.

1.2 Biomedical Background of EEG Measuring

The grounding our research is based on is that speech production in the brain is
reflected by physiological processes in the brain which by a suitable measuring
device can be recorded and converted to a “signal” in terms of signal processing.
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There are various ways of detecting brain activity; our choice was mainly
limited by two constraints:

• The recording method must have a high temporal solution. This is based
on the assumption that the swift variance of human speech finds its reflec-
tion in a swift variance of the state of the speech-producing brain regions.
Of course, an optimal spatial resolution of the recording method is also
desirable.

• In order to facilitate experiments, the method should be easily applicable
and not demand excessive preparations and effort to work.

As described in [3], electroencephalography as a recording method optimally
satisfies both requirements above. It is also the oldest and most widely used
method of brain imaging, meaning that a certain level of experience in EEG
processing is available.

The basis of EEG is the recording of electric activity in the human brain
(hence the name). It is widely known that this activity exhibits properties of
waves, especially that in certain conditions, different frequency patterns can be
measured, and that these frequency patterns contain information about the state
of the brain as a whole and certain brain regions in particular. The assumption
of our work is that different unspoken words the subject imagines also incur
different properties of the brain waves, so that on this basis a distinction of
words is possible.

In section 3.3, I give details about the electrode setup used for these mea-
surements and about the brain regions covered.

1.3 Related Work

This article is intended to continue the thesis of Marek Wester [19], who first
investigated EEG recognition at InterACT1. EEG recognition, however, has
been dealt with earlier: For isolated words, Suppes et al. were successful in [18].

Research directed to recognize EEG data which does not represent words,
but rather more general thoughts, has also been done. An example is the
Thought Translation Device [2] from the year 2000.

Beyond the realm of speech recognition, EEG analysis for clinical tasks has
been done for several decades now. Since the first EEG recordings in the 1920s,
it has been used successfully as a diagnostic tool for various illnesses affecting
the brain. The data analysis methods which have been used also include wavelet
transforms, as in [12].

1.4 Goals of my Research

My goal was to extend the previous thesis of Marek Wester [19] by investi-
gating wavelet-based preprocessing methods for EEG data. I implemented the

1InterACT is the International Center for Advanced Communication Technologies, a joint
center between the University of Karlsruhe, Germany, and the Carnegie Mellon University,
Pittsburgh, PA, USA. Information can be found at http://interact.ira.uka.de.
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Fast Wavelet Transform, the Redundant Discrete Wavelet Transform and the
Double-Tree Complex Wavelet Transform as described in the following section
and applied them to existing data. This document is intended to describe the
results of these experiments. All of these transforms use several parameters
that need to be tuned. Therefore, portions of my experiments refer to their
optimization.

In the course of my research, it turned out that it would we worthwhile
applying wavelet preprocessing methods to electromyographic data as well.2

The results of this work are described in their own section 5.

1.5 Structure of This Paper

This thesis is laid out the following way:

• After this introduction, section 2 gives a general introduction to the Wave-
let Transform, its discrete variants and their implementation.

• Thereafter, section 3 is dedicated to the setup of the EEG experiments. I
describe the method of data acquisition, the hardware and software which
was used and the way the recognition task was set up.

• Section 4 gives all results of my EEG tasks and exhibits first conclusions.

• Section 5 deals with the application of wavelet preprocessing methods to
electromyography.

• Section 6 draws a general conclusion from the experiments reported in this
paper.

• The appendices contain a documentation of the software I used, imple-
mented and extended for my work. It is intended as a guide for those who
follow after my at CMU. The second part of the appendices gives a tabular
overview of all experimental results in EEG and EMG recognition.

2 The Wavelet Transform

In recent years, the various variants of the Wavelet Transform have emerged as
an indispensable tool for the analysis of a multitude of different kinds of signals.
They have been used successfully in both EEG analysis [12] and EMG analysis
[7]. I will give here a short overview of the basics of the Wavelet Transform and
the specific implementations I use, based on the textbook [10].

2This is data gained by recording electric muscle activity—see section 5 for a thorough
description.
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2.1 The Continuous Wavelet Transform

First of all, we have to define what a wavelet is. We limit ourselves to wavelets
in L2(R), the space of square-integrable functions [15].

Definition 1. For a function ψ ∈ L2(R), let

ψ̂(ω) =
1√
2π

∫
R
ψ(x)e−iωxdx (1)

be its Fourier Transform. A function ψ ∈ L2(R) which satisfies the admissibility
condition

0 < cψ := 2π
∫

R

|ψ̂(ω)|2

|ω|
dω <∞, (2)

is called a wavelet.

This condition is relatively easy to satisfy. It should be noted, however, that
it implies one central property of any wavelet: Since ψ̂ is continuous, ψ must
satisfy ∫

R
ψ(t)dt =

√
2πψ̂(0) = 0, (3)

i.e. the average of ψ is zero.
Let now ψ be a wavelet. The Continuous Wavelet Transform (CWT) maps

a one-dimensional function f ∈ L2(R) to a function (Wψf)(a, b) on a two-
dimensional definition set (a, b) ∈ R∗ × R, where R∗ = R \ {0}. The operator
Wψ is defined thus:

Definition 2. For f ∈ L2(R), b ∈ R, a ∈ R∗, let

(Wψf)(a, b) =
1
√
cψ

∫
R
(T bDaψ)(t)f(t)dx, where

(T bDaψ)(t) = |a|−1/2
ψ

(
t− b

a

)
.

(4)

Da is the Dilation Operator, T b is the Translation Operator.

Equation 4 is nothing but a standard scalar product in L2(R) (times a con-
stant), i. e.

(Wψf)(a, b) =
1
√
cψ

〈
(T bDaψ)(t) f(t)

〉
. (5)

The interpretation of Wψf is that |(Wψf)(a, b)| is large if f has got a “detail”
of “size” a at t = b. Thus, the CWT has the following central properties:

• It is localized both in time and in frequency: (Wψf)(·, b) describes f
around t = b, and (Wψf)(a, ·) represents the frequencies of f which cor-
respond to the scaling parameter a.

12



• It extracts details on different scales, much like the Fourier Transform,
but as I will explain below, the Wavelet Transform can be “fine-tuned”
much better than the Fourier Transform.

• Given the right choice of filters, it may simulate a decomposition of f into
frequency bands.

The CWT can be implemented by discretization, but it remains a highly re-
dundant representation of f . Furthermore, in applications f is always a discrete
signal. Therefore several discrete variants of the Wavelet Transform which may
be computed efficiently have been developed.

2.2 Multi-Resolution Analysis

The Continuous Wavelet Transform defined above offers a decomposition of a
signal into stretched and shifted versions of a wavelet ψ. The first step towards
an efficient discretization of this tranformation is to ask how to reduce the
number of coefficients (i. e. of values of Wψf) which are needed to convey the
full information about f , such that f could be reconstructed from these values.

The way to achieve a decomposition of a function f ∈ L2(R) into countably
many coefficients is the use of a Multi-Resolution Analysis (MRA)([10], Chapter
2.2). All wavelet methods I have used in this work are derived from the MRA.

Before giving the definition for the MRA, I first define a new notation which
will prove useful in dealing with the discretization of the Wavelet Transform:

Definition 3.

Let fa,b := T 2abD2a

f = 2−a/2f(2−ax− b). (6)

Now we can define the MRA:

Definition 4. An MRA is a sequence (Vj)j∈Z of closed subspaces of L2(R) with
the following properties:

1. For j ∈ Z holds Vj+1 ⊆ Vj .

2.
⋃
j∈Z Vj = L2(R).

3.
⋂
j∈Z Vj = {0}.

4. f ∈ V0 ⇐⇒ 2−j/2f(2−j ·) ∈ Vj .

5. There is a Scaling Function ϕ ∈ V0 such that {ϕ(· − b)|b ∈ Z} is an
orthonormal base (ONB) in V0.

This implies that for each j, the set {ϕj,k|k ∈ Z} forms an orthonormal base
of Vj .

If such an MRA has been found, the scaling function has the representation

ϕ =
∑
k∈Z

hkϕ−1,k (7)

13



with
∑
k∈Z |hk|2 = 1. This is a direct consequence of the relation V0 ⊆ V−1

([10], Lemma 2.2.3 and Satz 2.2.9).
We can now construct a decomposition of L2(R) into mutually orthogonal

subspaces. Let Wj be the orthogonal complement of Vj in Vj−1, i.e. for j ∈ Z,
define Wj such that

Vj−1 = Vj ⊕Wj and Vj ⊥Wj . (8)

Then the Wj have got the following properties:

Theorem 5. 1. For j 6= m, Wj ⊥Wm.

2. The spaces Wj inherit the scaling property 4.4 from the spaces Vj .

3. Since for each m > j, we can write Vj =
⊕m

µ=j+1Wµ ⊕ Vm, we see by
letting j −→ −∞ and m −→∞ that the Wj exhaust the space L2(R).

These three properties imply that if we find a ψ ∈ L2(R) such that
{ψj,k k ∈ Z} is an ONB of Wj for each j ∈ Z, the set {ψj,k j, k ∈ Z} will
be an ONB of L2(R). How can we construct such a ψ? The theory of the MRA
gives an answer to this.

Theorem 6. If (Vj)j∈Z is an MRA with scaling function ϕ, and if ψ is defined
by

ψ(x) =
∑
l∈Z

glϕ−1,l =
√

2
∑
l∈Z

glϕ(2x− l) with gl = (−1)lh1−l, (9)

where hl is given by the formula from equation 7, then:

1. {ψj,k k ∈ Z} is an ONB of Wj for each j ∈ Z

2. {ψj,k j, k ∈ Z} is an ONB of L2(R)

3. ψ is a wavelet with cψ =
√

2 ln 2.

Thus, for f ∈ L2(R), we have

f =
∑
j,k∈Z

〈f ψj,k〉ψj,k (10)

and we have an expansion of f into a weighted sum of countably many stretched
and shifted copies of a wavelet ψ (provided that the sum converges).

2.3 The Fast Wavelet Transform According to Mallat

The decomposition of a function f ∈ L2(R) into countably many stretched and
shifted copies of a wavelet ψ has given rise to several algorithms to calculate the
coefficients of this composition. The most basic algorithm is the Fast Wavelet
Transform (FWT) which was first introduced in 1989 by S. G. Mallat in his
paper [13].

14



Let (Vj)j∈Z be an MRA with scaling function ϕ and corresponding wavelet
ψ. Assume that f ∈ V0. For j ∈ N0 and k ∈ Z, we define

cjk = 〈f ϕj,k〉 and cj = (cjk)k∈Z

djk = 〈f ψj,k〉 and dj = (djk)k∈Z.
(11)

Then since the ϕ0,k form an ONB of V0, we have the representation

f =
∑
k∈Z

ckϕ0,k. (12)

The central idea of the FWT is to perform all calculations on these coefficients
without ever resorting to the original wavelets. The definitions of cj and dj and
the scaling properties of ϕ and ψ give rise to the following equation:

cjk = 〈f ϕj,k〉 =
∑
l∈Z

hl 〈f (ϕ−1,l)j,k〉 =

=
∑
l∈Z

hl 〈f ϕj−1,2k+l〉 =
∑
l∈Z

hlc
j−1
2k+l =

∑
m∈Z

hm−2kc
j−1
m .

(13)

Similarly, we have

djk = 〈f ψj,k〉 =
∑
l∈Z

gl 〈f (ϕ−1,l)j,k〉 =
∑
m∈Z

gm−2kc
j−1
m . (14)

hl and gl are given by equations 7 and 9. Let

`2 =

{
(xk)k∈N xk ∈ R,

∑
k∈N

|xk|2 <∞

}
(15)

be the space of real square-summable sequences. On this space, we define

H : `2 −→ `2, (ck) 7→

(∑
m∈Z

hm−2kcm

)
and

G : `2 −→ `2, (ck) 7→

(∑
m∈Z

gm−2kcm

)
.

(16)

Then for each j > 0,

cj = Hcj−1 and dj = Gcj−1. (17)

These operations can be easily implemented in any programming language. In
the section “Experimental Setup”, I have described the details of the implemen-
tation I used.

It turns out that if the initial coefficient sequence c0 is finite, and w. l. o. g. its
length is divisible by 2L, where L is the maximal decomposition level we use,
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each cj and dj is precisely half as long as the data cj−1 from which it stems.
The näıve interpretation of this fact is that cj and dj contain all the information
of the original sequence, and since the operations used to create cj and dj were
complimentary, we do not have any redundancy—the amount of information
remains the same, but its representation is significantly different.

Knowing all this, we can regard the convolutions in 13 and 14 as a filtering
with an LTI (linear time-invariant) filter and successive downsampling by the
factor two. Figure 1 gives a schematic representation of this structure, however,
it should be clear that the FWT algorithm interweaves these two steps in the
most efficient manner possible.

In order to use this algorithm, two additional problems have to be addressed.
The first one is how to deal with data of arbitrary length, i.e. the situation that
a filter extends beyond the range of time for which data is available. Several
options exist, e.g. zero-padding, smooth padding, extrapolation methods etc.
Since my experiments dealt with non-periodic data, I have always used zero-
padding.

The second problem is how to obtain the initial sequence c0. See [10], chapter
3.1.1 for a detailed explanation.

Our signal f is discretely sampled, i. e. fk = f(k), k ∈ Z. (We assume
w. l. o. g. that f has got sampling rate 1, i. e. there is one sample for each time
unit.) The coefficients fk ideally should be the coefficients of an expansion of f
according to the scaling function ϕ, i.e. the function f̄ defined by

f̄(t) =
∑
k∈Z

fkϕ(t− k) (18)

should equal f .
This is generally not true for orthogonal scaling functions. However, the

error when using the signal fk as sequence c0k remains bounded and can be
estimated if f satisfies certain regularity properties [10].

In my experiments, I chose the “direct” way of letting fk = c0k. As described
above, this incurs a certain margin of error, but on the other hand greatly
simplifies the underlying mathematics. It may be a question for future work
whether this error affects the results of the classification experiments at all—a
heuristic argument against this is that the error occurs uniformly in all calcu-
lations and does not reduce the amount of information in the resulting feature
vectors. Thus, the influence of this error on the classification, which essentially
measures the similarity and distinctness of feature vectors, should be relatively
limited.

2.4 The Double-Tree Complex Wavelet Transform

The FWT described above is computationally very efficient. However, it turns
out that it has got several flaws [16]. For us, particularly the lack of shift
invariance may cause problems in the discrimination of different patterns.

16



Figure 1: The Fast Wavelet Transform as a Partial Binary Tree

One solution to this problem, proposed by Nick Kingsbury and developed
in detail in [16], is the Dual-Tree Complex Wavelet Transform (DTCWT). The
essential ideas of this algorithm are as follows:

• We let two trees grow instead of one. Thus, we achieve a redundancy
of factor two in the decomposition. (This explains why the transform is
called “Double-Tree” transform.)
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• We choose the filters carefully such that the redundancy of the represen-
tation becomes an actual oversampling of the original signal by the factor
two. This property is responsible for the improved shift-invariance of the
DTCWT.

• The two trees can be interpreted as the real and the imaginary part of
a discrete Wavelet Transform with a complex wavelet. Hence the name
“complex” wavelet tranform.

• The resulting feature vector is calculated by interpreting two correspond-
ing coefficients in the two trees as real and imaginary part of a complex
coefficient and then calculating the complex absolute value of this complex
coefficient. Thus, the resulting feature vector has got the same dimension-
ality as the feature vector when the FWT is used.

• The two trees are calculated separately; no complex arithmetics are nec-
essary.

Figure 2 gives a graphical image of this algorithm.

Figure 2: The Double-Tree Complex Wavelet Transform as a Partial Binary
Tree
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The choice of filters for this alogrithm turns out to be significantly more
difficult than for the FWT. Altogether, we need four low-pass filters: In each
tree, there is one high-pass filter for the first step of the transformation, and one
high-pass filter for all subsequent stages. In the figure, these filters are denoted
H0,∆ for the first stage and H1,∆ for the subsequent stages, where ∆ takes the
values A or B for tree A or tree B.

The high-pass filters, however, are always calculated according to the cor-
responding low-pass filter as described in section 2.3; the high-pass filter corre-
sponding to Hi,∆ is called Gi,∆, where i is 0 or 1.

Thus in order to utilize this algorithm, we need to provide the four low-pass
filters in advance.

In summary, the calculations are as follows:

1. Calculate the coefficients ci∆ according to section 2.3. Replace the filters
H and G appropiately, i. e. use filters H0,∆ and G0,∆ for the first step and
H1,∆ and G1,∆ for the subsequent steps.

2. Determine the final coefficients ci = (ci)k and di = (di)k via:

(ci)k = |(ciA)k + j · (ciB)k| =
√

(ciA)2k + (ciB)2k

(di)k = |(diA)k + j · (diB)k| =
√

(diA)2k + (diB)2k

(19)

for each k, where j =
√
−1.

There are several possible improvements to this algorithm (mainly based on
using a more complex filter setup [16]), which I did not use for my research.

2.5 The Redundant Discrete Wavelet Transform

The Redundant Discrete Wavelet Transform (RDWT) is another attempt to
obtain shift-invariance in the Wavelet Transform. It resembles the FWT because
it uses only one decomposition tree and only one high-pass filter, so the results
of the FWT and the RDWT are directly comparable. A good explanation of
the RDWT can be found in [17].

The RDWT achieves a multi-scale representation of the original signal not
by downsampling the transformed signal after each step (see figure 1), but it
rather upsamples the two filters (the high-pass filter and the low-pass filter) by
the factor two in each step.

Thus, the main difference between the FWT and the RDWT is not the actual
way the coefficients are calculated, but rather the time grid. Figure 3 shows this
difference graphically:

In summary, the calculation works as follows:

1. Initialize the filters (hk) and (gk) as described in the FWT section. The
initial sequence c0 is given, as well as the maximum decomposition level
L. Let i := 1.
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Figure 3: Comparison between the time grids for the FWT and the RDWT

2. Calculate ci and di, i ≤ L, by

cil =
∑
k∈Z

ci−1
k hk−l

dil =
∑
k∈Z

ci−1
k gk−l

(20)

3. Upsample the filters (hk) and (gk), i. e.

hNEWk =
{
hOLDk/2 if k is even
0 if k is odd

gNEWk =
{
gOLDk/2 if k is even
0 if k is odd

(21)

4. Jump to step 2 if i < L and increment i by 1.

3 Experimental Setup

This section describes how the data collection for EEG experiments was run,
and it explains the software system which I used and extended for the purpose
of EEG recognition.

All my experiments were done with data collected by Marek Wester for his
Master’s Thesis [19] and by Jan Calliess for his thesis [3].

3.1 Corpora and Modalities

All EEG recognition was done word-based. This means that the recognition
task was to distinguish between a set of whole words, called the corpus. In
order to concentrate on the optimization of signal preprocessing, I limited the
different kinds of recording setups in the following way compared to [19]:

From the corpora (vocabularies) of [19], section 5.1, I used only two sets,
namely the sets digit5 and alpha:
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Name Vocabulary
Digit5 { One, Two, Three, Four, Five }
Alpha { Alpha, Bravo, Charlie, Delta, Echo }

Each corpus consists of five words. In addition to these words, in each
recording five to seven samples of silence were recorded, i. e. the subject was
told not to think of anything (as much as possible). These samples were never
used for evaluation, but always entered the training set.

The rationale for the choice of corpora is that the different words should not
convey a hidden meaning to the user. Otherwise, the recognition results might
be biased by the influence of these hidden connotations, which would obviously
leave a certain “trace” in the respective brain activity recording.

I experimented with only two speech modalities as opposed to five modalities
in [19], section 5.2. These were Unspoken Speech and Spoken Speech. The
latter consists of ordinarily pronounced words, whereas for Unspoken Speech,
the subject (the person whose thoughts were recorded) was asked to think of
pronouncing the respective word without actually moving any muscle.

In each session, every word of the vocabulary was recorded between 25 and
30 times. (The varying numbers occurred because in some cases, single samples
had to be discarded later on due to too much noise in the data.) One further
property of the recording setup turned out to be very important. There were
blockwise and sequential recordings. In sessions with blockwise recordings, the
subject recorded all samples of one vocabulary item as a block before proceeding
to the next vocabulary item. In sequential sessions, a sequence of one sample
of each word (i. e. five samples altogether) was recorded, and this was repeated
the above-mentioned 25 to 30 times. The table below gives an overview of this
process (here r means the number of repetitions):

Name Ordering
Blockwise { Alpha r. . . Alpha, Bravo r. . . Bravo, . . . }
Sequential { Alpha, Bravo, Charlie, Delta, Echo, Alpha, Bravo, . . . }

3.2 The Recording Process

Creating useful EEG recordings is particularly difficult because the data is es-
pecially susceptible to any kind of noise and artifacts:

• Any kind of muscular activity, no matter whether it is voluntary or not,
causes significant artifacts. This can, however, also be used to control the
recording device, as I explain below.

• The brain state of the subject will greatly influence the recording. This
brain state is influenced by physical feelings such as pain or tiredness,
but it also involves mental issues like concentration, boredom or stress.
Indeed, M. Honal developed a system to determine a user’s mental state
by EEG recordings [5].
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• Nothing is harder to control than thoughts—the subject must be relaxed,
and its mind should be free of other matters.

• The placement of electrodes on the scalp means that the brain signal is
disturbed by the subject’s skull, skin and hair.3 In these recordings, a
standard conductive gel is used to improve connectivity.

• One electrode measures the neuronal activity not only in a localized brain
region, but receives signals from the whole brain.4 The situation is fur-
ther complicated by the fact that with our method, we map the three-
dimensional brain onto the two-dimensional scalp surface of the subject.
This means that even by inceasing the electrode density on the subject’s
scalp, the resolution of the recording cannot exceed a certain intrinsic
limit.

To limit the number of artifacts, we used a specific recording environment
and an adapted recording software. The recordings were taken in quiet office
rooms, with the subject sitting in front of a desk. A screen showing instructions
to the subject stood on the desk.

Opposite the subject, a supervisor controlled the recordings on a second
screen. The recording was started and stopped for every single utterance, and if
the supervisor or the subject itself noticed a flaw in the recordings (particularly
artifacts from eye movement), the utterance was deleted and re-recorded.

Before the recording session started, the subject was explained this process
and the aims of the experiment. The subject was told that he or she could quit
the process at will, and also that it could ask for breaks at any time. During
breaks, light snacks and drinks were provided, so that the subject could recover
concentration.

Since we experimented with word-based recognition, a major problem during
the actual recording was to determine the signal bounds. These are not at all
obvious from the signal. Our solution was to let the subject do an eyeblink before
and after the actual process of thinking/uttering a word. These eyeblinks cause
very recognizable artifacts in the signal which can be detected automatically.
However, an utterance during which the subject inadvertently moved or blinked
the eyes had to be retaken since this would have rendered the signal useless.
Marek Wester developed the original eyeblink detector, which was refined by
Jan Calliess.

Altogether, the steps for the recording of each utterance were (adapted from
[19], Section 4.1.2):

1. The subject sat quietly and without any movement in front of a white
screen.

2. The supervisor started the recording process by pressing a button.
3This can be improved by surgically inserting electrodes into a person’s brain, but this is

not desired in our kind of research due to ethical and also practical reasons.
4[3] contains some estimates on how much a signal generated in one area of the brain

influences the potential measured by an electrode at a different position.
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3. The screen showed the words which should be uttered in black letters. In
brackets it showed the modality of the utterance.

4. After 1 second the screen showed the words: “inhale and exhale”.

5. After another second the screen turned black.

6. After another 2 seconds the screen turned white. (This was done to remove
the visual stimulus from the subject’s mind.)

7. The subject was instructed to wait for about 1 second.

8. The subject blinked, uttered the word which had been shown on the screen
in step 3 and blinked again.

9. The supervisor stopped the recording with the pressing of a button after
the second eyeblink. (The supervisor could visually detect the eyeblink
from his control monitor.)

3.3 EEG Recording Hardware

The recordings were done with “ElectroCap” EEG recording devices. They have
the form of a flexible cap which is attached to the subject’s head. Electrodes
are sewn into the cap at certain positions.

After attaching the cap to the subject’s head, it was fixed by a strap around
the body of the subject. Then, a standard connectivity gel was inserted into
the electrodes in order to get a good connection to the subject’s scalp.

We experimented with various caps having different electrode layouts. The
cap used for the first experiments, dubbed low-density cap, had an electrode
layout conforming to the international 10-20 standard [6]. In the course of the
experiments in [3], a new high-density cap with 128 electrodes was obtained.
For each layout, we actually used two caps of different sizes according to the
subject’s head circumference. The two layouts are shown below.

During each recording session, 16 electrodes were actually used. In addition,
two clips were fixed to the ears of the subject in order to serve as a common
reference for the measurements. In the left picture, these are marked A1 and
A2, they are not shown in the right picture.

In both figures, the set of used electrodes is drawn in a darker shade than
the remaining ones. The choice of electrodes in the original low-density setup
reflects our knowledge about the production of speech: electrodes O1 and O2
primarily reflect optical/visual information, and F8 was left out since speech
production mainly occurs on the left hemisphere of the brain ([19], Section
4.1.4). In the high-density setup, we tried to increase resolution in the area
identified as important by the results from the low-density experiments, the
orofacial motor cortex ([3], Section 3.2.1). In addition, electrode 1 optimally
detects the eyeblinks used for signal segmentation.

In pilot experiments we investigated whether the results based on the high-
density cap differ from the results based on the low-density cap when the same
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Figure 4: Electrode Setup on Low-
Density ElectroCap

Figure 5: Electrode Setup on High-
Density ElectroCap

number (i. e. 16) and position of electrodes were used. The differences were
small with respect to the variance between sessions, a common trend could
not be detected. For this reason, I do not distinguish between the different
caps further on in this document. As a final remark, note that this result is
consistent with [19], Section 6.8, where it is shown that leaving out electrodes
in “unimportant” regions of the brain hardly affects classification results. But it
also supports the unproved hypothesis in section 3.2 that increasing the electrode
density cannot improve the recognition data beyond a certain threshold, since
the additional data will be fully redundant.

The ElectroCap signals were amplified and digitalized with a VarioPortTM

amplifier. All recordings were done with a sampling rate of 300 Hz. The record-
ing software was specifically created for this task, it is described in the next
section.

3.4 Processing and Classification Software

The recordings were done with the UKA EMG/EEG Studio v2.0 software [14].
This program combines routines for recording the amplified and digitalized data,
giving instructions to the subject and displaying a control interface to the su-
pervisor.

For the classification of the recorded data, I used the state-of-the-art speech
recognizer JANUS developed at the CMU and the University of Karlsruhe. My
recording setup was based on a speech recognizing setup adapted by Marek
Wester to cover the needs of EEG recognition (appendix A of [19]). My own
modifications are described in appendix A.

In JANUS, every word was modeled with a five-state left-to-right HMM. The
emission density of each state was modeled as a multivariate Gaussian mixture
density with 25 Gaussians. All 16 channels were used for the recognition task.
LDA was applied to the feature vectors in all experiments, the optimal dimension
of the vectors after the LDA was subject to my experiments and is described in
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detail in the respective result sections.
I only did offline evaluation in order to obtain the best possible accuracy in

evaluating different preprocessing methods and to be able to compare the results
of different methods. In every experiment described here, we used a “leave-one-
out” method, i. e. we ran the recognizing task as many times as there were
samples of each vocabulary word, and in each round, one sample of each word
was chosen for evaluation, while the remaining samples were used as a training
set.

4 Results of EEG Speech Recognition

In this section, I will show which results my experiments yielded. I have split
up the entire data into several tables and diagrams, each of which answers a
separate question about the “tuning” of the EEG recognizer.

To increase readability, I give a list of all sessions and speakers featuring in
this document in table 1. Note that if a pair of sessions is marked as “Dou-
ble Session”, it means that these recordings were actually done as one session,
i. e. without removing the ElectroCap between the recordings. This allows us
to directly compare different modalities of the recordings.

Speaker Sex Session Modality Seq. Mode Remarks
1 Male 1 unspoken blockwise
2 Male 1 unspoken blockwise Double Session

2 spoken blockwise
3 unspoken sequential Double Session
4 spoken sequential
5 unspoken sequential

3 Female 1 unspoken blockwise
4 Male 1 unspoken blockwise

Table 1: Session List

4.1 Preprocessing—Are Wavelets Really Better?

The first question I adressed is whether there is any variant of the Wavelet
Transform (the specific transformations I used are defined in section 2. To
compare the qualities of the Wavelet Transforms and traditional methods, I
applied a windowed Fourier transformation as used by [19] with a window size
of 26.6 ms and a window shift of 4 ms which decomposed the input signal into
12 subbands. Thus, each input channel yielded an output matrix with 12 rows
as a result. Since we used 16 channels (as described in section 3.3), this gave us
a total of 12 · 16 = 192 coefficients per frame.

For all wavelet-based algorithms I used decompositions of the signal up to
the levels L = 4 and L = 8. In either case, both the detail coefficients cj

and the approximation coefficients dj (j = 1 . . . 8) were used in the feature
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vectors. Experiments using only the detail coefficients showed a large drop in
the performance of the recognizer.

For the FWT algorithm, I used a Daubechies-4 filter (section 2.4.3 of [10]).
For the DTCWT algorithm, I used a Daubechies-4 filter pair for the first

stage of the decomposition. For the second stage, I compared:

• a 6-tap q-shift filter (DTCWT1)

• a 14-tap q-shift filter (DTCWT2)

according to [9].
In all cases, a Linear Discriminant Analysis (LDA) was applied to the feature

vectors. The dimension of the feature vectors was reduced to 35, which is a first
estimate for an optimal LDA dimension. The results of the LDA tuning are
described below.

The results can be seen in table 2. They are represented graphically in figure
6. This chart is structured so that most different combinations of speakers and
modalities are represented and may be easily compared.

Figure 6: Comparison of Preprocessing Methods for EEG

We see that in all cases, the DTCWT (with two different filter setups) per-
forms best. Therefore, I did all my further experiments only with the DTCWT.
Second in line comes the Fourier Transform, which gives quite suitable results.

The two variants of the real discrete wavelet transform—the FWT and the
RDWT—yield very bad results. The weakness of the FWT is relatively un-
surprising and consistent with [7], however, the fact that the RDWT is mostly
even worse than the FWT comes unexpected, particularly since it performs quite
good in the case of EMG recognition, see section 5.3. It might be instructive to
explore why the RDWT performs so badly; however, this is beyond the scope
of this work.
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After having established the superiority of the DTCWT, I continued my
experiments with this transformation only. The next question was how to tune
its parameters.

A major result of [3] is that the recognition results vary greatly between dif-
ferent ordering setups, i. e. between blockwise and sequential recordings. That
document proposes that the reason for this is a kind of time-related artifact
which increases the recognition rate for blockwise recordings, thereby produc-
ing incorrect results. I will describe my findings for these orderings in different
sections and discuss my interpretation of the results below.

4.2 Unspoken Words, Blockwise Recordings

In this section, we only deal with blockwise recordings of unspoken words, i. e. no
muscular movements were involved.

First I investigated the decomposition level I had to use to obtain best re-
sults. In all cases, I used the complete set of coefficients we get: both the detail
coefficients and the lowpass (approximation) coefficients. As I said in section
4.1, experiments with the lowpass coefficients left out have always shown very
bad results, which I do not chart here.

Again, in all experiments, an LDA transformatoin was applied to the feature
vectors which reduced their dimension to 35. The one exception was the wavelet
decomposition up to level 1—here, the dimensionality of the combined feature
vectors of all channels before the LDA was 1 · 2 · 16 = 32 only, so the dimension
after the LDA was also set to 32.

The results can be seen in table 3. They are represented graphically in
figure 7. As always, I tried two different filter setups called “DTCWT 1” and
“DTCWT 2”, see 4.1 for their descriptions. Note that the columns “DTCWT
x - 2 .. 5”, x = 1 or 2, refer to a decomposition till level five where the
decomposition coefficients of the first step (i. e. those referring to the smallest
possible details) were left out.

Unexpectedly, the results were best for very small decomposition levels (1 to
3). I discuss possible conclusions of this in the next section, in relation to the
results for sequential recordings.

The next question was how to optimally choose the dimension to which the
LDA should reduce the dimensionality of the feature vectors. I again compared
feature vectors preprocessed with the DTCWT with a 6-tap and a 14-tap filter,
called DTCWT 1 resp. DTCWT 2. Since on average, a decomposition level of 3
yielded the best recognition results, I chose this level for all experiments. Thus
the dimension of the feature vectors before the LDA dimensionality reduction
was 3 · 2 · 16 = 96. For the dimension after the LDA, I tried the values 16, 35
and 60. [19] proposes that for data preprocessed via an STFT, the dimension
16 yields optimal results. My experiments, however, showed that a higher LDA
dimension may yet improve the result. The list of word accuracy percentages is
found in table 4 and are charted in figure 8.

We observe several things:
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Figure 7: Comparison of DTCWT Decomposition Levels for Blockwise EEG
Recordings of Unspoken Words

1. A reduction of the feature vector dimensionality from 35 to 16 dimensions
can lead to better or worse recognition results.

2. An increase of the feature vector dimensionality from 35 to 60 dimensions
incurs worse recognition results. This is consistent with [19], where an
LDA dimension of 35 is proposed as an upper limit for good accuracy.

3. In all cases, the difference between word accuracy values for different LDA
dimensions is not very high. Compared to the differences between various
decomposition levels (figure 3), the LDA dimension does not seem to be
a pivotal parameter for tuning the system.
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Figure 8: Comparison of LDA Dimensionality for Blockwise EEG Recordings
of Unspoken Words

4.3 Unspoken Words, Sequential Recordings

In this section, we deal with sequential recordings of unspoken words.
Just as above, I first took a look at the decomposition level which yields op-

timal classification results. As usual, I used both detail and lowpass coefficients
for classification, and the resulting feature vectors were processed by an LDA
which reduced their dimension to 35.

The central result of this section is that the classification requires both high-
frequency and low-frequency coefficients to work. The optimal decomposition
level was at or around 8, see table 5 and the corresponding figure 9.

These results differ completely from those we got with blockwise recordings.
Therefore, when investigating the optimal LDA dimension, I chose to use a
decomposition level of 8 as a basis. Since I used (as always) both detail and
lowpass coefficients, this means that each feature vector had 8 · 2 · 16 = 256
coefficients. By LDA, this number was reduced to 16, 30, 35, 40 or 60. The
results are found in table 6 and charted in 10.

We see that the best LDA dimension is always less or equal to 35; in most
cases it is around 35. This is again consistent with [19].

4.4 Comparison Of Blockwise and Sequential Recordings

The main result so far is that blockwise and sequential recordings behave dif-
ferently. Not only are the recognition results much better in the blockwise case,
but also the optimal parameters for the recognition are very different. Figure 11
visualizes the different recognition results. I chose the optimal result achieved
by any of the DTCWT filters, but with a fixed LDA of 35.
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Figure 9: Comparison of DTCWT Decomposition Levels for Sequential EEG
Recordings of Unspoken Words

Figure 10: Comparison of LDA Dimensionality for Sequential EEG Recordings
of Unspoken Words

[3] conjectures that in the blockwise case, long temporal changes of the
EEG signal which are then aligned with the blocks of different words cause the
training algorithm to classify not the underlying words, but rather the temporal
closeness of utterances.

My results may support this conjecture: The fact that the optimal recogni-
tion parameters differ in the two cases suggests that somewhat different things
are classified. We see that in the case of sequential recordings, where such a
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Figure 11: Comparison of Blockwise and Sequential Recordings at their Optimal
Parameters

misleading classification cannot take place, we need details and approximation
coefficients up to a level of 8. Since our recordings are sampled with a sampling
rate of 300 Hz, this means that the length of details covered by coefficients at
this level is approximately 28/300 ≈ 0.85 seconds. This result is consistent with
[18]: In that work, bandpass filters are used to extract the signal of interest for
EEG speech recognition, and it is shown that the low-pass limit of these filters
often lies in the range of 1 Hz - 5 Hz. As figure 9 shows, the recognition rate
first increases with the level of decomposition, and decreases again after the
optimal level of approximately eight is reached. The fact that too much data
lowers the recognition rate is a well-known phenomenon (which we also see in
the LDA tuning) and merits no further explanation.

However, we see that in the blockwise case, the recognition rate is best at
very low decomposition levels and sinks already beyond the level three! How
is this possible when the upper decomposition levels seem to contain the very
data we are trying to classify?

I propose that this shows that data related to the long temporal changes of
the EEG signal described above resides in the low decomposition levels, which
correspond to high frequencies of brain waves. The additional data in the high
decomposition levels seems to contain more artifacts which make recognition
difficult—the relatively bad results for the classification of sequential recordings
prove this.

It remains a subject for further investigation how exactly information is
distributed at different scales in the EEG recordings. The results described so
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far may hopefully give a grounding for future research on this topic.

4.5 Spoken Words

In this section, we deal with recordings of spoken words. Table 7 and chart 12
depict the results of the evaluation of the optimal decomposition level.

Figure 12: Comparison of DTCWT Decomposition Levels for EEG Recordings
of Spoken Words

First of all, and unsurprisingly, the results for the blockwise recording are
way better than the results for the sequential recording. However, the relative
performance differences between different decomposition levels are very similar:

• The optimal decomposition level is between 2 and 3.

• For the longer filter DTCWT 2 and maximum decomposition level greater
than 6, there is a huge reduction in performance. It remains unknown what
causes this result.

• Leaving out the coefficients of the first decomposition step (i. e. the ones
referring to small details), the performance gets very bad (see the columns
marked “DTCWT x - 2 .. 5”).

Thus, in the case of spoken words, the difference between blockwise and sequen-
tial recordings is quantitatively measurable, but there seems to be no qualitative
difference.

To complete the analysis, I did further experiments with different LDA di-
mensions for these sessions. The results may be found in table 8 and figure
13.

In the sequential case, the performance decreases for an LDA dimension of
60. In the blockwise case, there is no clear result, the LDA dimension hardly
influences the recognition performance at all.
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Figure 13: Comparison of LDA Dimensionality for EEG Recordings of Spoken
Words

Again, the question is why the results for spoken words differ from those for
unspoken words: Blockwise recordings still perform better than sequential ones,
but why is the optimal decomposition level for sequential recordings of spoken
words relatively low? Since the only difference between spoken and unspoken
words is the actual movement of the facial muscles, these artifacts must make
the difference. In general, we know that muscular movement generates strong
artifacts, indeed we use this to mark the beginning and the end of recordings
by eyeblinks.

This naturally leads to considering whether these muscular artifacts may
themselves be used for classifying speech. This is the domain of electromyogra-
phy, which is the second part of this thesis and described quite thoroughly in
section 5.

5 Speech Recognition by Electromyography

The fact that classifying EEG recordings of spoken speech proved much more
successful than classifying EEG recordings of unspoken speech hints to an influ-
ence of the artifacts of the movements of the facial muscles on our recognition
task. This inevitably leads to the question whether our preprocessing methods
may be applied to electromyographic data as well.

Electromyography (EMG) denotes the measuring of electric signals gener-
ated by the human muscles. For the task of speech recognition, we used signals
measured on the surface of the human skin which were generated by the artic-
ulatory muscles.5

5This is more accurately described by the term surface electromyography, however to keep
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On the surface, EEG and EMG speech recognition are unrelated beyond the
fact that they both pose a classification task. However, they have got several
things in common:

• Both tasks aim at enhancing traditional speech recognition by using not-
acoustic information. In particular, they both do not require words to
be pronounced loudly, thereby suggesting applications in similar settings.
Some of these possible settings are described in section 1.1.

• Both EEG and EMG record electric signals from the human body by
means of electrodes.

• In both cases, one of the major obstacles is finding a suitable preprocessing
method for this kind of signal.

• As described above, EEG recordings of spoken words may contain artifacts
of the movement of the facial muscles.

Since evaluating preprocessing methods was the main goal of my research, this
gives a strong motivation to deal with both EEG and EMG recordings. Knowl-
edge gained in one field may easily prove suitable for solving another task.

5.1 Related Work

There have been several attempts on classifying EMG data. Most of these were
directed at distinguishing isolated words [7, 11]. The main result of Jorgensen
and Binsted [7] is that for word-based recognition, the DTCWT yields better
word accuracy than several other classical preprocessing methods, in particu-
lar the windowed Fourier transform and the FWT (as defined in section 2).
Jorgensen and Binsted achieved a maximum word accuracy of 92%.

More recently, Jou et al. presented their research on a phoneme-based EMG
recognition in [8]. The main result of this article is that classical spectral features
perform badly in this recognition task. A set of special EMG preprocessing
methods is presented which increases the word accuracy to a maximum of 68%.

My EMG experiments were based on the work of Jou et al. In particular, I
used exactly the same set of training and evaluation data. Therefore, my results
are directly comparable to [8]. In the following sections, I will describe the
experimental setup and data acquisition as well as the results of my experiments.

5.2 Experimental Setup

It is a well-known fact that the recognition of EMG recordings is session-
dependent [11]. This does not only mean that the recognition rates vary between
different sessions, but also that the recognition task itself gets much more diffi-
cult if data from different sessions is used: the properties of the signal change
between sessions, maybe due to a slightly different electrode positioning or a
different conductivity of the subject’s skin.

the notation brief, I will continue using the word electromyography.
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In order to circumvent these problems, I only used data recorded in one
session with one speaker. In a quiet room, the speaker read English sentences
in a normal tone, which were recorded simultaneously by an EMG recording
device and an audio microphone. The recording borders were marked manually
by the subject, who pressed a button to start and stop the recording.

The corpus consisted of 38 phonetically balanced sentences and 12 sentences
from news articles, each of which was read out 10 times. The 380 phonetically
balanced utterances with a total duration of 45.9 minutes were used as the
training set, and the 120 news article utterances with a total duration of 10.6
minutes were used for testing. Ten “silence” utterances with a duration of about
5 seconds each were also recorded.

The recording setup for both the audio data and the EMG data is cited after
[8]:

The format of the speech recordings is 16 kHz sampling rate, two
bytes per sample, and linear PCM, while it is 600 Hz sampling rate,
two bytes per sample, and linear PCM for the EMG signals. The
speech was recorded with a Sennheiser HMD 410 close-talking head-
set.

The EMG signals were recorded with six pairs of Ag/Ag-Cl surface
electrodes attached to the skin1, as shown in Fig. 1. Additionally, a
common ground reference for the EMG signals is connected via a self-
adhesive button electrode placed on the left wrist. The six electrode
pairs are positioned in order to pick up the signals of corresponding
articulatory muscles: the levator angulis oris (EMG2,3), the zygo-
maticus major (EMG2,3), the platysma (EMG4), the orbicularis oris
(EMG5), the anterior belly of the digastric (EMG1), and the tongue
(EMG1,6) [3, 6]. Two of these six channels (EMG2,6) are positioned
with a classical bipolar configuration, where a 2cm center-to-center
inter-electrode spacing is applied. For the other four channels, one
of the electrodes is placed directly on the articulatory muscles while
the other electrode is used as a reference attaching to either the nose
(EMG1) or to both ears (EMG 3,4,5).

[ . . . ]

EMG responses were differentially amplified, filtered by a 300 Hz
low-pass and a 1 Hz high-pass filter and sampled at 600 Hz.

A Broadcast News speech recognizer trained with the Janus Recognition
Toolkit (JRTk) as described in [8] was applied to the audio data. The forced-
aligned labels created by this recognizer were used to bootstrap the EMG rec-
ognizer. While the audio and EMG recordings were created simultaneously,
[8] describes an anticipatory effect of the EMG signal, i. e. the EMG signal is
ahead of the audio signal. This effect was taken into account by delaying the
EMG recordings for a certain time ranging from 0 ms to 90 ms. The recognition
rate for different delays varies considerably. Each graphic and each table gives
recognition results for each delay.
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In [8], several preprocessing methods for EMG are tested, and I use those
values as baseline in this paper. They are given in the table below. Note that I
use the Word Accuracy Rate to measure all EMG results in this paper, whereas
[8] gives the Word Error Rate.

Preprocessing Result (Word Accuracy Rate)
with optimal delay

Spectral (pure FFT) 13%
Spectral with stacking filter 36%
Optimal EMG feature “E4” 68%

5.3 Preprocessing Methods—Wavelets for EMG?

Just as for EEG, the first step is to evaluate in general whether wavelet-based
methods may be used for EMG classification. Therefore, on the basis of the
corpus described above, I tested four preprocessing setups:

• The RDWT (Redundant Discrete Wavelet Transform) described in section
2.5

• The FWT with a Coiflet-4 filter

• The DTCWT with the 14-tap q-shift filter according to [9]

• A classical windowed Fourier transform (STFT) with 9 subbands.

For all wavelet methods, both detail and approximation coefficients were used
according to the experience with EEG recognition, where this proved most use-
ful. The result is found in table 9 in the appendix and charted in figure 14
below.

Figure 14: Comparison of Spectral and Wavelet Features for EMG
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We see that all three variants of the discrete wavelet transform which we
applied performed better than the FFT: The RDWT was best, then comes the
FWT and after this the DTCWT. The results are consistent throughout the
different delays. The optimal delay depends on the transform used, but does
not exceed 40 ms.

The result is encouraging: The best word accuracy rate achieved with the
pure RDWT (56.60%) is not very much below the baseline performance (68%)
of the specially designed EMG feature E4 from [8]. However, the results are
also surprising in that the DTCWT performs wose than both the FWT and
the RDWT: In fact, ordering the transforms by their average performance, the
results are completely different from the EEG case.

My result also differs from the findings of Jorgensen and Binsted [7], who do
not experiment with the RDWT, but assert that the DTCWT performs better
than the FWT. The table below shows the preprocessing methods sorted by
their performance in different tasks (“�” signifies “is better than”).

Recognition Task Preprocessing methods ordered
by average performance

EEG DTCWT � FWT, STFT �
RDWT

EMG RDWT � FWT � DTCWT �
STFT

EMG (Jorgensen & Binsted) DTCWT � FWT, STFT
It is beyond the scope of this work to determine what incurs this inconsis-

tency. Clearly, EEG and EMG recognition are not at all the same. It is also
noteworthy that the EMG task described in this paper was a phoneme-based
recognition, whereas Jorgensen and Binsted evaluate word-based recognition of
EMG recordings. The EEG task described in this paper also is word-based.

However, it is by no means clear that the inconsistency is caused by this
difference. Another approach might be to scrutinize the classification algorithm:
Jorgensen and Binsted use a neural network, whereas I used a HMM based on
context-free phonemes. The HMM topology itself might also have to be adapted
to the underlying preprocessing method, see section 6.4 for suggestions on this
matter.

5.4 RDWT-based Features

In [8], a major increase in the word accuracy is achieved by means of three
contextual filters which may be applied to any feature and generate a new
feature. In [8], as well as in my research, these filters are used on a preprocessed
feature before the LDA is applied.

Let (fj) be a sequence of feature vectors, where the index j ∈ N stands for
the time. The filters are the following:

• The Delta Filter:
D(fj) = fj − fj−1
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• The Trend Filter:
T (fj , k) = fj+k − fj−k

• The Stacking Filter:

S(fj , k) =

 fj−k
...

fj+k


So in this section, I describe the results which were yielded by the application

of these contextual filters.
To keep consistent with the notation of [8], I define a set of RDWT-based

features. In all cases, we start with a sequence of preprocessed feature vectors
X = (xj) which is the result of a Coiflet-4 RDWT transform till level 5, where
both lowpass and highpass coefficients were used (as usual). Thus, each xj has
got 10 coefficients.

These are the features I used:

W0 = X

W1 = S(X, 1)
W2 = S(X, 5)

WD0 = [X,D(X)]
WD1 = S(WD0, 1) = S([X,D(X)], 1)
WD2 = S(WD0, 5) = S([X,D(X)], 5)
WT0 = [X,T (X, 3)]
WT1 = S(WT0, 1) = S([X,T (X, 3)], 1)
WT2 = S(WT0, 5) = S([X,T (X, 3)], 5)

WDT0 = [X,D(X), T (X, 3)]
WDT1 = S(WDT0, 1) = S([X,D(X), T (X, 3)], 1)

(Since WDT1 showed worse results than WDT0, I refrained from defining a
corresponding WDT2 = S(WDT0, 5) feature).

The results of all these experiments are given in table 11. The charts below
emphasize two aspects of these experiments.

At the first run, I solely evaluated the consequences of using the Stacking
Filter of the RDWT data. The respective features are W0, W1 and W2. The
results are seen in figure 15.

The result is not as consistent as expected, but it can be seen that stacking
improves the recognition rate at least by several percent points compared to no
stacking at all. The result shows that under certain circumstances (which are to
be evaluated), too much context information makes recognition results worse.
In any case, the best result was yielded by the W2 feature with a delay of 10 -
20 ms.
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Figure 15: Stacking Filter after the RDWT for EMG Recognition

Figure 16: Contextual Filters with Optimal Stacking after the RDWT for EMG
Recognition

The next graphic 16 shows the results of applying the Delta and Trend filters
separately or together with optimal stacking. The optimal features for this were
W2, WD1, WT1 and WDT0.

Again, W2 gives the best results with a low, nonzero delay—but not by
much. Indeed, it seems that increasing the contextual information initially
improves the classification results up to am approximate maximum, but that
further increasing the contextual information actually makes the results worse,
where the exact nature of the context filters does not greatly influence the results.
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5.5 Special EMG Features and the Wavelet Transform

We have seen that the recognition rate with RDWT and context information
alone may not be increased without limits. Thus at last, we deal with extensions
of the “special EMG features” from [8]. In that paper, the original signal is split
into a low-pass part and a high-pass part. The definition is as follows: For the
original signal xj , the nine-point double-averaged signal wj is defined as

wj =
1
9

4∑
n=−4

vj+n, where vj =
1
9

4∑
n=−4

xj+n.

Then, the high-frequency signal pn is defined as

pj = xj − wj

and its rectified version is
rj = |xj − wj |.

This split signal is processed frame-based, where the width of a frame is 27ms
and the frame shift is 10ms. In the following formulas, the time indices 0 and
J represent the beginning and end of a frame, respectively.

For both wj and rj , the frame-based power and average are taken: For any
frame, it is defined

w̄ =
1
J

J∑
j=0

wj and Pw =
J∑
j=0

|wj |2.

and similarly

r̄ =
1
J

J∑
j=0

rj and Pr =
J∑
j=0

|rj |2.

In addition, z is defined to be the zero-crossing count of the high-frequency
signal p0, . . . , pJ . All of these features are normalized.

Finally, the definition of E4 is

E4 = S([Pw, Pr, w̄, r̄, z], 5).

Eventually, LDA is applied to the feature with the usual dimensionality reduc-
tion to 32.

My approach is using this processing (i. e. the calculation of power, average
and zero-crossing rate) on RDWT-preprocessed data. This means that we do
a RDWT transform based on a Coiflet-4 wavelet as usual, this yielding several
data rows ρ(k), where each row corresponds to the high-pass or low-pass coef-
ficients on one specific scale. Then for each row, we calculate the frame-based
power Pρ(k) , the average ρ̄(k) and the zero-crossing rate zρ(k) with the same
definition of “frame” as above.

The difference between the features lies in the RDWT preprocessing, and
this difference yields some important insights into the structure of the EMG
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data. In particular, for some of these features, only the highpass coefficients of
the Wavelet Transform were used.6 Those features are marked with “HP only”,
whereas features where both highpass and lowpass coefficients were used are
marked “LP/HP”. The features are as follows

X1 = RDWT Level 2, LP/HP - 4 rows per channel
X2 = RDWT Level 2, HP only - 2 rows per channel
X3 = RDWT Level 4, HP only - 4 rows per channel
X4 = RDWT Level 5, HP only - 5 rows per channel
X5 = RDWT Level 5, LP/HP - 10 rows per channel.

The results are charted in figure 17, the numbers are found in table 12.

Figure 17: Special Wavelet EMG Features

The results of these experiments are inconsistent across the different de-
lays. However, it can be said that the best result of my EMG experiments
was achieved with the X1 feature at a delay of 40 ms. The recognition rate of
66.50% is very close to the optimal recognition rate in [8], which was 68%. We
also see that the features X2 and X5 generally perform worse than the other
features, whereas X1, X3 and X4 are quite equal in terms of the recognition
rate. The most striking fact is that in the case of an RDWT to level 2, the
highpass coefficients increase the recognition rate, whereas for an RDWT till
level 5, they significantly reduce the performance.

This fact may be explained by the same reasoning as in the section above—
that there is a certain level of “saturation” which the RDWT features may

6This means that some information was irretrievably lost, since the reconstruction of the
original data requires the highpass (wavelet) coefficients and the lowest-scale approximation
coefficient.
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reach or exceed, and that further information reduces the recognition rate. But
further scrutiny might also give hints to the location of relevant information in
the different scales the original EMG data is split into.

5.6 Summary

By these experiments, we have seen that the Redundant Discrete Wavelet Trans-
form (RDWT) is a powerful tool in preprocessing EMG signals for speech reocg-
nition. Even a simple RDWT with no further processing significantly outper-
forms ordinary spectral features. [8] asserts that the pure FFT is inadequate for
this kind of processing, so it is remarkable that the RDWT performs so much
better.

I did not succeed for now in outperforming the best results of [8], where
the E4 feature yielded a word error rate of 32%, i. e. a word accuracy of 68%.
However, a combination of RDWT and the smoothing applied in [8] came very
close to those results.

The main point, however, is that we now have a lever to better understanding
the nature of the EMG signal as well as the preprocessing behavior. For example,
the fact that context-based features improve the recognition results up to a
certain limit where the exact nature of these features plays a minor role gives
us hints where to direct further research (see also section 6.3).

6 Conclusion

In this section, I will lay out which conclusions may be drawn from the experi-
ments described above.

6.1 The DTCWT is Feasible for EEG Recognition

This work shows, in general, that the DTCWT is a good lever for increasing the
performance of EEG-based speech recognition. It must, however, also be noted
that there apparently were “good” and “bad” recordings in terms of recognition
performance, i. e. a recording which yielded bad results under a standard Fourier
preprocessing (or indeed a FWT-based preprocessing) would not yield excellent
results when using the DTCWT. In other words, the DTCWT performs better
than the other preprocessing methods, but is not more or less robust than those.

If this effect is due to artifacts in the recording, more refined methods of
artifact removal may solve this problem; if the problem is caused by a generally
poor signal (for example because of badly placed electrodes, bad connectivity
of the skin at the time of recording or lack of concentration on the side of the
subject), then a change of the preprocessing method will not be helpful, instead
the recording methods would have to be reevaluated.

I tried two different filter setups for the DTCWT. Based on my experiments,
none of these setups is best in all circumstances—the differences between these
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filters only amount to a few percent points, the decomposition level has got a
much greater influence on the result.

Nonetheless, given a particular task, it may be suitable to experiment with
different filter setups (there are way more possibilities than I employed here) in
order to obtain best results. Filters can also be designed specifically for a task
at hand ([16] and the references therein).

Finally, an LDA should always be applied, with a dimensionality reduction to
approximately 35 dimensions. Beyond this, the recognizer performance suffers.

6.2 Comparison of EEG Recordings of Different Modali-
ties

Based on my experiments, one cannot say that under all circumstances, one
specific filter setup gives best results. However, it has turned out (as described
in the Results section) that the recordings may be grouped according to their
modality and sequencing mode, and that for recordings which fall into the same
group, similar properties hold.

Before discussing each group separately, I give here a comparison of the
average performance levels for each combination of modalities:

Blockwise Sequential ø
Unspoken 77.46% 36.15% 56.81%
Spoken 98.67% 66.67% 82.67%

ø 88.07% 51.41% 69.74%

6.2.1 Spoken Words Are Recognized Better than Unspoken Words

The most striking result is that the performance of the EEG recognizer for Spo-
ken Language is significantly better than for unspoken language. This is a result
which remains unchanged throughout all recordings, and in some cases even if
recordings of spoken and unspoken speech were made during one single session
(i. e. without the ElectroCap being removed in-between), the performance for
spoken words is superior to the performance for unspoken words. In particu-
lar, this can be seen with the sessions 1 and 2 (blockwise) as well as 3 and 4
(sequential) of speaker 2. I chart this effect in figure 18.

Since all other causes can be ruled out, the difference in speech modality
must be the influential factor for this gap. This gap exists no matter whether
the recording sequence mode was blockwise or sequential.

6.2.2 Blockwise Recordings are Better than Sequential Recordings

A similarly striking result is that blockwise recordings perform much better than
sequential ones, but only in the case of unspoken words. Again, this even occurs
when the two recordings to be compared were done as a “Double Session”,
i. e. without removing the ElectroCap in-between.
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Figure 18: Comparison of Recordings of Spoken and Unspoken Words

This has got far-reaching consequences: First of all, it means that during
evaluations of any EEG recognizer, the sequence of the recorded data must be
observed in order to get comparable results.

Mainly, however, it means that in blockwise mode, a kind of artifact related
to this mode enters classification and improves recognition performance, which
implies that this artifact changes in accordance to the currently recorded block.

One explanation could be that a word which is recorded multiple times in a
row gets increasingly “fixed” in the subject’s mind, so that the thought which
we are trying to recognize becomes increasingly stronger and more recognizable.
However, since between the recording of two samples, several seconds pass (at
least), and before each recording the current word is shown to the subject, this
seems not too convincing. The fact that the words do not have connotations for
the subject further reduces this probability.

The most probable explanation is that the EEG recognizer classifies a slow
temporal change of the overall shape of the EEG—independent of the exact word
which was thought at a point in time. Indeed, I took a sequential recording,
rearranged the samples in temporal order and relabeled them accordingly:

• The first 30 samples got the label “First”.

• Samples 31-60 got the label “Second”.

• Samples 61-90 got the label “Third”.

• Samples 91-120 got the label “Fourth”.

• Samples 121-150 got the label “Fifth”.

Using the EEG recognizer on these relabeled sessions yielded results comparable
to those for blockwise recordings, even though in these cases, the classification
could not be based on the actual words that were being thought.
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As I outlined in section 4.5, for spoken words the results for blockwise record-
ings are still better than those for sequential recordings, but even in the latter
case the performance is significantly above chance. Further conclusions of this
fact are discussed in the next section.

6.2.3 Conclusions by Modality

Comparing the different modalities and sequencing modes, the following results
can be inferred: For blockwise recordings of unspoken words, the optimal
decomposition level of the DTCWT is very low, between 2 and 3.

For sequential recordings of unspoken words, the optimal decomposi-
tion level is about 8.

The difference between these results must be rooted in the time-related ar-
tifacts entering the classification—a conjecture already posed in [3] which my
results confirm. These artifacts seem to get weaker when the decomposition
level increases, i. e. details of larger scales (lower frequencies) enter the feature
vectors. At the same time, we see that information about a currently thought
word is located in the lower frequencies which correspond to decomposition lev-
els around 8. At a sampling rate of 300 Hz, decomposition level 8 represents
details of maximal size 28/300 = 0.85 seconds, which corresponds to a frequency
of about 1.17 Hz. This result is consistent with previous work on EEG word
recognition: Suppes et al. found that ideal bandpass filters for a recognition
task similar to this one had low frequencies usually ranging from 1 Hz to 5 Hz
([18], table 2).

For spoken words, the optimal decomposition level was again relatively
low, namely around 3. More importantly, sequential recordings of spoken words
behaved similar to blockwise recordings of spoken words and showed a much
better performance than sequential recordings of unspoken words. It is clear
that this is related to the presence of muscular artifacts in the recordings, though
further research is needed to show whether the actual muscular movement or
the commands sent by the brain to the muscles make the difference.

6.3 The RDWT is Feasible for EMG Recordings

We have seen that the RDWT significantly outperforms all spectral features in
the task of EMG recognition. However, we also have seen that the performance
of the “special EMG features” described in [8] is not easily exceeded. It is
particularly noteworthy that the context filters D, T and S from section 5.4
increase the word accuracy up to a certain limit, but not further. It remains a
question for future research why this happens.

6.4 Ideas fur Further Research

6.4.1 EEG

So far, the work in EEG speech recognition at InterACT [19, 3] has laid an
important cornerstone for future research. In [19], Marek Wester created a
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working recognizer for EEG data and applied it to data based on several different
corpora, recorded with various modalities. It turned out that the choice of the
corpus does not measurably influence recognition results.

However, the recording modality greatly influences the recognition perfor-
mance. Wester uses Normal, Silent, Mumbled and Whispered Speech (all in-
curring facial muscle movements) as well as Unspoken Speech. The fact that
in the case of Unspoken Speech, the original recording setup proved susceptible
to artifacts related to the temporal closeness of utterances is one of the major
results of Jan Calliess in [3].

The next step must be to eliminate this susceptibility in the case of Unspoken
Speech, which is probably most interesting due to the absence of muscular
artifacts. My own work as well as [18] affirm that word recognition by EEG
is well possible, but needs even more refined methods.

One major hindrance I encountered was the lack of session data containing
a sufficient number of utterances in sequential (or random) ordering.7 [18] use
700 utterances in random ordering for each recognition task, in my work I was
limited to maximally 150 utterances. In order to be able to sufficiently generalize
results, more recordings particularly of unspoken speech, restricted to one or two
of the corpora mentioned in section 3.1 should be taken. Early experiments,
which I do not describe in detail in this paper, indicate that an increase in the
number of training utterances greatly improves the word accuracy.

At this point, it should also be mentioned that due to the smallness of the
recording session data, we did not use independent test/crossvalidation sets, but
rather tuned our preprocessing to the same data on which it was tested. The
“Leave-One-Out” method we used (described in section 3.4) may therefore have
influenced the genericity of the results.

When a suitable corpus of training, testing and evaluation data has been
created, the preprocessing methods must be refined. The following ideas come
to mind:

• Test a variety of different filters instead of only two ones

• Leave out certain scales (i. e. decomposition levels) from the feature vectors
in order to exactly determine at which scales relevant information is found.
Compare this with spectral methods.

• Implement and try the Wavelet Packet Transform [4].

• Try context-based features like the ones described in the EMG section 5.4.

6.4.2 EMG

We have seen that context information is very important for EMG recognition.
It would be a natural continuation of this work to introduce phonemes including
context (i. e. polyphones). However, this requires a large body of data, which is

7The time limit imposed on my work made it unfeasible to do recording sessions on my
own.
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currently difficult to obtain because of the session-dependency of EMG record-
ings. Finding a way to do EMG recognition across different recording sessions,
maybe even across different persons, would be a great step forward.

The good results achieved with the RDWT can give us further hints on
how to refine the EMG preprocessing. The results should be cross-checked with
different data; this might empower us to answer the question how EMG data
is structured. My special EMG features somewhat indiscriminately computed
three variables (power, mean and zero-crossing-rate) for each row created in the
RDWT processing. Refining this method might improve the results.

Beyond the mere preprocessing, it might also prove valuable to scrutinize
the classification algorithm. Even when sticking to a left-to-right HMM model,
the number of states and the transition weights might have to be adapted. The
caveat is best shown by example: The original frame-based computation of
feature vectors in [8] created 100 feature vectors per second (because the frame
shift was 10 ms), the RDWT creates about 600 feature vectors per second (one
for each recorded value, and the sampling rate was 600 Hz). Tuning the HMM to
reflect this difference might give a better model of the EMG signal and therefore
a better recognition rate.
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Appendices

A Software Documentation

This section is intended to serve as a guide to those who want to continue
experiments in EEG recognition at InterACT. It describes the software used for
the recognition process and outlines the required configuration as well as the
process which has to be initiated by the user.

My description is based on the environment I used for most of my work at
the Interactive Systems Lab at CMU. Given paths refer to the common NFS
space managed by the lab.

A.1 JANUS

Janus is the state-of-the-art speech recognizer developed by the CMU and the
University of Karlsruhe. It provides a complete framework for tasks in the field
of signal processing and pattern recognition based on the most recent techniques
used in speech recognition research. A multitude of algorithms and all building
blocks for a speech recognizer system are available, e. g. HMM models, decision
trees, path algorithms, Fourier transforms etc.

JANUS has been implemented in two parts: A core containing time-con-
suming algorithms has been written in plain C. This core is accessed by a set
of TCL functions found in the tcl-lib. A documentation of this structure is
available. Several routines are written in TK to provide a graphical user inter-
face, however, there are not necessary for the recognition task. In fact, since
actual recognition tasks are run without direct user supervision, the use of a
GUI would be contraproductive, and therefore the GUI part is often left out
when compiling JANUS. For details refer to the JANUS documentation.

The functions from the C core mostly appear in TCL as methods of pseudo-
classes. All wavelet transform functions are part of the FeatureSet class.

A.2 The Wavelet Transform in JANUS

I implemented the Wavelet Transform in a separate codebase of the JANUS core.
This codebase is to be merged with the main JANUS branch in the future.

The implementation of the wavelet transform variants may be found in the
file $JANUSBASE/src/features/featureDWT.c8and its respective header file.
The implementation has got three access functions, each of which has got a C
name and a JANUS name.

Function in C Function in JANUS Description
fesFWTItf fwt Performs the FWT
fesDTCWTItf dtcwt Performs the DTCWT
fesRDWTItf rdwt Performs the RDWT

8In my setup, $JANUSBASE is /people/mwand0/ibis-014.
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All these functions take the following parameters (in this order):

Parameter Meaning
TO The name of the feature which will be newly created.
FROM The name of the feature which has to be processed.

Filter The filter(s) which will be used. See below.
Level The maximum decomposition level.

-useLowpass L (Optional) The number of low-pass coefficients which
should go into the new feature. Must be smaller than
Level, defaults to 0.

The parameter Filter takes the following form: For the FWT and the
RDWT, it is one single Filter object. For the DTCWT, four filters must be
passed: First the two low-pass filters for the first stage of the transform, then
the two low-pass filters for the second stage. Refer to section 2.4 for details.

These functions appear as member function of the FeatureSet class, so
for performing e. g. the FWT, one needs to use the following code. Here we
assume that fs is a FeatureSet having a feature ADC. WV will be the new feature
containing the wavelet coefficients. myLevel must be a positive integer. For
a more complete example see below. myFilter can be a filter object or an
expression like { offset { ...coefficients ...} }.

fs fwt WV ADC myFilter $myLevel [-useLowpass $myLevel]

A.3 The Training and Recognition Process

In the current setup, (almost) all files relevant for the EEG recognition are found
under /people/mwand0/cluster, and any user wishing to use them should copy
the entire directory to his/her own NFS space. Before actually starting the work,
the following setup has to be done:

• These shell variables have to be set appropiately. I give the commands
here in csh syntax:

setenv CLUSTER_DIR /people/mwand0/cluster
setenv JANUSNX /people/mwand0/cluster/bin/janusNX

The right place for this would be the ~/.cshrc if csh is used.

• Apart from the above, several base directories must be set in $CLUSTER_
DIR/mainconfig.tcl and $CLUSTER_DIR/mainconfig.csh (this is due to
the fact that the EEG recognizer contains both csh and TCL code).

• Here comes an example for a ~/.janusrc:

puts "janusrc executed by [info nameofexecutable]"
puts "at [clock format [clock seconds]]"
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set base "/people/mwand0/ibis-014"

set TclLibraryPath $base/tcl-lib
set JANUSLIB $base/gui-tcl
lappend auto_path $base/library $base/tcl-lib $base/gui-tcl

# This is the only nonstandard part, and only necessary
# if any filter in one of these files
# will be used. filters.tcl defines some basic filters.
source /people/mwand0/library/filters.tcl
source /people/mwand0/library/tcltools.tcl

The structure of the $CLUSTER DIR directory tree is as follows:

bin contains the necessary binaries.

config collects all configuration data necessary for a training job. As soon as
the training job has been started, these files may be changed to perpare
another job. The meaning of the files will be explained below.

eeg recognizer contains an EEG recognizer. This directory serves as a tem-
plate for actual tasks.

pool is where the work is done—this directory contains adapted copies of the
eeg recognizer directory.

tools contains additional TCL scripts.

For a training run, first of all the job database containing all adc files9, their
labeling etc. has to be prepared. The main difficulty in this is to determine the
signal bounds, which according to section 3.2 are marked by eyeblinks.

When this has been done, a subdirectory of pool is created which contains
all files which the recognizer uses. This subdirectory has got the default name
SPEAKERID_SESSIONID_MODALITY, for example 13_01_think.

The JANUS process is highly parallelized. At CMU, it may run on a Condor
cluster [1]. The process will only access files inside the respective subdirectory of
pool. The file controlling the entire following process is $CLUSTER_DIR/master.
tcl. It may be called with several options, but only three of them are usually
needed. These I will describe in the following list.

A full training run works like this (paths are given assuming $CLUSTER_DIR
is the current directory):

• Edit config/dbaseparam.tcl appropiately. Set the data folder which
should be worked with, the vocabulary and the speech modality. The
variable offsetForRecordings gives the amount of space at the beginning

9This is the format for recorded data
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of a recording which should be ignored by the eyeblink recognizer. Two
seconds seems to be a good choice to avoid errors which may stem from
irregularities at the beginning of the recording.

• The job database is created then by a call to

bin/janusNX tools/prepareDatabse.tcl

This database is saved to eeg recognizer/desc/janus/db-utt.?.

• Edit config/baseDesc.tcl and config/featDesc_eeg.tcl according to
the desired preprocessing. Make sure that in config/baseDesc.tcl,
${SID}(codebookDimN) is set to the correct dimensionality of the feature
vector before the LDA application.

• For building the subdirectory of pool, call

bin/janusNX master.tcl build <directory> -domain <dom>

where <directory> will have a value like 13_01_think, and <dom> repre-
sents the vocabulary, like alpha or digit5 (for a full list, see the source
code of master.tcl).

• When this is done, you may optionally rename the subdirectory in order
to accomodate several runs of JANUS on the same data, or to represent
specific settings. However, the name or this directory must be set both in
pool/.../condorDesc and pool/.../desc/baseDesc.tcl.

• Start the recognition run by calling

bin/janusNX master.tcl start <directory>

where <directory> should be e. g. 13_01_think, as above. This com-
mand returns immediately, and Condor takes control over the process.
You must, however, make sure that a Condor scheduler is installed on
your computer.

• Use the standard Condor command condor q to check the status of your
task. The result should look approximately like this:

-- Submitter: proconsul.is.cs.cmu.edu: <128.2.219.46:32775>: proconsul.is.cs.cmu.edu
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

3590.0 mwand 12/1 09:02 0+00:00:00 I 0 1.9 janusNX DO.crossVa

The important thing here is that the basic script to be called is DO.
crossValidation.tcl. I recommend reading it to see how the process
works in detail.

Refer to the Condor documentation for more information. master.tcl
also incorporates some Condor handling.
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• When condor q does not show the JANUS process any more, it is finished,
and the results may be found in the directory pool/.../log/. If every-
thing ran smoothly, the file condor.out contains the overall recognition
rate at the end. The results may be represented as a confusion matrix by
the call bin/janusNX master.tcl results directory.

B Detailed Results of the Experiments

B.1 EEG Recognition Results

These are the results from my EEG experiments. See section 4 for an explana-
tion and the corresponding charts.

Speaker 1 Speaker 2 Speaker 2 Speaker 2
Session 1 Session 1 Session 5 Session 2
Unspoken Unspoken Unspoken Spoken
blockwise blockwise sequential blockwise

STFT - 12 subbands 64.00% 76.00% 36.30% 83.33%
DTCWT 1 - Level 4 77.34% 88.00% 39.26% 96.67%
DTCWT 2 - Level 4 70.00% 90.00% 38.52% 95.33%
FWT with Daub4 - Level 4 31.33% 76.00% 34.81% 92.00%
RDWT with Daub4 - Level 4 33.33% 54.00% 31.11% 86.00%

Speaker 2 Speaker 3 Speaker 4
Session 4 Session 1 Session 1

Spoken Unspoken Unspoken
sequential blockwise blockwise

STFT - 12 subbands 52.67% 30.08% 44.97%
DTCWT 1 - Level 4 57.33% 42.67% 77.33%
DTCWT 2 - Level 4 58.67% 34.13% 69.33%
FWT with Daub4 - Level 4 50.00% 27.73% 52.30%
RDWT with Daub4 - Level 4 46.67% 23.73% 47.00%

Table 2: Preprocessing Results for EEG
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Speaker 1 Speaker 2 Speaker 3 Speaker 4
Session 1 Session 1 Session 1 Session 1

DTCWT 1 - 2 ... 5 70.67% 77.33% 19.51% 29.53%
DTCWT 1 - Level 1 71.33% 88.67% 39.47% 85.83%
DTCWT 1 - Level 2 76.67% 87.33% 52.00% 84.00%
DTCWT 1 - Level 3 80.00% 88.67% 49.07% 82.00%
DTCWT 1 - Level 4 77.34% 88.00% 42.67% 77.33%
DTCWT 1 - Level 5 70.00% 84.67% 38.21% 69.13%
DTCWT 1 - Level 6 62.67% 85.33% 38.13% 71.33%
DTCWT 1 - Level 7 50.67% 78.00% 43.09% 60.40%
DTCWT 1 - Level 8 48.00% 78.00% 43.90% 31.54%
DTCWT 1 - Level 9 50.67% 78.67% 36.53% 44.63%
DTCWT 2 - 2 ... 5 30.67% 53.33% 18.70% 38.26%
DTCWT 2 - Level 1 71.33% 88.67% 39.47% 85.83%
DTCWT 2 - Level 2 76.67% 82.67% 46.13% 85.33%
DTCWT 2 - Level 3 72.67% 92.00% 44.00% 76.50%
DTCWT 2 - Level 4 70.00% 90.00% 34.13% 69.33%
DTCWT 2 - Level 5 62.00% 88.00% 39.02% 67.11%
DTCWT 2 - Level 6 57.30% 81.33% 32.53% 64.00%
DTCWT 2 - Level 7 58.67% 80.00% 20.33% 30.20%
DTCWT 2 - Level 8 58.67% 79.33% 20.23% 31.54%
DTCWT 2 - Level 9 50.67% 75.33% 19.73% 32.21%

Table 3: DTCWT Results for EEG, Blockwise Recordings

Speaker 1 Speaker 2 Speaker 3 Speaker 4
Session 1 Session 1 Session 1 Session 1

DTCWT 1 - Level 3 → 16 80.00% 88.00% 41.33% 80.67%
DTCWT 1 - Level 3 → 35 80.00% 88.67% 49.07% 82.00%
DTCWT 1 - Level 3 → 60 75.30% 86.00% 44.00% 75.33%
DTCWT 2 - Level 3 → 16 76.67% 91.33% 45.07% 76.67%
DTCWT 2 - Level 3 → 35 72.67% 92.00% 44.00% 76.50%
DTCWT 2 - Level 3 → 60 70.67% 87.33% 40.53% 71.17%

Table 4: LDA Dimension for EEG, Blockwise Recordings
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Speaker 2 Speaker 2
Session 3 Session 5

DTCWT 1 - 2 ... 5 17.33% 20.74%
DTCWT 1 - Level 3 12.67% 33.33%
DTCWT 1 - Level 4 11.34% 39.26%
DTCWT 1 - Level 5 18.00% 31.11%
DTCWT 1 - Level 6 19.33% 34.81%
DTCWT 1 - Level 7 22.67% 31.85%
DTCWT 1 - Level 8 26.00% 42.96%
DTCWT 1 - Level 9 20.00% 39.26%
DTCWT 1 - Level 10 18.67% 40.00%
DTCWT 2 - 2 ... 5 21.33% 18.52%
DTCWT 2 - Level 3 16.00% 29.63%
DTCWT 2 - Level 4 18.67% 38.52%
DTCWT 2 - Level 5 18.00% 30.37%
DTCWT 2 - Level 6 20.67% 30.37%
DTCWT 2 - Level 7 21.33% 36.30%
DTCWT 2 - Level 8 23.33% 34.81%
DTCWT 2 - Level 9 22.00% 40.00%
DTCWT 2 - Level 10 15.33% 32.59%

Table 5: DTCWT Results for EEG, Sequential Recordings

Speaker 2 Speaker 2
Session 3 Session 5

DTCWT 1 - Level 8 → 16 22.00% 37.04%
DTCWT 1 - Level 8 → 30 21.33% 39.26%
DTCWT 1 - Level 8 → 35 26.00% 42.96%
DTCWT 1 - Level 8 → 40 22.00% 37.78%
DTCWT 1 - Level 8 → 60 20.00% 37.04%
DTCWT 2 - Level 8 → 16 29.33% 32.59%
DTCWT 2 - Level 8 → 30 22.00% 38.52%
DTCWT 2 - Level 8 → 35 23.33% 34.81%
DTCWT 2 - Level 8 → 40 23.33% 34.81%
DTCWT 2 - Level 8 → 60 20.00% 32.59%

Table 6: LDA Dimension for EEG, Sequential Recordings
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Speaker 2 Speaker 2
Session 2 Session 4

DTCWT 1 - 2 ... 5 43.33% 23.33%
DTCWT 1 - Level 1 97.33% 58.67%
DTCWT 1 - Level 2 98.67% 55.33%
DTCWT 1 - Level 3 96.67% 66.67%
DTCWT 1 - Level 4 96.67% 57.33%
DTCWT 1 - Level 5 95.33% 53.33%
DTCWT 1 - Level 6 93.33% 52.00%
DTCWT 1 - Level 7 92.00% 50.67%
DTCWT 1 - Level 8 94.00% 58.00%
DTCWT 1 - Level 9 92.00% 54.67%
DTCWT 2 - 2 ... 5 33.33% 33.33%
DTCWT 2 - Level 1 97.33% 58.67%
DTCWT 2 - Level 2 98.00% 64.00%
DTCWT 2 - Level 3 96.00% 65.33%
DTCWT 2 - Level 4 95.33% 58.67%
DTCWT 2 - Level 5 92.67% 56.00%
DTCWT 2 - Level 6 94.00% 62.67%
DTCWT 2 - Level 7 78.00% 54.67%
DTCWT 2 - Level 8 79.33% 56.00%
DTCWT 2 - Level 9 80.67% 59.33%

Table 7: DTCWT Results for EEG, Spoken Words

Speaker 2 Speaker 2
Session 2 Session 4

DTCWT 1 - Level 3 → 16 96.00% 66.00%
DTCWT 1 - Level 3 → 35 96.67% 66.67%
DTCWT 1 - Level 3 → 60 95.33% 61.33%
DTCWT 2 - Level 3 → 16 95.33% 66.00%
DTCWT 2 - Level 3 → 35 96.00% 65.33%
DTCWT 2 - Level 3 → 60 97.33% 59.33%

Table 8: LDA Results for EEG, Spoken Words
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B.2 EMG Recognition Results

Delay 0 ms 10 ms 20 ms 30 ms
RDWT Level 5 53.80% 55.50% 56.00% 56.60%
FWT Level 5 43.90% 50.40% 44.30% 44.80%
DTCWT Level 5 26.20% 28.10% 29.40% 30.40%
FFT, 9 frequency bands 15.00% 19.30% 20.90% 21.30%

Delay 40 ms 50 ms 60 ms 70 ms
RDWT Level 5 54.80% 52.10% 53.30% 49.60%
FWT Level 5 42.10% 43.70% 39.70% 37.60%
DTCWT Level 5 32.70% 31.00% 31.00% 31.20%
FFT, 9 frequency bands 22.40% 12.30% 24.20% 21.10%

Delay 80 ms 90 ms AVG
RDWT Level 5 46.90% 44.30% 52.29%
FWT Level 5 34.50% 28.80% 40.98%
DTCWT Level 5 30.10% 27.10% 29.72%
FFT, 9 frequency bands 21.10% 20.20% 19.78%

Table 9: Comparison of Spectral and Wavelet Features for EMG
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Delay 0 ms 10 ms 20 ms 30 ms
W0 53.80% 55.50% 56.00% 56.60%
W1 57.70% 60.10% 60.10% 57.90%
W2 59.10% 62.50% 62.50% 56.60%
W3 56.90% 59.30% 57.40% 59.10%
W4 60.70% 60.50% 59.00% 58.60%

Delay 40 ms 50 ms 60 ms 70 ms
W0 54.80% 52.10% 53.30% 49.60%
W1 57.70% 58.40% 53.90% 49.50%
W2 57.40% 56.90% 57.00% 54.10%
W3 58.90% 54.90% 54.20% 52.40%
W4 57.90% 59.70% 50.70% 51.60%

Delay 80 ms 90 ms AVG
W0 46.90% 44.30% 52.29%
W1 50.50% 43.80% 54.96%
W2 52.20% 49.60% 56.79%
W3 48.70% 45.10% 54.69%
W4 49.40% 44.50% 55.26%

Table 10: RDWT with Delta and Stacking Filters
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Delay 0 ms 10 ms 20 ms 30 ms
W0 53.80% 55.50% 56.00% 56.60%
W1 57.70% 60.10% 60.10% 57.90%
W2 59.10% 62.50% 62.50% 56.60%

WD0 56.90% 59.30% 57.40% 59.10%
WD1 60.70% 60.50% 59.00% 58.60%
WD2 52.00% 47.70% 56.80% 51.40%
WT0 57.30% 60.00% 58.50% 58.30%
WT1 60.40% 57.60% 58.30% 60.50%
WT2 57.30% 58.40% 53.70% 57.20%

WDT0 58.30% 57.00% 59.30% 59.80%
WDT1 52.50% 51.50% 55.80% 59.40%

Delay 40 ms 50 ms 60 ms 70 ms
W0 54.80% 52.10% 53.30% 49.60%
W1 57.70% 58.40% 53.90% 49.50%
W2 57.40% 56.90% 57.00% 54.10%

WD0 58.90% 54.90% 54.20% 52.40%
WD1 57.90% 59.70% 50.70% 51.60%
WD2 50.70% 52.30% 56.80% 41.70%
WT0 57.80% 57.30% 53.60% 54.80%
WT1 60.20% 57.10% 55.70% 51.80%
WT2 58.30% 57.30% 59.50% 50.20%

WDT0 61.20% 59.30% 57.20% 55.30%
WDT1 58.00% 50.60% 54.50% 55.50%

Delay 80 ms 90 ms AVG
W0 46.90% 44.30% 52.29%
W1 50.50% 43.80% 54.96%
W2 52.20% 49.60% 56.79%

WD0 48.70% 45.10% 54.69%
WD1 49.40% 44.50% 55.26%
WD2 45.00% 44.60% 49.90%
WT0 49.30% 46.10% 55.30%
WT1 50.50% 48.00% 56.01%
WT2 56.50% 50.80% 55.92%

WDT0 50.70% 47.40% 56.55%
WDT1 50.80% 49.80% 53.84%

Table 11: Contextual Filters with the RDWT for EMG Processing
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Delay 0 ms 10 ms 20 ms 30 ms
X1 61.90% 63.80% 64.70% 63.10%
X2 58.10% 60.40% 59.00% 59.40%
X3 59.10% 63.70% 63.60% 63.50%
X4 61.60% 65.10% 65.50% 59.40%
X5 35.90% 42.10% 46.00% 53.10%

Delay 40 ms 50 ms 60 ms 70 ms
X1 66.50% 63.20% 53.10% 65.00%
X2 60.70% 60.40% 58.00% 58.20%
X3 51.50% 65.00% 63.80% 64.10%
X4 64.50% 65.40% 59.30% 66.10%
X5 50.00% 57.30% 55.00% 49.80%

Delay 80 ms 90 ms AVG
X1 61.70% 61.30% 62.43%
X2 58.70% 53.60% 58.65%
X3 63.00% 61.30% 61.86%
X4 63.90% 57.80% 62.86%
X5 51.60% 39.30% 48.01%

Table 12: Special Wavelet EMG Features
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